Journal of Meteorological Research

, Volume 29, Issue 6, pp 884–895

Uncertainty in the 2°C warming threshold related to climate sensitivity and climate feedback

  • Tianjun Zhou (周天军)
  • Xiaolong Chen (陈晓龙)
Article

Abstract

Climate sensitivity is an important index that measures the relationship between the increase in greenhouse gases and the magnitude of global warming. Uncertainties in climate change projection and climate modeling are mostly related to the climate sensitivity. The climate sensitivities of coupled climate models determine the magnitudes of the projected global warming. In this paper, the authors thoroughly review the literature on climate sensitivity, and discuss issues related to climate feedback processes and the methods used in estimating the equilibrium climate sensitivity and transient climate response (TCR), including the TCR to cumulative CO2 emissions. After presenting a summary of the sources that affect the uncertainty of climate sensitivity, the impact of climate sensitivity on climate change projection is discussed by addressing the uncertainties in 2°C warming. Challenges that call for further investigation in the research community, in particular the Chinese community, are discussed.

Keywords

climate sensitivity radiative forcing climate feedback 2°C threshold greenhouse gases climate model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, T., J. M. Gregory, M. J. Webb, et al., 2012: Forcing, feedbacks and climate sensitivity in CMIP5 coupled atmosphere-ocean climate models. Geophys. Res. Lett., 39, L09712.CrossRefGoogle Scholar
  2. Arrhenius, S., 1896: On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag., 41, 237–276.CrossRefGoogle Scholar
  3. Boucher, O., D. Randall, P. Artaxo, et al., 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis. Stocker, T. F., D. H. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1535 pp.Google Scholar
  4. Calvin, K. V., J. A. Edmonds, B. Bond-Lamberty, et al., 2009: 2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energ. Econ., 31, S107–S120.CrossRefGoogle Scholar
  5. Cess, R. D., 1975: Global climate change: An investigation of atmospheric feedback mechanisms. Tellus, 27, 193–198.CrossRefGoogle Scholar
  6. Charney, J., A. Arakawa, D. J. Baker, et al., 1979: Carbon dioxide and climate: A scientific assessment. Report of an Ad Hoc Study Group on Carbon Dioxide and Climate. National Academy of Sciences Press, Washington D. C., 22 pp.Google Scholar
  7. Chen Xiaolong, Zhou Tianjun, and Guo Zhun, 2014: Climate sensitivities of two versions of FGOALS model to idealized radiative forcing. Sci. China (Earth Sci.), 57, 1363–1373.CrossRefGoogle Scholar
  8. Collins, M., R. Knutti, J. Arblaster, et al., 2013: Longterm climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis. Stocker, T. F., D. H. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1535 pp.Google Scholar
  9. Colman, R., 2003: Seasonal contributions to climate feedbacks. Climate Dyn., 20, 825–841.Google Scholar
  10. Cubasch, U., G. Meehl, G. J. Boer, et al., 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis. Houghton, J. T., Y. H. Ding, D. J. Griggs, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 881 pp.Google Scholar
  11. Danabasoglu, G., and P. R. Gent, 2009: Equilibrium climate sensitivity: Is it accurate to use a slab ocean model? J. Climate, 22, 2494–2499.CrossRefGoogle Scholar
  12. Flato, G., J. Marotzke, B. Abiodun, et al., 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis. Stocker, T. F., D. H. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1535 pp.Google Scholar
  13. Forster, P. M. F., and J. M. Gregory, 2006: The climate sensitivity and its components diagnosed from earth radiation budget data. J. Climate, 19, 39–52.CrossRefGoogle Scholar
  14. Forster, P., V. Ramaswamy, P. Artaxo, et al., 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis. Solomon, S., D. H. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 996 pp.Google Scholar
  15. Gillett, N. P., V. K. Arora, D. Matthews, et al., 2013: Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Climate, 26, 6844–6858.CrossRefGoogle Scholar
  16. Goodwin, P., R. G. Williams, and A. Ridgwell, 2015: Sensitivity of climate to cumulative carbon emissions due to compensation of ocean heat and carbon uptake. Nat. Geosci., 8, 29–34.CrossRefGoogle Scholar
  17. Gregory, J. M., R. J. Stouffer, S. C. B. Raper, et al., 2002: An observationally based estimate of the climate sensitivity. J. Climate, 15, 3117–3121.CrossRefGoogle Scholar
  18. Gregory, J. M., W. J. Ingram, M. A. Palmer, et al., 2004: A new method for diagnosing radiative forcing and climate sensitivity. Geophys. Res. Lett., 31, L03205.Google Scholar
  19. Gregory, J. M., and P. Forster, 2008: Transient climate response estimated from radiative forcing and observed temperature change. J. Geophys. Res., 113, D23105.CrossRefGoogle Scholar
  20. Han Bo, Lü Shihua, et al., 2015: Connection between atmospheric latent energy and energy fluxes simulated by nine CMIP5 models. J. Meteor. Res., 29, 412–431.CrossRefGoogle Scholar
  21. Hansen, J., A. Lacis, D. Rind, et al., 1984: Climate sensitivity: Analysis of feedback mechanisms. Climate Processes and Climate Sensitivity. Hansen, J. E., and T. Takahashi, Eds., American Geophysical Union, Washington D. C., 130–163.CrossRefGoogle Scholar
  22. Hansen, J., M. Sato, R. Ruedy, et al., 2005: Efficacy of climate forcings. J. Geophys. Res., 110, D18104.CrossRefGoogle Scholar
  23. Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energy Environ., 25, 441–475.CrossRefGoogle Scholar
  24. Held, I. M., and K. M. Shell, 2012: Using relative humidity as a state variable in climate feedback analysis. J. Climate, 25, 2578–2582.CrossRefGoogle Scholar
  25. Ingram, W., 2013: A new way of quantifying GCM water vapour feedback. Climate Dyn., 40, 913–924.CrossRefGoogle Scholar
  26. IPCC, 1990: Climate Change: The IPCC Scientific Assessment. Houghton, J. T., G. J. Jenkins, J. J. Ephraums, Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 365 pp.Google Scholar
  27. Jackson, C. S., M. K. Sen, G. Huerta, et al., 2008: Error reduction and convergence in climate prediction. J. Climate, 21, 6698–6709.CrossRefGoogle Scholar
  28. Jacob, D. J., R. Avissar, G. C. Bond, et al., 2005: Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties. The National Academies Press, Washington D. C., 207 pp.Google Scholar
  29. Klocke, D., R. Pincus, and J. Quaas, 2011: On constraining estimates of climate sensitivity with present-day observations through model weighting. J. Climate, 24, 6092–6099.CrossRefGoogle Scholar
  30. Li, C., J.-S. Von Storch, and J. Marotzke, 2013: Deepocean heat uptake and equilibrium climate response. Climate Dyn., 40, 1071–1086.CrossRefGoogle Scholar
  31. Ma Xiaoyan, Shi Guangyu, Guo Yufu, et al., 2005: Radiative forcing by greenhouse gases and sulfate aerosol. Acta Meteor. Sinica, 63, 41–48. (in Chinese)Google Scholar
  32. Manabe, S., and R. F. Strickler, 1964: Thermal equilibrium of the atmosphere with a convective adjustment. J. Atoms. Sci., 21, 361–385.CrossRefGoogle Scholar
  33. Manabe, S., and R. T. Wetherald, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atoms. Sci., 24, 241–259.CrossRefGoogle Scholar
  34. Manabe, S., and R. T. Wetherald, 1975: The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atoms. Sci., 32, 3–15.CrossRefGoogle Scholar
  35. Mann, M. E., 2009: Defining dangerous anthropogenic interference. Proc. Nat. Acad. Sci. USA, 106, 4065–4066.CrossRefGoogle Scholar
  36. Mann, M. E., 2014: False hope. Sci. Am., 310, 78–81.CrossRefGoogle Scholar
  37. Masters, T., 2014: Observational estimate of climate sensitivity from changes in the rate of ocean heat uptake and comparison to CMIP5 models. Climate Dyn., 42, 2173–2181.CrossRefGoogle Scholar
  38. Matthews, H. D., N. P. Gillet, P. A. Stott, et al., 2009: The proportionality of global warming to cumulative carbon emissions. Nature, 459, 829–832.CrossRefGoogle Scholar
  39. Myhre, G., E. J. Highwood, K. P. Shine, et al., 1998: New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett., 25, 2715–2718.CrossRefGoogle Scholar
  40. Myhre, G., D. Shindell, F.-M. Bréon, et al., 2013: Anthropogenic and natural radiative forcing. Climate Change 2013: The Physical Science Basis. Stocker, T. F., Qin Dahe, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1535 pp.Google Scholar
  41. Olson, R., R. Sriver, M. Geos, et al., 2012: A climate sensitivity estimate using Bayesian fusion of instrumental observations and an Earth System model. J. Geophys. Res., 117, D04103.Google Scholar
  42. Oppenheimer, M., M. Campos, R. Warren, et al., 2014: Emergent risks and key vulnerabilities. Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Field, C. B., V. R. Barros, D. J. Dokken, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1820 pp.Google Scholar
  43. Pithan, F., and T. Mauritsen, 2014: Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci., 7, 181–184.CrossRefGoogle Scholar
  44. Ramaswamy, V., O. Boucher, J. Haigh, et al., 2001: Radiative forcing of climate change. Climate Change 2001: The Scientific Basis. Houghton, J. T., Y. H. Ding, D. J. Griggs, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 881 pp.Google Scholar
  45. Randall, D. A., R. A. Wood, S. Bony, et al., 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis. Solomon, S., D. H. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 996 pp.Google Scholar
  46. Roe, G., 2009: Feedbacks, timescales, and seeing red. Annu. Rev. Earth Planet Sci., 37, 93–115.CrossRefGoogle Scholar
  47. Roe, G. H., and M. B. Baker, 2007: Why is climate sensitivity so unpredictable? Science, 318, 629–632.CrossRefGoogle Scholar
  48. Roe, G. H., and K. C. Armour, 2011: How sensitive is climate sensitivity? Geophys. Res. Lett., 38, L14708.CrossRefGoogle Scholar
  49. Rohling, E. J., A. Sluijs, H. A. Dijkstra, et al., 2012: Making sense of palaeoclimate sensitivity. Nature, 491, 683–691.CrossRefGoogle Scholar
  50. Rose, B. E. J., K. C. Armour, D. S. Battisti, et al., 2014: The dependence of transient climate sensitivity and radiative feedbacks on the spatial pattern of ocean heat uptake. Geophys. Res. Lett., 41, 1071–1078.CrossRefGoogle Scholar
  51. Schneider, S. H., S. Semenov, A. Patwardhan, et al., 2007: Assessing key vulnerabilities and the risk from climate change. Climate Change 2007: Impacts, Adaptation and Vulnerability. Solomon, S., D. H. Qin, M. Manning, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 976 pp.Google Scholar
  52. Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: Spread in model climate sensitivity traced to atmospheric convective mixing. Nature, 505, 37–42.CrossRefGoogle Scholar
  53. Shi Guangyu, 1991: Radiative forcing and greenhouse effect due to the atmospheric trace gases. Sci. China (Ser. B), 35, 217–229.Google Scholar
  54. Six, K. D., S. Kloster, T. Ilyina, et al., 2013: Global warming amplified by reduced sulphur fluxes as a result of ocean acidification. Nat. Climate Change, 3, 975–978.CrossRefGoogle Scholar
  55. Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean-atmosphere models. J. Climate, 19, 3354–3360.CrossRefGoogle Scholar
  56. Soden, B. J., I. M. Held, R. Colman, et al., 2008: Quantifying climate feedbacks using radiative kernels. J. Climate, 21, 3504–3520.CrossRefGoogle Scholar
  57. Stevens, B., and S. Bony, 2013: What are climate models missing? Science, 340, 1053–1054.CrossRefGoogle Scholar
  58. Stocker, T. F., D. H. Qin, G.-K. Plattner, et al., 2013: Technical summary. Climate Change 2013: The Physical Science Basis. Stocker, T. F., D. H. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, USA, 1535 pp.Google Scholar
  59. Stouffer, R. J., and S. Manabe, 1999: Response of a coupled ocean-atmosphere model to increasing atmospheric carbon dioxide: Sensitivity to the rate of increase. J. Climate, 12, 2224–2237.CrossRefGoogle Scholar
  60. Stouffer, R. J., J. Russell, and M. J. Spelman, 2006: Importance of oceanic heat uptake in transient climate change. Geophys. Res. Lett., 33, L17704.CrossRefGoogle Scholar
  61. Vial, J., J.-L. Dufresne, and S. Bony, 2013: On the interpretation of inter-model spread in CMIP5 climate sensitivity estimates. Climate Dyn., 41, 3339–3362.CrossRefGoogle Scholar
  62. Wang Mingxing, Zhang Renjian, and Zheng Xunhua, 2000: Sources and sinks of greenhouse gases. Climatic Environ. Res., 5, 75–79. (in Chinese)Google Scholar
  63. Wang Shaowu, Luo Yong, Zhao Zongci, et al., 2012: Equilibrium climate sensitivity. Adv. Climate Change Res., 8, 232–234. (in Chinese)Google Scholar
  64. Wang Shaowu, Luo Yong, Zhao Zongci, et al., 2013: The Sciences of Global Warming. China Meteorological Press, Beijing, 205 pp. (in Chinese)Google Scholar
  65. Winton, M., K. Takahashi, and I. M. Held, 2010: Importance of ocean heat uptake efficacy to transient climate change. J. Climate, 23, 2333–2344.CrossRefGoogle Scholar
  66. Zeng, N., and J. Yoon, 2009: Expansion of the world’s deserts due to vegetation-albedo feedback under global warming. Geophys. Res. Lett., 36, L17401.CrossRefGoogle Scholar
  67. Zhang Hua and Huang Jianping, 2014: Interpretation of the IPCC Fifth Assessment Report on anthropogenic and natural radiative forcing. Adv. Climate Change Res., 10, 40–44. (in Chinese)Google Scholar
  68. Zhang, Y., and G. K. Vallis, 2013: Ocean heat uptake in eddying and non-eddying ocean circulation models in a warming climate. J. Phys. Oceanogr., 43, 2211–2229.CrossRefGoogle Scholar
  69. Zhao Fengsheng and Shi Guangyu, 1995: A study of the transient and time-dependent greenhouse gasinduced climate change. Acta Geogra. Sinica, 50, 430–438. (in Chinese)Google Scholar
  70. Zhou Tianjun, Song Fengfei, and Chen Xiaolong, 2013: Historical evolution of global and regional surface air temperature simulated by FGOALS-s2 and FGOALS-g2: How reliable are the model results? Adv. Atmos. Sci., 30, 638–657.CrossRefGoogle Scholar
  71. Zhou Tianjun, Wang Shaowu, and Zhang Xuehong, 1998: Proceeding of modelling studies on the stability and variability of the thermohaline circulation. Adv. Earth Sci., 13, 334–343. (in Chinese)Google Scholar
  72. Zhou Tianjun, Wang Shaowu, and Zhang Xuehong, 2000: Comments on the role of thermohaline circulation in global climate system. Adv. Earth Sci., 15, 654–660. (in Chinese)Google Scholar
  73. Zhou, T. J., and R. C. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 5843–5858.CrossRefGoogle Scholar
  74. Zhou Tianjun, Zou Liwei, Wu Bo, et al., 2014: Development of earth/climate system models in China: A review from the coupled model intercomparison project perspective. J. Meteor. Res., 28, 762–779.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Tianjun Zhou (周天军)
    • 1
  • Xiaolong Chen (陈晓龙)
    • 1
    • 2
  1. 1.State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid DynamicsInstitute of Atmospheric Physics, Chinese Academy of SciencesBeijingChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina

Personalised recommendations