Advertisement

Journal of Meteorological Research

, Volume 29, Issue 4, pp 639–653 | Cite as

Changes in stratospheric ClO and HCl concentrations under different greenhouse gas emission scenarios

  • Xiaonan Tang (唐笑男)
  • Yu Liu (刘煜)Email author
  • Weiguo Wang (王卫国)
  • Liuming Song (宋刘明)
  • Weiliang Li (李维亮)
Articles
  • 956 Downloads

Abstract

In this study, comparison of model results and satellite observations reveals that the Whole-Atmosphere Community Climate Model (WACCM-3) reasonably well reproduced the distributions and seasonal variations of ClO and HCl concentrations. In three greenhouse gas emission scenarios (A1B, A2, and B1), the ClO, Cl, ClONO2, and HCl concentrations would gradually decrease with time as emissions of ozone depleting substances (ODS) steadily decrease. The rates of the changes in the ClO, Cl, ClONO2, and HCl concentrations are different in the same emission scenario and the rates of change in the same composition concentration are different for different emission scenarios. The ClO, Cl, and ClONO2 concentrations decrease fastest in scenario A2, next fastest in scenario A1B, and slowest in scenario B1. In contrast, the HCl concentration decreases fastest in scenario B1. The ozone concentration recovers quickly, and is highest in scenario A2. The results show that a rapid decrease in the ClO concentration is an important reason for the accelerated recovery of the ozone layer in scenario A2.

Keywords

ozone ClO HCl change trend greenhouse gas emission scenario 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Farman, J. C., B. G. Gardiner, and J. D. Shanklin, 1985: Large losses of total ozone in Antarctica reveal seasonal ClOx/NOx interaction. Nature, 315, 207–210.CrossRefGoogle Scholar
  2. Garcia, R. R., and W. J. Randel, 2008: Acceleration of the Brewer-Dobson circulation due to increases in greenhouse gases. J. Atmos. Sci., 65, 2731–2739, doi: 10.1175/2008JAS2712.1.CrossRefGoogle Scholar
  3. Jones, A., J. Urban, D. P. Murtagh, et al., 2011: Analysis of HCl and ClO time series in the upper stratosphere using satellite datasets. Atmos. Chem. Phys., 11, 5321–5333, doi: 10.5194/acp-11-5321-2011.CrossRefGoogle Scholar
  4. Jonsson, A. I., J. de Grandpré, V. I. Fomichev, et al., 2004: Doubled CO2-induced cooling in the middle atmosphere: Photochemical analysis of the ozone radiative feedback. J. Geophys. Res., 109, D24103, doi: 10.1029/2004JD005093.CrossRefGoogle Scholar
  5. Kinnison, D. E., G. P. Brasseur, S. Walters, et al., 2007: Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res., 112, D20302, doi: 10.1029/2006JD007879.CrossRefGoogle Scholar
  6. Lin, S.-J., 2004: A “Vertically Lagrangian” finite-volume dynamical core for global models. Mon. Wea. Rev., 132, 2293–2307.CrossRefGoogle Scholar
  7. Liu Yu, Li Weiliang, and Zhou Xiuji, 1999: Development of the 2-D coupled stratospheric-tropospheric dynamical-radiative-chemical model. Part III: Budget of tropospheric ozone. Acta Meteor. Sinica, 13, 200–211.Google Scholar
  8. Molina, M. J., and F. S. Rowland, 1974: Stratospheric sink for chlorofluoromethanes: Chlorine atomcatalysed destruction of ozone. Nature, 249, 810–812.CrossRefGoogle Scholar
  9. Santee, M. L., A. Lambert, W. G. Read, et al., 2008: Validation of the Aura Microwave Limb Sounder ClO measurements. J. Geophy. Res., 113, D15522, doi: 10.1029/2007JD008762.Google Scholar
  10. Sassi, F., R. R. Garcia, B. A. Boville, et al., 2002: On temperature inversions and the mesospheric surf zone. J. Geophys. Res., 107, ACL 8-1-ACL 8–11, doi: 10.1029/2001JD001525.Google Scholar
  11. Wang Zhenya, Li Haiyang, and Zhou Shikang, 2001: Chemical research progress of stratospheric ozone depletion. Chin. Sci. Bull., 46, 619–625. (in Chinese)Google Scholar
  12. WMO (World Meteorological Organization), 1998: Scientific Assessment of Ozone Depletion: 1998. Global Ozone Research Monitoring Project Report No. 44, Geneva, Switzerland, 1–694.Google Scholar
  13. WMO, 2002: Scientific Assessment of Ozone Depletion: 2002. Global Ozone Research Monitoring Project Report No. 47, Geneva, Switzerland, 1–485.Google Scholar
  14. WMO, 2006: Scientific Assessment of Ozone Depletion: 2006. Global Ozone Research Monitoring Project Report No. 50, Geneva, Switzerland, 1–567.Google Scholar
  15. WMO, 2010: Scientific Assessment of Ozone Depletion: 2010. Global Ozone Research Monitoring Project Report No. 52, Geneva, Switzerland, 1–438.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Xiaonan Tang (唐笑男)
    • 1
    • 2
  • Yu Liu (刘煜)
    • 1
    Email author
  • Weiguo Wang (王卫国)
    • 2
  • Liuming Song (宋刘明)
    • 3
  • Weiliang Li (李维亮)
    • 1
  1. 1.Chinese Academy of Meteorological SciencesBeijingChina
  2. 2.Department of Atmospheric SciencesYunnan UniversityKunmingChina
  3. 3.Jiaxing Weather Bureau of Zhejiang ProvinceJiaxingChina

Personalised recommendations