Skip to main content
Log in

A review of aerosol optical properties and radiative effects

  • Articles
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Atmospheric aerosols influence the earth’s radiative balance directly through scattering and absorbing solar radiation, and indirectly through affecting cloud properties. An understanding of aerosol optical properties is fundamental to studies of aerosol effects on climate. Although many such studies have been undertaken, large uncertainties in describing aerosol optical characteristics remain, especially regarding the absorption properties of different aerosols. Aerosol radiative effects are considered as either positive or negative perturbations to the radiation balance, and they include direct, indirect (albedo effect and cloud lifetime effect), and semi-direct effects. The total direct effect of anthropogenic aerosols is negative (cooling), although some components may contribute a positive effect (warming). Both the albedo effect and cloud lifetime effect cool the atmosphere by increasing cloud optical depth and cloud cover, respectively. Absorbing aerosols, such as carbonaceous aerosols and dust, exert a positive forcing at the top of atmosphere and a negative forcing at the surface, and they can directly warm the atmosphere. Internally mixed black carbon aerosols produce a stronger warming effect than externally mixed black carbon particles do. The semidirect effect of absorbing aerosols could amplify this warming effect. Based on observational (ground- and satellite-based) and simulation studies, this paper reviews current progress in research regarding the optical properties and radiative effects of aerosols and also discusses several important issues to be addressed in future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ackerley, D., B. B. B. Booth, S. H. E. Knight, et al., 2011: Sensitivity of twentieth-century Sahel rainfall to sulfate aerosol and CO2 forcing. J. Climate, 24, 4999–5014, doi: 10.1175/JCLI-D-11-00019.1.

    Google Scholar 

  • Ackerman, A. S., O. B. Toon, D. E. Stevens, et al., 2000: Reduction of tropical cloudiness by soot. Science, 288, 1042–1047, doi: 10.1126/science.288.5468.1042.

    Google Scholar 

  • Adams, P. J., J. H. Seinfeld, D. Koch, et al., 2001: General circulation model assessment of direct radiative forcing by the sulfate-nitrate-ammonium-water inorganic aerosol system. J. Geophys. Res., 106, 1097–1111, doi: 10.1029/2000JD900512.

    Google Scholar 

  • Ahn, C., O. Torres, and H. Jethva, 2014: Assessment of OMI near-UV aerosol optical depth over land. J. Geophys. Res., 119, 2457–2473, doi: 10.1002/2013JD020188.

    Google Scholar 

  • Alam, K., T. Trautmann, T. Blaschke, et al., 2014: Changes in aerosol optical properties due to dust storms in the Middle East and Southwest Asia. Remote Sens. Environ., 143, 216–227, doi: 10.1016/j.rse.2013.12.021.

    Google Scholar 

  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 1227–1230.

    Google Scholar 

  • Allen, R. J., and S. C. Sherwood, 2010: Aerosol-cloud semi-direct effect and land-sea temperature contrast in a GCM. Geophys. Res. Lett., 37, L07702.

    Google Scholar 

  • Anderson, T. L., S. J. Masonis, D. S. Covert, et al., 2003: Variability of aerosol optical properties derived from in-situ aircraft measurements during ACE-Asia. J. Geophys. Res., 108, doi: 10.1029/2002JD003247.

  • Andreae, M. O., D. Rosenfeld, P. Artaxo, et al., 2004: Smoking rain clouds over the Amazon. Science, 303, 1337–1342.

    Google Scholar 

  • —, and A. Gelencsér, 2006: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos. Chem. Phys., 6, 3131–3148, doi: 10.5194/acp-6-3131-2006.

    Google Scholar 

  • —, and D. Rosenfeld, 2008: Aerosol-cloud-precipitation interactions. Part 1: The nature and sources of cloud-active aerosols. Earth-Sci. Rev., 89, 13–41, doi: 10.1016/j.earscirev.2008.03.001.

    Google Scholar 

  • Ansell, C., H. E. Brindley, Y. Pradhan, et al., 2014: Mineral dust aerosol net direct radiative effect during GERBILS field campaign period derived from SEVIRI and GERB. J. Geophys. Res., 119, 4070–4086, doi: 10.1002/2013JD020681.

    Google Scholar 

  • Arimoto, R., Y. J. Kim, Y. P. Kim, et al., 2006: Characterization of Asian dust during ACE-Asia. Global Planet Change, 52, 23–56, doi: 10.1016/j.gloplacha.2006.02.013.

    Google Scholar 

  • Bauer, S. E., and S. Menon, 2012: Aerosol direct, indirect, semidirect, and surface albedo effects from sector contributions based on the IPCC AR5 emissions for preindustrial and present-day conditions. J. Geophys. Res., 117, D01206.

    Google Scholar 

  • Bellouin, N., O. Boucher, J. Haywood, et al., 2005: Global estimate of aerosol direct radiative forcing from satellite measurements. Nature, 438, 1138–1141.

    Google Scholar 

  • —, A. Jones, J. Haywood, et al., 2008: Updated estimate of aerosol direct radiative forcing from satellite observations and comparison against the Hadley Centre climate model. J. Geophys. Res., 113, D10205.

    Google Scholar 

  • Bi Jianrong, Huang Jianping, Fu Qiang, et al., 2011: Toward characterization of the aerosol optical properties over Loess Plateau of northwestern China. J. Quant. Spectrosc. Radiat. Transfer, 112, 346–360, doi: 10.1016/j.jqsrt.2010.09.006.

    Google Scholar 

  • Bian, H., M. Chin, J. M. Rodriguez, et al., 2009: Sensitivity of aerosol optical thickness and aerosol direct radiative effect to relative humidity. Atmos. Chem. Phys., 9, 2375–2386.

    Google Scholar 

  • Boucher, O., and U. Lohmann, 1995: The sulfate-CCN-cloud albedo effect: A sensitivity study with two general circulation models. Tellus B, 47, 281–300.

    Google Scholar 

  • Breider, T. J., L. J. Mickley, D. J. Jacob, et al., 2014: Annual distributions and sources of Arctic aerosol components, aerosol optical depth, and aerosol absorption. J. Geophys. Res., 119, 4107–4124, doi: 10.1002/2013JD020996.

    Google Scholar 

  • Brenguier, J. L., H. Pawlowska, L. Schüller, et al., 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803–821, doi: 10.1175/1520-0469(2000)057〈0803:RPOBLC〉2.0.CO;2.

    Google Scholar 

  • —, —, and —, 2003: Cloud microphysical and radiative properties for parameterization and satellite monitoring of the indirect effect of aerosol on climate. J. Geophys. Res., 108, doi: 10.1029/2002JD002682.

  • Cai Hongke, Zhou Renjun, Fu Yunfei, et al. 2011: Cloud aerosol lidar with orthogonal polarization detection of aerosol optical properties after a crop burning case. Climatic Environ. Res., 16, 469–478. (in Chinese)

    Google Scholar 

  • Campanelli, M., T. Nakajima, and B. Olivieri, 2004: Determination of the solar calibration constant for a sun-sky radiometer: Proposal of an in-situ procedure. Appl. Opt., 43, 651–659.

    Google Scholar 

  • Campbell, J. R., D. L. Hlavka, E. J. Welton, et al., 2002: Full-time, eye-safe cloud and aerosol lidar observation at atmospheric radiation measurement program sites: Instruments and data processing. J. Atmos. Ocean. Technol., 19, 431–442, doi: 10.1175/1520-0426(2002)019〈0431:ftesca〉2.0.co;2.

    Google Scholar 

  • Charlson, R. J., J. Langner, H. Rodhe, et al., 1991: Perturbation of the Northern Hemisphere radiative balance by backscattering from anthropogenic sulfate aerosols. Tellus A, 43, 152–163, doi: 10.1034/j.1600-0870.1991.00013.x.

    Google Scholar 

  • —, S. E. Schwartz, J. M. Hales, et al., 1992: Climate forcing by anthropogenic aerosols. Science, 255, 423–430, doi: 10.1126/science.255.5043.423.

    Google Scholar 

  • Che, H. Z., X. Y. Zhang, H. B. Chen, et al., 2009: Instrument calibration and aerosol optical depth validation of the China Aerosol Remote Sensing Network. J. Geophys. Res., 114, D03206, doi: 10.1029/2008JD011030.

    Google Scholar 

  • —, Y. Q. Wang, J. Y. Sun, et al., 2013: Variation of aerosol optical properties over the Taklimakan Desert in China. Aerosol Air Qual. Res., 13, 777–785, doi: 10.4209/aaqr.2012.07.0200.

    Google Scholar 

  • —, X. Xia, J. Zhu, et al., 2014: Column aerosol optical properties and aerosol radiative forcing during a serious haze-fog month over North China Plain in 2013 based on ground-based sunphotometer measurements. Atmos. Chem. Phys., 14, 2125–2138, doi: 10.5194/acp-14-2125-2014.

    Google Scholar 

  • Chen, B., J. P. Huang, P. Minnis, et al., 2010: Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements. Atmos. Chem. Phys., 10, 4241–4251, doi: 10.5194/acp-10-4241-2010.

    Google Scholar 

  • Chen, T., W. B. Rossow, and Y. C. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264–286, doi: 10.1175/1520-0442(2000)013〈0264: REOCTV〉2.0.CO;2.

    Google Scholar 

  • Chen Lin, Shi Guangyu, Qin Shiguang, et al., 2011: Direct radiative forcing of anthropogenic aerosols over oceans from satellite observations. Adv. Atmos. Sci., 28, 973–984, doi: 10.1007/s00376-010-9210-4.

    Google Scholar 

  • Chiapello, I., G. Bergametti, B. Chatenet, et al., 1997: Origins of African dust transported over the northeastern tropical Atlantic. J. Geophys. Res., 102, 13701–13709, doi: 10.1029/97JD00259.

    Google Scholar 

  • Chuang, C. C., J. E. Penner, J. M. Prospero, et al., 2002: Cloud susceptibility and the first aerosol indirect forcing: Sensitivity to black carbon and aerosol concentrations. J. Geophys. Res., 107, 4564, doi: 10.1029/2000jd000215.

    Google Scholar 

  • Chung, S. H., and J. H. Seinfeld, 2005: Climate response of direct radiative forcing of anthropogenic black carbon. J. Geophys. Res., 110, D11102.

    Google Scholar 

  • Chýlek, P., and J. Wong, 1995: Effect of absorbing aerosols on global radiation budget. Geophys. Res. Lett., 22, 929–931, doi: 10.1029/95GL00800.

    Google Scholar 

  • —, G. B. Lesins, G. Videen, et al., 1996: Black carbon and absorption of solar radiation by clouds. J. Geophys. Res., 101, 23365–23371, doi: 10.1029/96JD01901.

    Google Scholar 

  • Coakley, J. A., R. L. Bernstein, and P. A. Durkee, 1987: Effect of ship-stack effluents on cloud reflectivity. Science, 237, 1020–1022, doi: 10.1126/science. 237.4818.1020.

    Google Scholar 

  • Cook, J., and E. J. Highwood, 2004: Climate response to tropospheric absorbing aerosols in an intermediate general-circulation model. Quart. J. Roy. Meteor. Soc., 130, 175–191, doi: 10.1256/qj.03.64.

    Google Scholar 

  • Cooke, W. F., and J. J. N. Wilson, 1996: A global black carbon aerosol model. J. Geophys. Res., 101, 19395–19409, doi: 10.1029/96JD00671.

    Google Scholar 

  • Dai, T., D. Goto, N. A. J. Schutgens, et al., 2014: Simulated aerosol key optical properties over global scale using an aerosol transport model coupled with a new type of dynamic core. Atmos. Environ., 82, 71–82, doi: 10.1016/j.atmosenv.2013.10.018.

    Google Scholar 

  • Deng Xueliang, He Dongyan, Pan Delu, et al., 2010: Aerosol direct forcing estimated from satellite data over the China seas. Acta Meteor. Sinica, 68, 666–679. (in Chinese)

    Google Scholar 

  • Diner, D. J., W. A. Abdou, C. J. Bruegge, et al., 2001: MISR aerosol optical depth retrievals over southern Africa during the SAFARI-2000 dry season campaign. Geophys. Res. Lett., 28, 3127–3130, doi: 10.1029/2001GL013188.

    Google Scholar 

  • Dong Zipeng, Yu Xing, Li Xingmin, et al., 2013: Analysis of variation trends and causes of aerosol optical depth in Shaanxi Province using MODIS data. Chin. Sci. Bull., 58, 4486–4496, doi: 10.1007/s11434-013-5991-z.

    Google Scholar 

  • Dubovik, O., B. N. Holben, T. F. Eck, et al., 2002: Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci., 59, 590–608, doi: 10.1175/1520-0469(2002)059〈0590:voaaop〉2.0.CO;2.

    Google Scholar 

  • Eck, T. F., B. N. Holben, D. E. Ward, et al., 2003: Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements. J. Geophys. Res., 108, doi: 10.1029/2002JD002321.

  • Fisher, D., J. P. Muller, and V. N. Yershov, 2014: Automated stereo retrieval of smoke plume injection heights and retrieval of smoke plume masks from AATSR and their assessment with CALIPSO and MISR. IEEE Trans. Geosci. Remote Sens., 52, 1249–1258, doi: 10.1109/TGRS.2013.2249073.

    Google Scholar 

  • Flossmann, A. I., W. D. Hall, and H. R. Pruppacher, 1985: A theoretical study of the wet removal of atmospheric pollutants. Part I: The redistribution of aerosol particles captured through nucleation and impaction scavenging by growing cloud drops. J. Atmos. Sci., 42, 583–606, doi: 10.1175/1520-0469(1985)042〈0583:ATSOTW〉2.0.CO;2.

    Google Scholar 

  • Fougnie, B., P. Y. Deschamps, and R. Frouin, 1999: Vicarious calibration of the POLDER ocean color spectral bands using in situ measurements. IEEE Trans. Geosci. Remote Sens., 37, 1567–1574.

    Google Scholar 

  • Gao Ling, Ren Tong, Li Chengcai, et al., 2012: A retrieval of the atmospheric aerosol optical depth from MTSAT. Acta Meteor. Sinica, 70, 598–608. (in Chinese)

    Google Scholar 

  • Ge, J. M., J. Su, T. P. Ackerman, et al., 2010: Dust aerosol optical properties retrieval and radiative forcing over northwestern China during the 2008 China-U.S. joint field experiment. J. Geophys. Res., 115, D00K12, doi: 10.1029/2009JD013263.

    Google Scholar 

  • Ghan, S. J., X. Liu, R. C. Easter, et al., 2012: Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J. Climate, 25, 6461–6471, doi: 10.1175/JCLI-D-11-00650.1.

    Google Scholar 

  • —, R. C. Easter, E. G. Chapman, et al., 2001: A physically based estimate of radiative forcing by anthropogenic sulfate aerosol. J. Geophys. Res., 106, 5279–5293, doi: 10.1029/2000JD900503.

    Google Scholar 

  • Ginoux, P., and O. Torres, 2003: Empirical TOMS index for dust aerosol: Applications to model validation and source characterization. J. Geophys. Res., 108, doi: 10.1029/2003JD003470.

  • Gong, S. L., X. Y. Zhang, T. L. Zhao, et al., 2006: A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part II: Interannual variability and climate connections. J. Climate, 19, 104–122, doi: 10.1175/JCLI3606.1.

    Google Scholar 

  • Gong Wei, Zhang Shanshan, and Ma Yingying, 2014: Aerosol optical properties and determination of aerosol size distribution in Wuhan, China. Atmosphere, 5, 81–91, doi: 10.3390/atmos5010081.

    Google Scholar 

  • Goudie, A. S., and N. J. Middleton, 2001: Saharan dust storms: Nature and consequences. Earth-Sci. Rev., 56, 179–204, doi: 10.1016/S0012-8252(01)00067-8.

    Google Scholar 

  • Gu, Y., K. N. Liou, Y. Xue, et al., 2006: Climatic effects of different aerosol types in China simulated by the UCLA general circulation model. J. Geophys. Res., 111, D15201, doi: 10.1029/2005JD006312.

    Google Scholar 

  • —, —, W. Chen, et al., 2010: Direct climate effect of black carbon in China and its impact on dust storm. J. Geophys. Res., 115, D00K14, doi: 10.1029/2009JD013427.

    Google Scholar 

  • —, —, J. H. Jiang, et al., 2012: Dust aerosol impact on North African climate: A GCM investigation of aerosol-cloud-radiation interactions using A-Train satellite data. Atmos. Chem. Phys., 12, 1667–1679, doi: 10.5194/acp-12-1667-2012.

    Google Scholar 

  • Han Xiao, Zhang Meigen, Han Zhiwen, et al., 2010: Model analysis of aerosol optical depth distributions over East Asia. Sci. China Earth Sci., 40, 1446–1458. (in Chinese)

    Google Scholar 

  • Han, Y. M., Y. Iwamoto, T. Nakayama, et al., 2014: Formation and evolution of biogenic secondary organic aerosol over a forest site in Japan. J. Geophys. Res., 119, 259–273, doi: 10.1002/2013JD020390.

    Google Scholar 

  • Hansen, J., M. Sato, and R. Ruedy, 1997: Radiative forcing and climate response. J. Geophys. Res., 102, 6831–6864, doi: 10.1029/96JD03436.

    Google Scholar 

  • Hayasaka, T., S. Satake, A. Shimizu, et al., 2007: Vertical distribution and optical properties of aerosols observed over Japan during the Atmospheric Brown Clouds-East Asia Regional Experiment 2005. J. Geophys. Res., 112, D22S35, doi: 10.1029/2006JD008086.

    Google Scholar 

  • Heidinger, A. K., C. Y. Cao, and J. T. Sullivan, 2002: Using Moderate Resolution Imaging Spectrometer (MODIS) to calibrate advanced very high resolution radiometer reflectance channels. J. Geophys. Res., 107, AAC 11-1–AAC 11-10, doi: 10.1029/2001JD002035.

    Google Scholar 

  • Highwood, E. J., J. M. Haywood, M. D. Silverstone, et al., 2003: Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE). 2: Terrestrial spectrum. J. Geophys. Res., 108, 8578, doi: 10.1029/2002JD002552.

    Google Scholar 

  • Holben, B. N., T. F. Eck, I. Slutsker, et al., 1998: AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1–16, doi: 10.1016/S0034-4257(98)00031-5.

    Google Scholar 

  • Hsu, S.-C., F. Tsai, F.-J. Lin, et al., 2013: A super Asian dust storm over the East and South China Seas: Disproportionate dust deposition. J. Geophys. Res., 118, 7169–7181, doi: 10.1002/jgrd.50405.

    Google Scholar 

  • Hu Ting, Sun Zhaobo, and Li Zhaoxin, 2011: Features of aerosol optical depth and its relation to extreme temperatures in China during 1980–2001. Acta Oceanologica Sinica, 30, 33–45, doi: 10.1007/s13131-011-0103-x.

    Google Scholar 

  • Huang Jianping, Wang Yujie, Wang Tianhe, et al., 2006a: Dusty cloud radiative forcing dericved from satellite data for middle latitude regions of East Asia. Prog. Nat. Sci., 16, 1084–1089, doi: 10.1080/10020070612330114.

    Google Scholar 

  • Huang, J. P., B. Lin, P. Minnis, et al., 2006b: Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia. Geophys. Res. Lett., 33, L19802, doi: 10.1029/2006GL026561.

    Google Scholar 

  • —, P. Minnis, B. Lin, et al., 2006c: Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES. Geophys. Res. Lett., 33, L06824, doi: 10.1029/2005GL024724.

    Google Scholar 

  • —, —, B. Chen, et al., 2008a: Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX. J. Geophys. Res., 113, D23212, doi: 10.1029/2008JD010620.

    Google Scholar 

  • Huang Jianping, Huang Zhongwei, Bi Jianrong, et al., 2008b: Micro-pulse lidar measurements of aerosol vertical structure over the Loess Plateau. Atmos. Oceanic Sci. Lett., 1, 8–11.

    Google Scholar 

  • Huang, J. P., Q. Fu, J. Su, et al., 2009: Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints. Atmos. Chem. Phys., 9, 4011–4021, doi: 10.5194/acp-9-4011-2009.

    Google Scholar 

  • —, P. Minnis, H. Yan, et al., 2010: Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements. Atmos. Chem. Phys., 10, 6863–6872, doi: 10.5194/acp-10-6863-2010.

    Google Scholar 

  • Hudson, J. G., and P. R. Frisbie, 1991: Cloud condensation nuclei near marine stratus. J. Geophys. Res., 96, 20795–20808, doi: 10.1029/91JD02212.

    Google Scholar 

  • Hulme, M., and M. Kelly, 1993: Exploring the links between desertification and climate change. Environment, 35, 4–45.

    Google Scholar 

  • Islam, M. N., and M. Almazroui, 2012: Direct effects and feedback of desert dust on the climate of the Arabian Peninsula during the wet season: A regional climate model study. Climate Dyn., 39, 2239–2250, doi: 10.1007/s00382-012-1293-4.

    Google Scholar 

  • Jacobson, M. Z., 2000: A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophys. Res. Lett., 27, 217–220, doi: 10.1029/1999GL010968.

    Google Scholar 

  • —, 2001: Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409, 695–697, doi: 10.1038/35055518.

    Google Scholar 

  • —, 2002: Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming. J. Geophys. Res., 107, ACH 16-1–ACH 16-22, doi: 10.1029/2001JD001376.

    Google Scholar 

  • Jaffe, D., T. Anderson, D. Covert, et al., 1999: Transport of Asian air pollution to North America. Geophys. Res. Lett., 26, 711–714, doi: 10.1029/1999GL900100.

    Google Scholar 

  • Jiang, J. H., N. J. Livesey, H. Su, et al., 2007: Connecting surface emissions, convective uplifting, and long-range transport of carbon monoxide in the upper-troposphere: New observations from the Aura MLS. Geophys. Res. Lett., 34, L18812, doi: 10.1029/2007GL030638.

    Google Scholar 

  • —, H. Su, M. R. Schoeberl, et al., 2008: Clean and polluted clouds: Relationships among pollution, ice cloud and precipitation in South America. Geophys. Res. Lett., 35, L14804, doi: 10.1029/2008GL034631.

    Google Scholar 

  • —, —, C. Zhai, et al., 2011: Influence of convection and aerosol pollution on ice cloud particle effective radius. Atmos. Chem. Phys., 11, 457–463, doi: 10.5194/acp-11-457-2011.

    Google Scholar 

  • Jimenez, J. L., M. R. Canagaratna, N. M. Donahue, et al., 2009: Evolution of organic aerosols in the atmosphere. Science, 326, 1525–1529, doi: 10.1126/science.1180353.

    Google Scholar 

  • Johnson, B. T., K. P. Shine, and P. M. Forster, 2004: The semi-direct aerosol effect: Impact of absorbing aerosols on marine stratocumulus. Quart. J. Roy. Meteor. Soc., 130, 1407–1422, doi: 10.1256/qj.03.61.

    Google Scholar 

  • Jones, A., D. L. Roberts, and A. Slingo, 1994: A climate model study of the indirect radiative forcing by anthropogenic sulphate aerosols. Nature, 370, 450–453, doi: 10.1038/370450a0.

    Google Scholar 

  • —, —, M. J. Woodage, et al., 2001: Indirect sulphate aerosol forcing in a climate model with an interactive sulphur cycle. J. Geophys. Res., 106, 20293–20310, doi: 10.1029/2000JD000089.

    Google Scholar 

  • Kaufman, Y. J., I. Koren, L. A. Remer, et al., 2005a: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean. Proc. Natl. Acad. Sci. USA, 102, 11207–11212, doi: 10.1073/pnas.0505191102.

    Google Scholar 

  • —, L. A. Remer, D. Tanre, et al., 2005b: A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean. IEEE Trans. Geosci. Remote Sens., 43, 2886–2897, doi: 10.1109/TGRS.2005.858430.

    Google Scholar 

  • —, and I. Koren, 2006: Smoke and pollution aerosol effect on cloud cover. Science, 313, 655–658, doi: 10.1126/science.1126232.

    Google Scholar 

  • Kazil, J., P. Stier, K. Zhang, et al., 2010: Aerosol nucleation and its role for clouds and earth’s radiative forcing in the aerosol-climate model ECHAM5-HAM. Atmos. Chem. Phys., 10, 10733–10752, doi: 10.5194/acpd-10-12261-2010.

    Google Scholar 

  • Kiehl, J. T., and B. P. Briegleb, 1993: The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 260, 311–314, doi: 10.1126/science.260.5106.311.

    Google Scholar 

  • —, T. L. Schneider, P. J. Rasch, et al., 2000: Radiative forcing due to sulfate aerosols from simulations with the National Center for Atmospheric Research Community Climate Model, Version 3. J. Geophys. Res., 105, 1441–1457, doi: 10.1029/1999JD900495.

    Google Scholar 

  • Kim, D., M. Chin, H. Yu, et al., 2011: Dust optical properties over North Africa and Arabian Peninsula derived from the AERONET dataset. Atmos. Chem. Phys., 11, 10733–10741, doi: 10.5194/acp-11-10733-2011.

    Google Scholar 

  • Kinne, S., M. Schulz, C. Textor, et al., 2006: An Aero-Com initial assessment-optical properties in aerosol component modules of global models. Atmos. Chem. Phys., 6, 1815–1834, doi: 10.5194/acp-6-1815-2006.

    Google Scholar 

  • Kishcha, P., B. Starobinets, and P. Alpert, 2007: Latitudinal variations of cloud and aerosol optical thickness trends based on MODIS satellite data. Geophys. Res. Lett., 34, L05810, doi: 10.1029/2006GL028796.

    Google Scholar 

  • Koch, D., 2001: Transport and direct radiative forcing of carbonaceous and sulfate aerosols in the GISS GCM. J. Geophys. Res., 106, 20311–20332, doi: 10.1029/2001JD900038.

    Google Scholar 

  • —, and A. D. Del Genio, 2010: Black carbon semi-direct effects on cloud cover: Review and synthesis. Atmos. Chem. Phys., 10, 7685–7696, doi: 10.5194/acp-10-7685-2010.

    Google Scholar 

  • Kristjánsson, J. E., 2002: Studies of the aerosol indirect effect from sulfate and black carbon aerosols. J. Geophys. Res., 107, AAC 1-1–AAC 1-19. doi: 10.1029/2001JD000887.

    Google Scholar 

  • Langner, J., and H. Rodhe, 1991: A global threedimensional model of the global sulfur cycle. J. Atmos. Chem., 13, 225–263.

    Google Scholar 

  • Le Treut, H., M. Forichon, O. Boucher, et al., 1998: Sulfate aerosol indirect effect and CO2 greenhouse forcing: Equilibrium response of the LMD GCM and associated cloud feedbacks. J. Climate, 11, 1673–1685, doi: 10.1175/1520-0442(1998)011〈1673:SAIEAC〉2.0.CO;2.

    Google Scholar 

  • Li, J. N., K. Salzen, Y. R. Peng, et al., 2013: Evaluation of black carbon semi-direct radiative effect in a climate model. J. Geophys. Res., 118, 4715–4728, doi: 10.1002/jgrd.50327.

    Google Scholar 

  • Li Shu, Wang Tijian, Zhuang Bingliang, et al., 2009: Indirect radiative forcing and climatic effect of the anthropogenic nitrate aerosol on regional climate of China. Adv. Atmos. Sci., 26, 543–552, doi: 10.1007/s00376-009-0543-9.

    Google Scholar 

  • Liao, H., and J. H. Seinfeld, 1998: Radiative forcing by mineral dust aerosols: Sensitivity to key variables. J. Geophys. Res., 103, 31637–31645, doi: 10.1029/1998JD200036.

    Google Scholar 

  • Liu Hongnian and Zhang Li, 2012: The climate effects of anthropogenic aerosols of different emission scenarios in China. Chinese J. Geophys., 55, 1867–1875, doi: 10.6038/j.issn.0001-5733.1012.06.007. (in Chinese)

    Google Scholar 

  • Liu, P. F., C. S. Zhao, Q. Zhang, et al., 2009: Aircraft study of aerosol vertical distributions over Beijing and their optical properties. Tellus B, 61, 756–767, doi: 10.1111/j.1600-0889.2009.00440.x.

    Google Scholar 

  • Liu, Y., J. Huang, G. Shi, et al., 2011: Aerosol optical properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China. Atmos. Chem. Phys., 11, 11455–11463, doi: 10.5194/acp-11-11455-2011.

    Google Scholar 

  • Lohmann, U., and J. Feichter, 1997: Impact of sulfate aerosols on albedo and lifetime of clouds: A sensitivity study with the ECHAM4 GCM. J. Geophys. Res., 102, 13685–13700, doi: 10.1029/97JD00631.

    Google Scholar 

  • —, —, J. Penner, et al., 2000: Indirect effect of sulfate and carbonaceous aerosols: A mechanistic treatment. J. Geophys. Res., 105, 12193–12206, doi: 10.1029/1999JD901199.

    Google Scholar 

  • —, and —, 2001: Can the direct and semi-direct aerosol effect compete with the indirect effect on a global scale? Geophys. Res. Lett., 28, 159–161, doi: 10.1029/2000GL012051.

    Google Scholar 

  • —, and —, 2005: Global indirect aerosol effects: A review. Atmos. Chem. Phys., 5, 715–737.

    Google Scholar 

  • Luo, Y. F., D. R. Lu, X. J. Zhou, et al., 2001: Characteristics of the spatial distribution and yearly variation of aerosol optical depth over China in last 30 years. J. Geophys. Res., 106, 14501–14513, doi: 10.1029/2001JD900030.

    Google Scholar 

  • Matsui, T., and R. A. Pielke, 2006: Measurement-based estimation of the spatial gradient of aerosol radiative forcing. Geophys. Res. Lett., 33, L11813–.

    Google Scholar 

  • Matthais, V., V. Freudenthaler, A. Amodeo, et al., 2004: Aerosol lidar intercomparison in the framework of the EARLINET project. 1: Instruments. Appl. Optics, 43, 961–976, doi: 10.1364/AO.43.000961.

    Google Scholar 

  • McMurry, P. H., X. Q. Zhang, and C.-T. Lee, 1996: Issues in aerosol measurement for optics assessments. J. Geophys. Res., 101, 19189–19197, doi: 10.1029/95JD02342.

    Google Scholar 

  • Meier, J., I. Tegen, B. Heinold, et al., 2012: Direct and semi-direct radiative effects of absorbing aerosols in Europe: Results from a regional model. Geophys. Res. Lett., 39, L09802.

    Google Scholar 

  • Meij, A. D., A. Pozzer, and J. Lelieveld, 2010: Global and regional trends in aerosol optical depth based on remote sensing products and pollutant emission estimates between 2000 and 2009. Atmos. Chem. Phys. Discuss., 10, 30731–30776, doi: 10.5194/acpd-10-30731-2010.

    Google Scholar 

  • Menon, S., J. Hansen, L. Nazarenko, et al., 2002a: Climate effects of black carbon aerosols in China and India. Science, 297, 2250–2253, doi: 10.1126/science.1075159.

    Google Scholar 

  • —, A. D. D. Genio, D. Koch, et al., 2002b: GCM simulations of the aerosol indirect effect: Sensitivity to cloud parameterization and aerosol burden. J. Atmos. Sci., 59, 692–713, doi: 10.1175/1520-0469(2002)059〈0692:GSOTAI〉2.0.CO;2.

    Google Scholar 

  • Mentel, T. F., E. Kleist, S. Andres, et al., 2013: Secondary aerosol formation from stress-induced biogenic emissions and possible climate feedbacks. Atmos. Chem. Phys., 13, 8755–8770, doi: 10.5194/acp-13-8755-2013.

    Google Scholar 

  • Mikami, M., G. Y. Shi, I. Uno, et al., 2006: Aeolian dust experiment on climate impact: An overview of Japan-China joint project ADEC. Global Planet Change, 52, 142–172, doi: 10.1016/j.gloplacha.2006.03.001.

    Google Scholar 

  • Miller, R. L., and I. Tegen, 1998: Climate response to soil dust aerosols. J. Climate, 11, 3247–3267, doi: 10.1175/1520-0442(1998)011〈3247:CRTSDA〉2.0.CO;.

    Google Scholar 

  • —, I. Tegen, and J. Perlwitz, 2004: Surface radiative forcing by soil dust aerosols and the hydrologic cycle. J. Geophys. Res., 109, D04203.

    Google Scholar 

  • Morgan, M. G., P. J. Adams, and D. W. Keith, 2006: Elicitation of expert judgments of aerosol forcing. Climatic Change, 75, 195–214, doi: 10.1007/s10584-005-9025-y.

    Google Scholar 

  • Müller, D., K. Franke, A. Ansmann, et al., 2003: Indo-Asian pollution during INDOEX: Microphysical particle properties and single-scattering albedo inferred from multiwavelength lidar observations. J. Geophys. Res., 108, 4600, doi: 10.1029/2003JD003538.

    Google Scholar 

  • Nakajima, T., G. Tonna, R. Rao, et al., 1996: Use of sky brightness measurements from ground for remote sensing of particulate polydispersions. Appl. Optics, 36, 2672–2686, doi: 10.1364/AO.35.002672.

    Google Scholar 

  • —, M. Sekiguchi, T. Takemura, et al., 2003: Significance of direct and indirect radiative forcings of aerosols in the East China Sea region. J. Geophys. Res., 108, 8658, doi: 10.1029/2002JD003261.

    Google Scholar 

  • Overpeck, J., D. Rind, A. Lacis, et al., 1996: Possible role of dust-induced regional warming in abrupt climate change during the last glacial period. Nature, 384, 447–449, doi: 10.1038/384447a0.

    Google Scholar 

  • Patadia, F., P. Gupta, and S. A. Christopher, 2008: First observational estimates of global clear sky shortwave aerosol direct radiative effect over land. Geophys. Res. Lett., 35, L04810.

    Google Scholar 

  • Penner, J. E., R. E. Dickinson, and C. A. O’Neill, 1992: Effects of aerosol from biomass burning on the global radiation budget. Science, 256, 1432–1434.

    Google Scholar 

  • —, R. J. Charlson, S. E. Schwartz, et al., 1994: Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols. Bull. Amer. Meteor. Soc., 75, 375–400, doi: 10.1175/1520-0477(1994)075〈0375:QAMUOC〉2.0.CO;2.

    Google Scholar 

  • —, S. Y. Zhang, and C. C. Chuang, 2003: Soot and smoke aerosol may not warm climate. J. Geophys. Res., 108, 4657, doi: 10.1029/2003JD003409.

    Google Scholar 

  • Platnick, S., P. A. Durkee, K. Nielsen, et al., 2000: The role of background cloud microphysics in the radiative formation of ship tracks. J. Atmos. Sci., 57, 2607–2624, doi: 10.1175/1520-0469 (2000)057〈2607:TROBCM〉2.0.CO;2.

    Google Scholar 

  • Pósfai, M., J. R. Anderson, P. R. Buseck, et al., 1999: Soot and sulfate aerosol particles in the remote marine troposphere. J. Geophys. Res., 104, 21685–21693, doi: 10.1029/1999JD900208.

    Google Scholar 

  • Qi Yulei, Ge Jinming, and Huang Jianping, 2013: Spatial and temporal distribution of MODIS and MISR aerosol optical depth over northern China and comparison with AERONET. Chin. Sci. Bull., 58, 2497–2506, doi: 10.1007/s11434-013-5678-5.

    Google Scholar 

  • Qiu, J. H., and L. Q. Yang, 2000: Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980–1994. Atmos. Environ., 34, 603–609, doi: 10.1016/S1352-2310(99)00173-9.

    Google Scholar 

  • Quaas, J., O. Boucher, and U. Lohmann, 2006: Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data. Atmos. Chem. Phys., 6, 947–955.

    Google Scholar 

  • —, —, N. Bellouin, et al., 2008: Satellite-based estimate of the direct and indirect aerosol climate forcing. J. Geophys. Res., 113, D05204.

    Google Scholar 

  • —, Y. Ming, S. Menon, et al., 2009: Aerosol indirect effects-general circulation model intercomparison and evaluation with satellite data. Atmos. Chem. Phys., 9, 8697–8717, doi: 10.5194/acp-9-8697-2009.

    Google Scholar 

  • Queface, A. J., S. J. Piketh, T. F. Eck, et al., 2011: Climatology of aerosol optical properties in southern Africa. Atmos. Environ., 45, 2910–2921, doi: 10.1016/j.atmosenv.2011.01.056.

    Google Scholar 

  • Ramanathan, V., P. J. Crutzen, J. T. Kiehl, et al., 2001a: Aerosols, climate, and the hydrological cycle. Science, 294, 2119–2124, doi: 10.1126/science.1064034.

    Google Scholar 

  • —, —, J. Lelieveld, et al., 2001b: Indian ocean experiment: An interated analysis of the climate forcing and effects of the great Indo-Asian haze. J. Geophys. Res., 106, 28371–28398, doi: 10.1029/2001JD900133.

    Google Scholar 

  • Ramaswamy, V., O. Boucher, J. Haigh, et al., 2001: The Scientific Basis. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, J. T. Houghton, and Coauthors, Eds., Cambridge University Press, 349–416.

    Google Scholar 

  • Remer, L. A., and Y. J. Kaufman, 1998: Dynamic aerosol model: Urban/industrial aerosol. J. Geophys. Res., 103, 13859–13871, doi: 10.1029/98JD00994.

    Google Scholar 

  • Rosário, N. E., K. M. Longo, S. R. Freitas, et al., 2013: Modeling the South American regional smoke plume: Aerosol optical depth variability and surface shortwave flux perturbation. Atmos. Chem. Phys., 13, 2923–2938, doi: 10.5194/acp-13-2923-2013.

    Google Scholar 

  • Rosenfeld, D., S. Sherwood, R. Wood, et al., 2014: Climate effects of aerosol-cloud interactions. Science, 343, 379–380, doi: 10.1126/science.1247490.

    Google Scholar 

  • Rotstayn, L. D., 1999: Indirect forcing by anthropogenic aerosols: A global climate model calculation of the effective-radius and cloud-lifetime effects. J. Geophys. Res., 104, 9369–9380, doi: 10.1029/1998JD900009.

    Google Scholar 

  • —, and J. E. Penner, 2001: Indirect aerosol forcing, quasi forcing, and climate response. J. Climate, 14, 2960–2975, doi: 10.1175/1520-0442(2001)014〈2960:IAFQFA〉2.0.CO;2.

    Google Scholar 

  • —, and U. Lohmann, 2002: Tropical rainfall trends and the indirect aerosol effect. J. Climate, 15, 2103–2116, doi: 10.1175/1520-0442(2002)015〈2103:TRTATI〉2.0.CO;2.

    Google Scholar 

  • Sakaeda, N., R. Wood, and P. J. Rasch, 2011: Direct and semidirect aerosol effects of southern African biomass burning aerosol. J. Geophys. Res., 116, D12205, doi: 10.1029/2010JD015540.

    Google Scholar 

  • Salomonson, V. V., W. L. Barnes, P. W. Maymon, et al., 1989: MODIS: Advanced facility instrument for studies of the earth as a system. IEEE Trans. Geosci. Remote Sens., 27, 145–153, doi: 10.1109/36.20292.

    Google Scholar 

  • Schutgens, N. A. J., T. Miyoshi, T. Takemura, et al., 2010a: Applying an ensemble Kalman filter to the assimilation of AERONET observations in a global aerosol transport model. Atmos. Chem. Phys., 10, 2561–2576, doi: 10.5194/acp-10-2561-2010.

    Google Scholar 

  • —, —, —, et al., 2010b: Sensitivity tests for an ensemble Kalman filter for aerosol assimilation. Atmos. Chem. Phys., 10, 6583–6600, doi: 10.5194/acp-10-6583-2010.

    Google Scholar 

  • Schwartz, S. E., Harshvardhan, and C. M. Benkovitz, 2002: Influence of anthropogenic aerosol on cloud optical depth and albedo shown by satellite measurements and chemical transport modeling. Proc. Natl. Acad. Sci. USA, 99, 1784–1789, doi: 10.1073/pnas.261712099.

    Google Scholar 

  • Scott, C. E., A. Rap, D. V. Spracklen, et al., 2014: The direct and indirect radiative effects of biogenic secondary organic aerosol. Atmos. Chem. Phys., 14, 447–470, doi: 10.5194/acp-14-447-2014.

    Google Scholar 

  • Sekiguchi, M., T. Nakajima, K. Suzuki, et al., 2003: A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters. J. Geophys. Res., 108, 4699, doi: 10.1029/2002JD003359.

    Google Scholar 

  • Shen Fanhui, Wang Tijian, Zhuang Bingliang, et al., 2011: The first indirect radiative forcing of dust aerosol and its effect on regional climate in China. China Environ. Sci., 31, 1057–1063. (in Chinese)

    Google Scholar 

  • Shimizu, A., N. Sugimoto, I. Matsui, et al., 2004: Continuous observations of Asian dust and other aerosols by polarization lidars in China and Japan during ACE-Asia. J. Geophys. Res., 109, D19S17, doi: 10.1029/2002JD003253.

    Google Scholar 

  • Small, J. D., P. Y. Chuang, G. Feingold, et al., 2009: Can aerosol decrease cloud lifetime? Geophys. Res. Lett., 36, L16806, doi: 10.1029/2009GL038888.

    Google Scholar 

  • —, J. H. Jiang, H. Su, et al., 2011: Relationship between aerosol and cloud fraction over in Australia. Geophys. Res. Lett., 38, L23802, doi: 10.1029/2011GL049404.

    Google Scholar 

  • Sokolik, I. N., and O. B. Toon, 1996: Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature, 381, 681–683, doi: 10.1038/381681a0.

    Google Scholar 

  • Solomon, S., D. Qin, M. Manning, et al., 2007: Technical Summary. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 19–91.

    Google Scholar 

  • Spracklen, D. V., K. J. Pringle, K. S. Carslaw, et al., 2005: A global off-line model of size-resolved aerosol microphysics. I: Model development and prediction of aerosol properties. Atmos. Chem. Phys., 5, 2227–2252, doi: 10.5194/acp-5-2227-2005.

    Google Scholar 

  • Squires, P., 1958: The microstructure and colloidal stability of warm clouds. I: The relation between structure and stability. Tellus, 10, 256–271, doi: 10.1111/j.2153-3490.1958.tb02011.x.

    Google Scholar 

  • Stevens, B., and G. Feingold, 2009: Untangling aerosol effects on clouds and precipitation in a buffered system. Nature, 461, 607–613, doi: 10.1038/nature08281.

    Google Scholar 

  • Stocker, T. F., D. Qin, and G.-K. Plattner, 2013: Technical summary. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 55–58.

    Google Scholar 

  • Su, H., J. H. Jiang, X. Liu, et al., 2011: Observed increase of TTL temperature and water vapor in polluted clouds over Asia. J. Climate, 24, 2728–2736, doi: 10.1175/2010JCLI3749.1.

    Google Scholar 

  • Su, J., J. P. Huang, Q. Fu, et al., 2008: Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements. Atmos. Chem. Phys., 8, 2763–2771.

    Google Scholar 

  • Su Xingtao, Wang Hanjie, Song Shuai, et al., 2011: Radiative force and temperature response of dust aerosol over East Asia in recent decade. Plateau Meteor., 30, 1300–1307. (in Chinese)

    Google Scholar 

  • Suzuki, K., T. Nakajima, M. Satoh, et al., 2008: Global cloud-system-resolving simulation of aerosol effect on warm clouds. Geophys. Res. Lett., 35, L19817, doi: 10.1029/2008GL035449.

    Google Scholar 

  • Swap, R., M. Garstang, S. Greco, et al., 1992: Saharan dust in the Amazon Basin. Tellus B, 44, 133–149, doi: 10.1034/j.1600-0889.1992.t01-1-00005.x.

    Google Scholar 

  • Takemura, T., I. Uno, T. Nakajima, et al., 2002: Modeling study of long-range transport of Asian dust and anthropogenic aerosols from East Asia. Geophys. Res. Lett., 29, 11-1–11-4, doi: 10.1029/2002GL016251.

    Google Scholar 

  • —, T. Nakajima, A. Higurashi, et al., 2003: Aerosol distributions and radiative forcing over the Asian Pacific region simulated by Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS). J. Geophys. Res., 108, 8659, doi: 10.1029/2002JD003210.

    Google Scholar 

  • —, T. Nozawa, S. Emori, et al., 2005: Simulation of climate response to aerosol direct and indirect effects with aerosol transport-radiation model. J. Geophys. Res., 110, D02202, doi: 10.1029/2004JD005029.

    Google Scholar 

  • —, Y. J. Kaufman, L. A. Remer, et al., 2007: Two competing pathways of aerosol effects on cloud and precipitation formation. Geophys. Res. Lett., 34, L04802, doi: 10.1029/2006GL028349.

    Google Scholar 

  • —, 2012: Distributions and climate effects of atmospheric aerosols from the preindustrial era to 2100 along Representative Concentration Pathways (RCPs) simulated using the global aerosol model SPRINTARS. Atmos. Chem. Phys., 12, 11555–11572, doi: 10.5194/acp-12-11555-2012.

    Google Scholar 

  • Textor, C., M. Schulz, S. Guibert, et al., 2006: Analysis and quantification of the diversities of aerosol life cycles within AeroCom. Atmos. Chem. Phys., 6, 1777–1813, doi: 10.5194/acp-6-1777-2006.

    Google Scholar 

  • Tian Jun, Wang Tijian, Zhuang Bingliang, et al., 2013: Study on concentration and radiative forcing of black carbon aerosol in suburban Nanjing. Climatic Environ. Res., 18, 662–670, doi: 10.3837/j.issn.1006-9585.2013.12042. (in Chinese)

    Google Scholar 

  • Twomey, S., 1974: Pollution and the planetary albedo. Atmos. Environ., 8, 1251–1256, doi: 10.1016/0004-6981(74)90004-3.

    Google Scholar 

  • —, 1977: The influence of pollution on the shortwave albedo of clouds. J. Atmos. Sci., 34, 1149–1152, doi: 10.1175/1520-0469(1977)034〈1149:TIOPOT〉2.0.CO;2.

    Google Scholar 

  • Twomey, S. A., M. Piepgrass, and T. L. Wolfe, 1984: An assessment of the impact of pollution on global cloud albedo. Tellus B, 36B, 356–366, doi: 10.1111/j.1600-0889.1984.tb00254.x.

    Google Scholar 

  • Uno, I., H. Amano, S. Emori, et al., 2001: Trans-Pacific yellow sand transport observed in April 1998: A numerical simulation. J. Geophys. Res., 106, 18331–18344, doi: 10.1029/2000JD900748.

    Google Scholar 

  • van Donkelaar, A., R. V. Martin, M. Brauer, et al., 2010: Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environ. Health Perspect, 118, 847–855, doi: 10.1289/ehp.0901623.

    Google Scholar 

  • Wang, B., and G. Y. Shi, 2010: Long-term trends of atmospheric absorbing and scattering aerosol optical depths over China estimated from the routine observations of surface solar irradiance. J. Geophys. Res., 115, D00K28, doi: 10.1029/2009JD013239.

    Google Scholar 

  • Wang, H., G. Y. Shi, A. Teruo, et al., 2004: Radiative forcing due to dust aerosol over East Asia-North Pacific region during spring 2001. Chin. Sci. Bull., 49, 2212–2219, doi: 10.1360/04wd0017.

    Google Scholar 

  • Wang Hong, Zhao Tianliang, Zhang Xiaoye, et al., 2010: Dust direct radiative effects on the earth-atmosphere system over East Asia: Early spring cooling and late spring warming. Chin. Sci. Bull., 56, 1020–1030, doi: 10.1007/s11434-011-4405-3. (in Chinese)

    Google Scholar 

  • Wang, M. H., S. Ghan, X. H. Liu, et al., 2012: Constraining cloud lifetime effects of aerosols using A-Train satellite observations. Geophys. Res. Lett., 39, L15709, doi: 10.1029/2012GL052204.

    Google Scholar 

  • Wang Na, Zhang Lei, Deng Tao, et al., 2013: The study of aerosol optical properties and radiative effect in floating dust. J. Trop. Meteor., 29, 458–464, doi: 10.3969/j.issn.1004-4965.2013.03.012. (in Chinese)

    Google Scholar 

  • Wang, W. C., J. P. Huang, P. Minnis, et al., 2010: Dusty cloud properties and radiative forcing over dust source and downwind regions derived from A-Train data during the Pacific Dust Experiment. J. Geophys. Res., 115, D00H35, doi: 10.1029/2010JD014109.

    Google Scholar 

  • —, —, T. Zhou, et al., 2013: Estimation of radiative effect of a heavy dust storm over Northwest China using Fu-Liou model and ground measurements. J. Quant. Spectrosc. Radiat. Transfer, 122, 114–126, doi: 10.1016/j.jqsrt.2012.10.018.

    Google Scholar 

  • Wang, X., J. P. Huang, R. D. Zhang, et al., 2010: Surface measurements of aerosol properties over Northwest China during ARM China 2008 deployment. J. Geophys. Res., 115, D00K27, doi: 10.1029/2009JD013467.

    Google Scholar 

  • Wang, Z. F., H. Ueda, and M. Y. Huang, 2000: A deflation module for use in modeling long-range transport of yellow sand over East Asia. J. Geophys. Res., 105, 26947–26959, doi: 10.1029/2000JD900370.

    Google Scholar 

  • Wang Zhao, Peng Yan, Che Huizheng, et al., 2013: Analyses on spatial and temporal characteristics of AOD in Guanzhong region of Shaanxi Province using long term MODIS data. Plateau Meteor., 32, 234–242, doi: 10.7522/j.issn.1000-0534.2012.00023. (in Chinese)

    Google Scholar 

  • Warner, J., and S. Twomey, 1967: The production of cloud nuclei by cane fires and the effect on cloud droplet concentration. J. Atmos. Sci., 24, 704–706, doi: 10.1175/1520-0469(1967)024〈0704:TPOCNB〉2.0.CO;2.

    Google Scholar 

  • Welton, E. J., K. J. Voss, H. R. Gordon, et al., 2000: Ground-based lidar measurements of aerosols during ACE-2: Instrument description, results, and comparisons with other ground-based and airborne measurements. Tellus B, 52, 636–651, doi: 10.1034/j.1600-0889.2000.00025.x.

    Google Scholar 

  • Wilcox, E., 2012: Direct and semi-direct radiative forcing of smoke aerosols over clouds. Atmos. Chem. Phys., 12, 139–149, doi: 10.5194/acp-12-139-2012.

    Google Scholar 

  • Williams, K. D., A. Jones, D. L. Roberts, et al., 2001: The response of the climate system to the indirect effects of anthropogenic sulfate aerosol. Climate Dyn., 17, 845–856, doi: 10.1007/s003820100150.

    Google Scholar 

  • Winker, D., M. Vaughan, and B. Hunt, 2006: The CALIPSO mission and initial results from CALIOP. Proc. SPIE 6409, Lidar Remote Sensing for Environmental Monitoring VII, 6409, 640902, doi: 10.1117/12.698003.

    Google Scholar 

  • Wu Pengping and Han Zhiwei, 2011: A modeling study of indirect readiative and climatic effects of sulfate over East Asia. Chinese J. Atmos. Sci., 35, 547–559. (in Chinese)

    Google Scholar 

  • Xia, X. A., H. B. Chen, P. C. Wang, et al., 2006: Variation of column-integrated aerosol properties in a Chinese urban region. J. Geophys. Res., 111, D05204, doi: 10.1029/2005JD006203.

    Google Scholar 

  • Xin, J. Y., S. G. Wang, Y. S. Wang, et al., 2005: Optical properties and size distribution of dust aerosols over the Tengger Desert in northern China. Atmos. Environ., 39, 5971–5978, doi: 10.1016/j.atmosenv.2005.06.027.

    Google Scholar 

  • Xu Chao and Ma Yaoming, 2013: Analyses on dust aerosol optical physical properties over the Ganges River and South of Mongolia using AERONET dataset. Plateau Meteor., 32, 1000–1009, doi: 10.7522/j.issn.1000-0534.2012.00096. (in Chinese)

    Google Scholar 

  • Yan Peng, Liu Guiqing, Zhou Xiuji, et al., 2010: Characteristics of aerosol optical properties during haze and fog episodes at Shangdianzi in northern China. J. Appl. Meteor. Sci., 21, 257–265. (in Chinese)

    Google Scholar 

  • Yang Shuo, Shi Guangyu, Duan Yunxia, et al., 2012: A study on Beijing aerosol optical properties in spring 2006 by skyradiometer measurements. Climatic Environ. Res., 17, 20–28, doi: 103878/j.issn.1006-9585.2011.10012. (in Chinese)

    Google Scholar 

  • Yoon, J., W. von Hoyningen-Huene, A. A. Kokhanovsky, et al., 2012: Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations. Atmos. Meas. Tech., 5, 1271–1299, doi: 10.5194/amt-5-1271-2012.

    Google Scholar 

  • Yu, H., Y. Kaufman, M. Chin, et al., 2006: A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys., 6, 613–666, doi: 10.5194/acp-6-613-2006.

    Google Scholar 

  • Zhang, X. Y., R. Arimoto, G. H. Zhu, et al., 1998: Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions. Tellus B, 50, 317–330, doi: 10.1034/j.1600-0889.1998.t01-3-00001.x.

    Google Scholar 

  • —, S. L. Gong, T. L. Zhao, et al., 2003: Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophys. Res. Lett., 30, 2272, doi: 10.1029/2003GL018206.

    Google Scholar 

  • Zhang Hua, Wang Zhili, Guo Pinwen, et al., 2009: A modeling study of the effects of direct radiative forcing due to carbonaceous aerosol on the climate in East Asia. Adv. Atmos. Sci., 26, 57–66, doi: 10.1007/s00376-009-0057-5.

    Google Scholar 

  • —, Ma Jinghui, and Zheng Youfei, 2010: Modeling study of aerosol indirect effects on climate with an AGCMaerosol coupled system. Acta Meteor. Sinica, 24, 558–570.

    Google Scholar 

  • —, Min Zhang, Zhenlei Cui, et al., 2012a: Simulation and validation of the aerosol optical thickness over China in 2006. Acta Meteor. Sinica, 26, 330–344, doi: 10.1007/s13351-012-0306-x.

    Google Scholar 

  • Zhang, H., Z. L. Wang, Z. Z. Wang, et al., 2012b: Simulation of direct radiative forcing of aerosols and their effects on East Asian climate using an interactive AGCM-aerosol coupled system. Climate Dyn., 38, 1675–1693, doi: 10.1007/s00382-011-1131-0.

    Google Scholar 

  • Zhang Jie and Tang Congguo, 2012: Vertical distribution structure and characteristic of aerosol over arid region in a dust process of spring. Plateau Meteor., 31, 156–166. (in Chinese)

    Google Scholar 

  • Zhang, Q., J. L. Jimenez, M. R. Canagaratna, et al., 2007: Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett., 34, L13801, doi: 10.1029/2007GL029979.

    Google Scholar 

  • Zhang, Y., H. Yu, T. F. Eck, et al., 2012: Aerosol daytime variations over North and South America derived from multiyear AERONET measurements. J. Geophys. Res., 117, D05211, doi: 10.1029/2011JD017242.

    Google Scholar 

  • Zhao, T. L., S. L. Gong, X. Y. Zhang, et al., 2006: A simulated climatology of Asian dust aerosol and its trans-Pacific transport. Part I: Mean climate and validation. J. Climate, 19, 88–103, doi: 10.1175/JCLI3605.1.

    Google Scholar 

  • Zhao, T. X. P., I. Laszlo, W. Guo, et al., 2008: Study of long-term trend in aerosol optical thickness observed from operational AVHRR satellite instrument. J. Geophys. Res., 113, D07201, doi: 10.1029/2007JD009061.

    Google Scholar 

  • Zheng Bin, Wu Dui, Li Fei, et al., 2013: Variation of aerosol optical characteristics in Guangzhou on a background of South China Sea summer monsoon. J. Trop. Meteor., 29, 207–214, doi: 10.3969/j.issn.1004-4965.2013.02.004. (in Chinese)

    Google Scholar 

  • Zhou Bi, Zhang Lei, Cao Xianjie, et al., 2011: Analyses on atmospheric aerosol optical properties with Lidar data in Lanzhou suburb. Plateau Meteor., 30, 1011–1017. (in Chinese)

    Google Scholar 

  • Zhuang, B. L., L. Liu, F. H. Shen, et al., 2010: Semidirect radiative forcing of internal mixed black carbon cloud droplet and its regional climatic effect over China. J. Geophys. Res., 115, D00K19, doi: 10.1029/2009JD013165.

    Google Scholar 

  • Zwally, H. J., B. Schutz, W. Abdalati, et al., 2002: ICESat’s laser measurements of polar ice, atmosphere, ocean, and land. J. Geodyn., 34, 405–445, doi: 10.1016/s0264-3707(02)00042-x.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhi Liu  (刘玉芝).

Additional information

Supported by the National Basic Research and Development (973) Program of China (2012CB955301), National Natural Science Foundation of China (41475095 and 41275006), China 111 Project (B13045), and Fundamental Research Fund for Central Universities of China (lzujbky-2013-ct05 and lzujbky-2014-109).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Jia, R., Dai, T. et al. A review of aerosol optical properties and radiative effects. J Meteorol Res 28, 1003–1028 (2014). https://doi.org/10.1007/s13351-014-4045-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-014-4045-z

Key words

Navigation