Advertisement

Journal of Meteorological Research

, Volume 29, Issue 1, pp 93–105 | Cite as

Response of atmospheric energy to historical climate change in CMIP5

  • Bo Han (韩 博)
  • Shihua Lü (吕世华)
  • Yanhong Gao (高艳红)
  • Yinhuan Ao (奥银焕)
  • Ruiqing Li (李瑞青)
Article

Abstract

Three forms of atmospheric energy, i.e., internal, potential, and latent, are analyzed based on the historical simulations of 32 Coupled Model Intercomparison Project Phase 5 (CMIP5) models and two reanalysis datasets (NCEP/NCAR and ERA-40). The spatial pattern of climatological mean atmospheric energy is well reproduced by all CMIP5 models. The variation of globally averaged atmospheric energy is similar to that of surface air temperature (SAT) for most models. The atmospheric energy from both simulation and reanalysis decreases following the volcanic eruption in low-latitude zones. Generally, the climatological mean of simulated atmospheric energy from most models is close to that obtained from NCEP/NCAR, while the simulated atmospheric energy trend is close to that obtained from ERA-40. Under a certain variation of SAT, the simulated global latent energy has the largest increase ratio, and the increase ratio of potential energy is the smallest.

Key words

atmospheric energy CMIP5 historical climate change 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alessandri, A., P. G. Fogli, M. Vichi, et al., 2012: Strengthening of the hydrological cycle in future scenarios: Atmospheric energy and water balance perspective. Earth System Dynamics, 3, 199–212, doi: 10.5194/esd-3-199-2012.CrossRefGoogle Scholar
  2. Allen, M. R., P. A. Stott, J. F. B. Mitchell, et al., 2000: Quantifying the uncertainty in forecasts of anthropogenic climate change. Nature, 407, 617–620, doi: 10.1038/35036559.CrossRefGoogle Scholar
  3. Allen, M. R., and P. A. Stott, 2003: Estimating signal amplitudes in optimal fingerprinting. Part I: Theory. Climate Dyn., 21, 477–491, doi: 10.1007/s00382-003-0313-9.CrossRefGoogle Scholar
  4. Annamalai, H., K. Hamilton, and K. R. Sperber, 2007: The South Asian summer monsoon and its relationship with ENSO in the IPCC AR4 simulations. J. Climate, 20, 1071–1092, doi: 10.1175/Jcli4035.1.CrossRefGoogle Scholar
  5. Baettig, M. B., M. Wild, and D. M. Imboden, 2007: A climate change index: Where climate change may be most prominent in the 21st century. Geophys. Res. Lett., 34, doi: 10.1029/2006GL028159.Google Scholar
  6. Baldwin, M. P., M. Dameris, and T. G. Shepherd, 2007: Atmosphere-How will the stratosphere affect climate change? Science, 316, 1576–1577, doi: 10.1126/science.1144303.CrossRefGoogle Scholar
  7. Barnett, T. P., K. Hasselmann, M. Chelliah, et al., 1999: Detection and attribution of recent climate change: A status report. Bull. Amer. Meteor. Soc., 80, 2631–2659, doi: 10.1175/1520-0477(1999)080〈2631:Daaorc〉2.0.Co;2.CrossRefGoogle Scholar
  8. Barnett, T. P., D.W. Pierce, and R. Schnur, 2001: Detection of anthropogenic climate change in the world’s oceans. Science, 292, 270–274, doi: 10.1126/science.1058304.CrossRefGoogle Scholar
  9. Bodri, L., and V. Cermak, 2005: Borehole temperatures, climate change and the pre-observational surface air temperature mean: Allowance for hydraulic conditions. Global Planet. Change, 45, 265–276, doi: 10.1016/j.gloplacha.2004.09.001.CrossRefGoogle Scholar
  10. Bony, S., R. Colman, V. M. Kattsov, et al., 2006: How well do we understand and evaluate climate change feedback processes? J. Climate, 19, 3445–3482, doi: 10.1175/Jcli3819.1.CrossRefGoogle Scholar
  11. Chamberlin, T. C., 1897: A group of hypothesis hearing on climatic change. J. Geol., 5, 653–683, doi: 10.1086/607921.CrossRefGoogle Scholar
  12. Chang, E. K. M., Y. J. Guo, X. M. Xia, et al., 2013: Storm-track activity in IPCC AR4/CMIP3 model simulations. J. Climate, 26, 246–260, doi: 10.1175/Jcli-D-11-00707.1.CrossRefGoogle Scholar
  13. Church, J. A., and N. J. White, 2006: A 20th century acceleration in global sea-level rise. Geophys. Res. Lett., 33, doi: 10.1029/2005gl024826.Google Scholar
  14. Compo, G. P., J. S. Whitaker, P. D. Sardeshmukh, et al., 2011: The twentieth century reanalysis project. Quart. J. Roy. Meteor. Soc., 137, 1–28, doi: 10.1002/Qj.776.CrossRefGoogle Scholar
  15. Dixon, K. W., and J. R. Lanzante, 1999: Global mean surface air temperature and North Atlantic overturning in a suite of coupled GCM climate change experiments. Geophys. Res. Lett., 26, 1885–1888, doi: 10.1029/1999gl900382.CrossRefGoogle Scholar
  16. Fleming, J. R., 2005: Historical Perspectives on Climate Change. Oxford University Press, 208 pp.Google Scholar
  17. Hansen, J., L. Nazarenko, R. Ruedy, et al., 2005: Earth’s energy imbalance: Confirmation and implications. Science, 308, 1431–1435, doi: 10.1126/science.1110252.CrossRefGoogle Scholar
  18. Held, I. M., and B. J. Soden, 2000: Water vapor feedback and global warming. Annu. Rev. Energ. Env., 25, 441–475, doi: 10.1146/annurev.energy.25.1.441.CrossRefGoogle Scholar
  19. Held, I. M., and B. J. Soden, 2006: Robust responses of the hydrological cycle to global warming. J. Climate, 19, 5686–5699, doi: 10.1175/Jcli3990.1.CrossRefGoogle Scholar
  20. Henderson-Sellers, A., R. E. Dickinson, T. B. Durbidge, et al., 1993: Tropical deforestation-modeling localscale to regional-scale climate change. J. Geophys. Res., 98, 7289–7315, doi: 10.1029/92jd 02830.CrossRefGoogle Scholar
  21. Ingram, W. J., C. A. Wilson, and J. F. B. Mitchell, 1989: Modeling climate change-An assessment of sea ice and surface albedo feedbacks. J. Geophys. Res., 94, 8609–8622, doi: 10.1029/Jd 094id06p08609.CrossRefGoogle Scholar
  22. Johannessen, O. M., L. Bengtsson, M. W. Miles, et al., 2004: Arctic climate change: Observed and modelled temperature and sea-ice variability. Tellus A, 56, 328–341, doi: 10.1111/j.1600-0870.2004.00060.x.CrossRefGoogle Scholar
  23. Jones, P. D., M. New, D. E. Parker, et al., 1999: Surface air temperature and its changes over the past 150 years. Rev. Geophys., 37, 173–199, doi: 10.1029/1999rg900002.CrossRefGoogle Scholar
  24. Kalnay, E., M. Kanamitsu, R. Kistler, et al., 1996: The NCEP/NCAR 40-year reanalysis project. Bull. Amer. Meteor. Soc., 77, 437–471, doi: 10.1175/1520-0477 (1996)077〈0437:Tnyrp〉2.0.Co;2.CrossRefGoogle Scholar
  25. Kiehl, J. T., and K. E. Trenberth, 1997: Earth’s annual global mean energy budget. Bull. Amer. Meteor. Soc., 78, 197–208, doi: 10.1175/1520-0477 (1997)078〈0197:Eagmeb〉2.0.Co;2.CrossRefGoogle Scholar
  26. Levitus, S., 2000: Warming of the world ocean. Science, 287, 2225–2229, doi: 10.1126/science.287.5461.2225.CrossRefGoogle Scholar
  27. Levitus, S., J. Antonov, and T. Boyer, 2005: Warming of the world ocean, 1955–2003. Geophys. Res. Lett., 32, doi: 10.1029/2004gl021592.Google Scholar
  28. Li, Z. Q., and H. G. Leighton, 1993: Global climatologies of solar-radiation budgets at the surface and in the atmosphere from 5 years of ERBE data. J. Geophys. Res., 98, 4919–4930, doi: 10.1029/93jd00003.CrossRefGoogle Scholar
  29. Lucarini, V., and F. Ragone, 2011: Energetics of climate models: Net energy balance and meridional enthalpy transport. Rev. Geophys., 49, doi: 10.1029/2009rg000323.Google Scholar
  30. Mayer, M., and L. Haimberger, 2012: Poleward atmospheric energy transports and their variability as evaluated from ECMWF reanalysis data. J. Climate, 25, 734–752, doi: 10.1175/Jcli-D-11-00202.1.CrossRefGoogle Scholar
  31. Meehl, G. A., W. M. Washington, W. D. Collins, et al., 2005: How much more global warming and sea level rise? Science, 307, 1769–1772, doi: 10.1126/science.1106663.CrossRefGoogle Scholar
  32. Meehl, G. A., C. Covey, K. E. Taylor, et al., 2007: THE WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394, doi: 10.1175/bams-88-9-1383.CrossRefGoogle Scholar
  33. Nobre, C. A., P. J. Sellers, and J. Shukla, 1991: Amazonian deforestation and regional climate change. J. Climate, 4, 957–988, doi: 10.1175/1520-0442 (1991)004〈0957:Adarcc〉2.0.Co;2.CrossRefGoogle Scholar
  34. Oreskes, N., 2004: Beyond the ivory tower-The scientific consensus on climate change. Science, 306, 1686, doi: 10.1126/science.1103618.CrossRefGoogle Scholar
  35. Peixoto, J. P., and A. H. Oort, 1992: Physics of Climate. American Institute of Physics, 520 pp.Google Scholar
  36. Robock, A., 2000: Volcanic eruptions and climate. Rev. Geophys., 38, 191–219, doi: 10.1029/1998rg000054.CrossRefGoogle Scholar
  37. Santer, B. D., K. E. Taylor, T. M. L. Wigley, et al., 1996: A search for human influences on the thermal structure of the atmosphere. Nature, 382, 39–46, doi: 10.1038/382039a0.CrossRefGoogle Scholar
  38. Santer, B. D., T. M. L. Wigley, C. Mears, et al., 2005: Amplification of surface temperature trends and variability in the tropical atmosphere. Science, 309, 1551–1556, doi: 10.1126/science.1114867.CrossRefGoogle Scholar
  39. Sato, M., J. Hansen, P. Mccormick, et al., 1993: Stratospheric aerosol optical depths, 1850–1990. J. Geophys. Res., 98, 22987–22994, doi: 10.1029/93jd02553.CrossRefGoogle Scholar
  40. Simmons, A. J., P. D. Jones, V. da Costa Bechtold, et al., 2004: Comparison of trends and low-frequency variability in CRU, ERA-40, and NCEP/NCAR analyses of surface air temperature. J. Geophys. Res., 109, doi: 10.1029/2004jd005306.Google Scholar
  41. Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled oceanatmosphere models. J. Climate, 19, 3354–3360, doi: 10.1175/Jcli3799.1.CrossRefGoogle Scholar
  42. Stott, P. A., G. S. Jones, and J. F. B. Mitchell, 2003: Do models underestimate the solar contribution to recent climate change? J. Climate, 16, 4079–4093, doi: 10.1175/1520-0442(2003)016〈4079:Dmutsc〉2.0.Co;2.CrossRefGoogle Scholar
  43. Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485–498, doi: 10.1175/Bams-D-11-00094.1.CrossRefGoogle Scholar
  44. Trenberth, K. E., and L. Smith, 2005: The mass of the atmosphere: A constraint on global analyses. J. Climate, 18, 864–875, doi: 10.1175/Jcli-3299.1.CrossRefGoogle Scholar
  45. Trenberth, K. E., J. T. Fasullo, and L. Smith, 2005: Trends and variability in column-integrated atmospheric water vapor. Climate Dyn., 24, 741–758, doi: 10.1007/s00382-005-0017-4.CrossRefGoogle Scholar
  46. Trenberth, K. E., J. T. Fasullo, and J. T. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311–323, doi: 10.1175/2008bams2634.1.CrossRefGoogle Scholar
  47. Uppala, S. M., P. W. KÅllberg, A. J. Simmons, et al., 2005: The ERA-40 reanalysis. Quart. J. Roy. Meteor. Soc., 131, 2961–3012, doi: 10.1256/Qj.04.176.CrossRefGoogle Scholar
  48. Watterson, I. G., M. R. Dix, and R. A. Colman, 1999: A comparison of present and doubled CO2 climates and feedbacks simulated by three general circulation models. J. Geophys. Res., 104, 1943–1956, doi: 10.1029/1998jd200049.CrossRefGoogle Scholar
  49. Wielicki, B. A., B. R. Barkstrom, E. F. Harrison, et al., 1996: Clouds and the earth’s radiant energy system (CERES): An earth observing system experiment. Bull. Amer. Meteor. Soc., 77, 853–868.CrossRefGoogle Scholar
  50. Willmott, C. J., and D. R. Legates, 1993: A comparison of GCM-simulated and observed mean January and July surface air temperature. J. Climate, 6, 274–291, doi: 10.1175/1520-0442(1993)006〈0274:Acogsa〉2.0.Co;2.CrossRefGoogle Scholar
  51. Zhang, X., F. W. Zwiers, G. C. Hegerl, et al., 2007: Detection of human influence on twentieth-century precipitation trends. Nature, 448, 461–465, doi: 10.1038/nature06025.CrossRefGoogle Scholar
  52. Zhou, T. J., and R. C. Yu, 2006: Twentieth-century surface air temperature over China and the globe simulated by coupled climate models. J. Climate, 19, 5843–5858, doi: 10.1175/Jcli3952.1.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Bo Han (韩 博)
    • 1
  • Shihua Lü (吕世华)
    • 1
  • Yanhong Gao (高艳红)
    • 1
  • Yinhuan Ao (奥银焕)
    • 1
  • Ruiqing Li (李瑞青)
    • 1
  1. 1.Key Laboratory of Land Surface Process and Climate Change in Cold and Arid Regions, Cold and Arid Regions Environmental and Engineering Research InstituteChinese Academy of SciencesLanzhouChina

Personalised recommendations