Journal of Meteorological Research

, Volume 28, Issue 1, pp 1–33 | Cite as

Recent advance in understanding the dynamics of the Madden-Julian oscillation

  • Tim Li (李天明)


The Madden-Julian oscillation (MJO) is a dominant atmospheric low-frequency mode in the tropics. In this review article, recent progress in understanding the MJO dynamics is described. Firstly, the fundamental physical processes responsible for MJO eastward phase propagation are discussed. Next, a recent modeling result to address why MJO prefers a planetary zonal scale is presented. The effect of the seasonal mean state on distinctive propagation characteristics between northern winter and summer is discussed in a theoretical framework. Then, the observed precursor signals and the physical mechanism of MJO initiation in the western equatorial Indian Ocean are further discussed. Finally, scale interactions between MJO and higherfrequency eddies are delineated.

Key words

Madden-Julian oscillation (MJO) eastward phase propagation physical mechanism of MJO initiation scale interaction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aiyyer, A. R., and J. Molinari, 2003: Evolution of mixed Rossby-gravity waves in idealized MJO environments. J. Atmos. Sci., 60(23), 2837–2855.CrossRefGoogle Scholar
  2. Annamalai, H., J. M. Slingo, K. R. Sperber, et al., 1999: The mean evolution and variability of the Asian summer monsoon: Comparison of ECMWF and NCEP-NCAR reanalyses. Mon. Wea. Rev., 127(6), 1157–1186.CrossRefGoogle Scholar
  3. —, and —, 2001: Active/break cycles: Diagnosis of the intraseasonal variability of the Asian summer monsoon. Climate Dyn., 18(1–2), 85–102.CrossRefGoogle Scholar
  4. Batstone, C. P., A. J. Matthews, and D. P. Stevens, 2005: Coupled ocean-atmosphere interactions between the Madden-Julian oscillation and synoptic-scale variability over the warm pool. J. Climate, 18(12), 2004–2020.CrossRefGoogle Scholar
  5. Benedict, J., and D. A. Randall, 2007: Observed characteristics of the MJO relative to maximum rainfall. J. Atmos. Sci., 64(7), 2332–2354.CrossRefGoogle Scholar
  6. Biello, J. A., and A. J. Majda, 2005: A new multi-scale model for the Madden-Julian oscillation. J. Atmos. Sci., 62(6), 1694–1721.CrossRefGoogle Scholar
  7. —, —, and M. W. Moncrieff, 2007: Meridional momentum flux and super-rotation in the multi-scale IPESD MJO model. J. Atmos. Sci., 64(5), 1636–1651.CrossRefGoogle Scholar
  8. Chang, C. P., 1977: Viscous internal gravity waves and low-frequency oscillations in the tropics. J. Atmos. Sci., 34(6), 901–910.CrossRefGoogle Scholar
  9. —, and H Lim, 1988: Kelvin-wave CISK: A possible mechanism for the 30–50-day oscillation. J. Atmos. Sci., 45(11), 1709–1720.CrossRefGoogle Scholar
  10. Chao, W. C., and B. Chen, 1999: On the role of surface friction in tropical intraseasonal oscillation. Preprints, 23-d Conf. on Hurricanes and Tropical Meteorology, Vol. II, Dallas, TX, Amer. Meteor. Soc., 815–818.Google Scholar
  11. Chen, T.-C. and M. Murakami, 1988: The 30–50-day variation of convective activity over the western Pacific Ocean with the emphasis on the northwestern region. Mon. Wea. Rev., 116(4), 892–906.CrossRefGoogle Scholar
  12. —, R. Y. Tzeng, and M. C. Yen, 1988: Development and life cycle of the Indian monsoon: Effect of the 30–50-day oscillation. Mon. Wea. Rev., 116(11), 2183–2199.CrossRefGoogle Scholar
  13. Dickinson, M., and J. Molinari, 2002: Mixed Rossbygravity waves and western Pacific tropical cyclogenesis. Part I: Synoptic evolution. J. Atmos. Sci., 59(14), 2183–2195.CrossRefGoogle Scholar
  14. Ding, Q. H., and B. Wang, 2007: Intraseasonal teleconnection between the summer Eurasian wave train and the Indian monsoon. J. Climate, 20(15), 3751–3767.CrossRefGoogle Scholar
  15. Ding, Y. H., 2007: The variability of the Asian summer monsoon. J. Meteor. Soc. Japan, 85B, 21–54.CrossRefGoogle Scholar
  16. Emanuel, K. A., 1987: An air-sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci., 44(16), 2324–2340.CrossRefGoogle Scholar
  17. —, 1994: Atmospheric Convection. Oxford Univ. Press, New York, 580 pp.Google Scholar
  18. Flatau, M. K., P. Flatau, P. Phoebus, et al., 1997: The feedback between equatorial convection and local radiative and evaporative processes: The implications for intraseasonal oscillations. J. Atmos. Sci., 54(19), 2373–2386.CrossRefGoogle Scholar
  19. Frank, W. M., and P. E. Roundy, 2006: The role of tropical waves in tropical cyclogenesis. Mon. Wea. Rev., 134(9), 2397–2417.CrossRefGoogle Scholar
  20. Fu, X., B. Wang, T. Li, et al., 2003: Coupling between northward propagating ISO and SST in the Indian Ocean. J. Atmos. Sci., 60, 1733–1753.CrossRefGoogle Scholar
  21. Gadgil, S., and J. Srinivasan, 1990: Low frequency variation of tropical convergence zones. Meteor. Atmos. Phys., 44(1–4), 119–132.CrossRefGoogle Scholar
  22. Gautier, C., and B. DiJuli, 1990: Cloud effect on air-sea interactions during the 1979 Indian summer monsoon as studied from satellite observations. Meteor. Atmos. Phys., 44, 119–132.CrossRefGoogle Scholar
  23. Gill, A. E., 1980: Some simple solutions for heat-induced tropical circulation. Quart. J. Roy. Meteor. Soc., 106(449), 447–462.CrossRefGoogle Scholar
  24. Goswami, B. N., 1998: Interannual variations of Indian summer monsoon in a GCM: External conditions versus internal feedback. J. Climate, 11(4), 501–522.CrossRefGoogle Scholar
  25. Goswami, P., and R. K. Rao, 1994: A dynamical mechanism for selective excitation of the Kelvin mode at timescale of 30–50 days. J. Atmos. Sci., 51(19), 2769–2779.CrossRefGoogle Scholar
  26. Grabowski, W. W., 2001: Coupling cloud processes with the large-scale dynamics using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci., 58(9), 978–997.CrossRefGoogle Scholar
  27. Hartmann, D. L., and M. L. Michelsen, 1989: Intraseasonal periodicities in Indian rainfall. J. Atmos. Sci., 46(18), 2838–2862.CrossRefGoogle Scholar
  28. —, and E. D. Maloney, 2001: The Madden-Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part II: Stochastic barotropic modeling. J. Atmos. Sci., 58(17), 2559–2570.CrossRefGoogle Scholar
  29. —, M. L. Michelsen, and S. A. Kelein, 1992: Seasonal variations of tropical intraseasonal oscillations: A 20–25-day oscillation in the western Pacific. J. Atmos. Sci., 49(14), 1277–1289.CrossRefGoogle Scholar
  30. Hendon, H. H., and B. Liebmann, 1994: Organization of convection within the Madden-Julian oscillation. J. Geophys. Res., 99(D4), 8073–8083.CrossRefGoogle Scholar
  31. —, and M. L. Salby, 1994: The life cycle of Madden-Julian oscillation. J. Atmos. Sci., 51, 2207–2219.CrossRefGoogle Scholar
  32. —, and J. Glick, 1997: Intraseasonal air-sea interaction in the tropical Indian and Pacific oceans. J. Climate, 10(4), 647–661.CrossRefGoogle Scholar
  33. —, B. Liebmann, M. Newman, et al., 2000: Mediumrange forecast errors associated with active episodes of the Madden-Julian oscillation. Mon. Wea. Rev., 128(1), 69–86.CrossRefGoogle Scholar
  34. Holton, J. R., 1992: An Introduction to Dynamic Meteorology (Third Edition). Academic Press, San Diego, 511 pp.Google Scholar
  35. Houze, R. A., Jr., 1993: Cloud Dynamics. Academic Press, San Diego, 573 pp.Google Scholar
  36. Hsu, H. -H., and C.-H. Weng, 2001: Northwestward propagation of the intraseasonal oscillation in the western North Pacific during the boreal summer: Structure and mechanism. J. Climate, 14(18), 3834–3850.CrossRefGoogle Scholar
  37. —, and M. Lee, 2005: Topographic effects on the eastward propagation and initiation of the Madden-Julian oscillation. J. Climate, 18(6), 795–809.CrossRefGoogle Scholar
  38. —, B. J. Hoskins, and F.-F. Jin, 1990: The 1985/86 intraseasonal oscillation and the role of the extratropics. J. Atmos. Sci., 47(7), 823–839.CrossRefGoogle Scholar
  39. Hsu, P.-C., and T. Li, 2011: Interactions between boreal summer intraseasonal oscillations and synoptic-scale disturbances over the western North Pacific. Part II: Apparent heat and moisture sources and eddy momentum transport. J. Climate, 24(3), 942–961.CrossRefGoogle Scholar
  40. —, and —, 2012: Role of the boundary layer moisture asymmetry in causing the eastward propagation of the Madden-Julian oscillation. J. Climate, 25(14), 4914–4931.CrossRefGoogle Scholar
  41. —, —, and C.-H. Tsou, 2011: Interactions between boreal summer intraseasonal oscillations and synopticscale disturbances over the western North Pacific. Part I: Energetics diagnosis. J. Climate, 24(3), 927–941.Google Scholar
  42. Jiang, X., and T. Li, 2005: Re-initiation of the boreal summer intraseasonal oscillation in the tropical Indian Ocean. J. Climate, 18(18), 3777–3795.CrossRefGoogle Scholar
  43. —, —, and B. Wang, 2004: Structures and mechanisms of the northward propagating boreal summer intraseasonal oscillation. J. Climate, 17(5), 1022–1039.CrossRefGoogle Scholar
  44. —, D. E. Waliser, M. C. Wheeler, et al., 2008: Assessing the skill of an all-season statistical forecast model for the Madden-Julian oscillation. Mon. Wea. Rev., 136(6), 1940–1956.CrossRefGoogle Scholar
  45. Jones, C., and B. C. Weare, 1996: The role of low-level moisture convergence and ocean latent heat fluxes in the Madden and Julian oscillation: An observational analysis using ISCCB data and ECMWF analyses. J. Climate, 9, 3086–3104.CrossRefGoogle Scholar
  46. —, D. E. Waliser, J.-K. E. Schemm, et al., 2000: Prediction skill of the Madden and Julian oscillation in dynamical extended range forecasts. Climate Dyn., 16(4), 273–289.CrossRefGoogle Scholar
  47. —, D. E. Waliser, K. M. Lau, et al., 2004a: TheMadden-Julian oscillation and its impact on Northern Hemisphere weather predictability. Mon. Wea. Rev., 132(6), 1462–1471.CrossRefGoogle Scholar
  48. —, —, —, et al., 2004b: Global occurrences of extreme precipitation and the Madden-Julian oscillation: Observations and predictability, J. Climate, 17(23), 4575–4589.CrossRefGoogle Scholar
  49. —, L. M. V. Carvalho, W. Higgins, et al., 2004c: Climatology of tropical intraseasonal convective anomalies: 1979–2002. J. Climate, 17(3), 523–539.CrossRefGoogle Scholar
  50. Johnson, R. H., T. M. Rickenbach, S. A. Rutledge, et al., 1999: Trimodal characteristics of tropical convection. J. Climate, 12(8), 2397–2418.CrossRefGoogle Scholar
  51. Kawamura, R., T. Murakami, and B. Wang, 1996: Tropical and midlatitude 45-day perturbations over the western Pacific during the northern summer. J. Meteor. Soc. Japan, 74(6), 867–890.Google Scholar
  52. Kemball-Cook, S. R., and B. Wang, 2001: Equatorial waves and air-sea interaction in the boreal summer intraseasonal oscillation. J. Climate, 14(13), 2923–2942.CrossRefGoogle Scholar
  53. —, and B. C. Weare, 2001: The onset of convection in the Madden-Julian oscillation. J. Climate, 14(5), 780–793.CrossRefGoogle Scholar
  54. Khouider, B., and A. J. Majda, 2006: A simple multicloud parameterization for convectively coupled tropical waves. Part I: Linear analysis. J. Atmos. Sci., 63(4), 1308–1323.Google Scholar
  55. Kikuchi, K., and Y. N. Takayabu, 2003: Equatorial circumnavigation of moisture signal associated with the Madden-Julian oscillation (MJO) during boreal winter. J. Meteor. Soc. Japan, 81(4), 851–869.CrossRefGoogle Scholar
  56. —, and —, 2004: The development of organized convection associated with the MJO during TOGA COARE IOP: Trimodal characteristics. Geophys. Res. Lett., 31, L10101.CrossRefGoogle Scholar
  57. Kiladis, G. N., K. H. Straub, and P. T. Haertel, 2005: Zonal and vertical structure of the Madden-Julian oscillation. J. Atmos. Sci., 62(8), 2790–2809.CrossRefGoogle Scholar
  58. Kim, D., K. W. Sperber, D. Stern, et al., 2009: Application of MJO simulation diagnostics to climate models. J. Climate, 22(23), 6413–6436.CrossRefGoogle Scholar
  59. Knutson, T. R., and K. M. Weickmann, 1987: 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Mon. Wea. Rev., 115(7), 1407–1436.CrossRefGoogle Scholar
  60. Krishnamurti, T. N., 1985: Summer monsoon experiment—A review. Mon. Wea. Rev., 113(9), 1590–1626.CrossRefGoogle Scholar
  61. —, and D. Subrahmanyam, 1982: The 30–50-day mode at 850 mb during MONEX. J. Atmos. Sci., 39(9), 2088–2095.CrossRefGoogle Scholar
  62. —, D. R. Chakraborty, N. Cubukcu, et al., 2003: A mechanism of the MJO based on interactions in the frequency domain. Quart. J. Roy. Meteor. Soc., 129(593), 2559–2590.CrossRefGoogle Scholar
  63. Lau, N.-C., and K.-M. Lau, 1986: The structure and propagation of intraseasonal oscillation appearing in a GFDL general circulation model. J. Atmos. Sci., 43(19), 2023–2047.CrossRefGoogle Scholar
  64. Lau, K.-H., and N.-C. Lau, 1990: Observed structure and propagation characteristics of tropical summertime synoptic-scale disturbances. Mon. Wea. Rev., 118(9), 1888–1993.CrossRefGoogle Scholar
  65. Lau, K.-M., and P. H. Chan, 1986: Aspects of the 40–50-day oscillation during the northern summer as inferred from outgoing longwave radiation. Mon. Wea. Rev., 114(7), 1354–1367.CrossRefGoogle Scholar
  66. —, and L. Peng, 1987: Origin of low frequency (intraseasonal) oscillation in the tropical atmosphere. Part I: The basic theory. J. Atmos. Sci., 44(6), 950–972.CrossRefGoogle Scholar
  67. —, and C.-H. Sui, 1997: Mechanisms of short-term sea surface temperature regulation: Observations during TOGA-COARE. J. Climate, 10(3), 465–472.CrossRefGoogle Scholar
  68. —, and D. E. Waliser, 2005: Intraseasonal Variability of the Atmosphere-Ocean Climate System. Springer, Heidelberg, Germany, 474 pp.Google Scholar
  69. Lawrence, D. M., and P. J. Webster, 2002: The boreal summer intraseasonal oscillation: Relationship between northward and eastward movement of convection. J. Atmos. Sci., 59(9), 1593–1606.CrossRefGoogle Scholar
  70. Li Chongyin and Liao Qinghai, 1996: Behavior of coupled modes in a simple nonlinear air-sea interaction model. Adv. Atmos. Sci., 13(2), 183–195.CrossRefGoogle Scholar
  71. —, Cho Han-Ru, and Wang Jough-Tai, 2002: CISK Kelvin wave with evaporation-wind feedback and air-sea interaction-A further study of tropical intraseasonal oscillation mechanism. Adv. Atmos. Sci., 19(3), 379–389.CrossRefGoogle Scholar
  72. Li, T., and B. Wang, 1994a: The influence of sea surface temperature on the tropical intraseasonal oscillation: A numerical study. Mon. Wea. Rev., 122(10), 2349–2362.CrossRefGoogle Scholar
  73. —, and —, 1994b: A thermodynamic equilibrium climate model for monthly mean surface winds and precipitation over the tropical Pacific. J. Atmos. Sci., 51(11), 1372–1385.CrossRefGoogle Scholar
  74. —, and —, 2005: A review on the western North Pacific monsoon: Synoptic-to-interannual variabilities. Terrestrial, Atmospheric and Oceanic Sciences, 16(2), 285–314.Google Scholar
  75. —, and C. Zhou, 2009: Planetary scale selection of the Madden-Julian oscillation. J. Atmos. Sci., 66(8), 2429–2443.CrossRefGoogle Scholar
  76. —, F. Tam, X. H. Fu, et al., 2008: Causes of the intraseasonal SST variability in the tropical Indian Ocean. Atmosphere-Ocean Science Letters, 1, 18–23.Google Scholar
  77. Liebmann, B., H. H. Hendon, and J. D. Glick, 1994: The relationship between tropical cyclones of the western Pacific and Indian oceans and the Madden-Julian oscillation. J. Meteor. Soc. Japan, 72, 401–412.Google Scholar
  78. Lin, A.-L., T. Li, X. H. Fu, et al., 2011: Effects of air-sea coupling on the boreal summer intraseasonal oscillations over the tropical Indian Ocean. Climate Dyn., 37(11–12), 2303–2322.CrossRefGoogle Scholar
  79. Lin, J.-L., G. N. Kiladis, B. E. Mapes, et al., 2006: Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Climate, 19(12), 2665–2690.CrossRefGoogle Scholar
  80. Lindzen, R. S., and S. Nigam, 1987: On the role of sea surface temperature gradients in forcing low-level winds and convergence in the tropics. J. Atmos. Sci., 44(17), 2418–2436.CrossRefGoogle Scholar
  81. Liu, F., and B. Wang, 2012: A model for the interaction between the 2-day waves and moist Kelvin waves. J. Atmos. Sci., 69(2), 611–625.CrossRefGoogle Scholar
  82. —, G. Huang, and L. C. Feng, 2012: Critical roles of convective momentum transfer in sustaining the multi-scale Madden-Julian oscillation. Theor. Appl. Climatol., 108(3–4), 471–477.CrossRefGoogle Scholar
  83. Lo, F., and H. H. Hendon, 2000: Empirical extendedrange prediction of the Madden-Julian oscillation. Mon. Wea. Rev., 128(7), 2528–2543.CrossRefGoogle Scholar
  84. Madden, R. A., and P. R. Julian, 1971: Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28(5), 702–708.CrossRefGoogle Scholar
  85. —, and —, 1972: Description of global-scale circulation cells in the tropics with a 40–50-day period. J. Atmos. Sci., 29(6), 3138–3158.CrossRefGoogle Scholar
  86. —, 1986: Seasonal variations of the 40–50-day oscillation in the tropics. J. Atmos. Sci., 43(24), 3138–3158.CrossRefGoogle Scholar
  87. —, and P. R. Julian, 1994: Observations of the 40–50-day tropical oscillation—A review. Mon. Wea. Rev., 122(5), 814–837.CrossRefGoogle Scholar
  88. Majda, A. J., and J. A. Biello, 2004: A multiscale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci., 101(14), 4736–4741.CrossRefGoogle Scholar
  89. —, and S. N. Stechmann, 2009: A simple dynamical model with features of convective momentum transport. J. Atmos. Sci., 66(2), 373–392.CrossRefGoogle Scholar
  90. Maloney, E. D., 2009: The moist static energy budget of a composite tropical intraseasonal oscillation in a climate model. J. Climate, 22(3), 711–729.CrossRefGoogle Scholar
  91. —, and D. L. Hartmann, 1998: Frictional moisture convergence in a composite life cycle of the Madden-Julian oscillation. J. Climate, 11, 2387–2403.CrossRefGoogle Scholar
  92. —, and —, 2000a: Modulation of eastern North Pacific hurricanes by the Madden-Julian oscillation. J. Climate, 13(9), 1451–1460.CrossRefGoogle Scholar
  93. —, and —, 2000b: Modulation of hurricane activity in the Gulf of Mexico by the Madden-Julian oscillation. Science, 287(5460), 2002–2004.CrossRefGoogle Scholar
  94. —, and —, 2001: The Madden-Julian oscillation, barotropic dynamics, and North Pacific tropical cyclone formation. Part I: Observations. J. Atmos. Sci., 58, 2545–2558.CrossRefGoogle Scholar
  95. —, and M. J. Dickinson, 2003: The intraseasonal oscillation and the energetics of summertime tropical western North Pacific synoptic-scale disturbances. J. Atmos. Sci., 60(17), 2153–2168.CrossRefGoogle Scholar
  96. —, and A. H. Sobel, 2004: Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Climate, 17(22), 4368–4386.CrossRefGoogle Scholar
  97. Mao, J. Y., and G.-X. Wu, 2006: Intraseasonal variations of the Yangtze rainfall and its related atmospheric circulation features during the 1991 summer. Climate Dyn., 27(7–8), 815–830.CrossRefGoogle Scholar
  98. —, Z. Sun, and G.-X. Wu, 2010: 20–50-day oscillation of summer Yangtze rainfall in response to intraseasonal variations in the subtropical high over the western North Pacific and South China Sea. Climate Dyn., 34, 747–761.CrossRefGoogle Scholar
  99. Matthews, A. J., 2000: Propagation mechanism for the Madden-Julian oscillation. Quart. Roy. Meteor. Soc., 126(569), 2637–2651.CrossRefGoogle Scholar
  100. —, 2008: Primary and successive events in the Madden-Julian oscillation. Quart. J. Roy. Meteor. Soc., 134(631), 439–453.CrossRefGoogle Scholar
  101. Mo, K. C., 2000: Intraseasonal modulation of summer precipitation over North America. Mon. Wea. Rev., 128(5), 1490–1505.CrossRefGoogle Scholar
  102. Moncrieff, M. W., 2004: Analytic representation of the large-scale organization of tropical convection. J. Atmos. Sci., 61, 1521–1538.CrossRefGoogle Scholar
  103. Moskowitz, B. M., and C. S. Bretherton, 2000: An analysis of frictional feedback on a moist equatorial Kelvin mode. J. Atmos. Sci., 57(13), 2188–2206.CrossRefGoogle Scholar
  104. Murakami, T., 1980: Empirical orthogonal function analysis of satellite-observed outgoing longwave radiation during summer. Mon. Wea. Rev., 108(2), 205–222.CrossRefGoogle Scholar
  105. —, and T. Nakazawa, 1985: Tropical 45-day oscillations during the 1979 Northern Hemisphere summer. J. Atmos. Sci., 42(11), 1107–1122.CrossRefGoogle Scholar
  106. Myers, D., and D. E. Waliser, 2003: Three-dimensional water vapor and cloud variations associated with the Madden-Julian oscillation during Northern Hemisphere winter. J. Climate, 16, 929–950.CrossRefGoogle Scholar
  107. Nakazawa, T., 1988: Tropical super clusters within intraseasonal variations over the western Pacific. J. Meteor. Soc. Japan, 66, 823–839.Google Scholar
  108. Neelin, J. D., I. M. Held, and K. H. Cook, 1987: Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci., 44(16), 2341–2348.CrossRefGoogle Scholar
  109. Nitta, T., 1987: Convective activities in the tropical western pacific and their impact on the Northern-Hemisphere summer circulation. J. Meteorol. Soc. Japan, 65, 373–390.Google Scholar
  110. Pan, L.-L., and T. Li, 2008: Interactions between the tropical ISO and midlatitude low-frequency flow. Climate Dyn., 31(4), 375–388.CrossRefGoogle Scholar
  111. Ray, P., C. D. Zhang, J. Dudhia, et al., 2009: A numerical case study on the initiation of the Madden-Julian oscillation. J. Atmos. Sci., 66(2), 310–331.CrossRefGoogle Scholar
  112. Saha, S., and Coauthors, 2006: The NCEP climate forecast system. J. Climate, 19, 3483–3517.CrossRefGoogle Scholar
  113. Salby, M. L., R. Garcia, and H. H. Hendon, 1994: Planetary-scale circulations in the presence of climatological and wave-induced heating. J. Atmos. Sci., 51, 2344–2367.CrossRefGoogle Scholar
  114. Seo, K.-H., and K.-Y. Kim, 2003: Propagation and initiation mechanism of the Madden-Julian oscillation. J. Geo. Res., 108, NO. D13, 4384, doi: 10.1029/2002JD002876.Google Scholar
  115. Shinoda, T., and H. H. Hendon, 1998: Mixed layer modeling of intraseasonal variability in the tropical western Pacific and Indian oceans. J. Climate, 11(10), 2668–2685.CrossRefGoogle Scholar
  116. Shukla, J., T. N. Palmer, R. Hagedorn, et al., 2010: Toward a new generation of world climate research and computing facilities. Bull. Amer. Meteor. Soc., 91(10), 1407–1412.CrossRefGoogle Scholar
  117. Slingo, J. M., K. R. Sperber, J. S. Boyle, et al., 1996: Intraseasonal oscillation in 15 atmospheric general circulation models: Results from an AMIP diagnostic subproject. Climate Dyn., 12(5), 325–357.CrossRefGoogle Scholar
  118. —, D. P. Rowell, K. R. Sperber, et al., 1999: On the predictability of the interannual behaviour of the Madden-Julian oscillation and its relationship with El Niño. Quart. J. Roy. Meteor. Soc., 125, 583–609.Google Scholar
  119. Sobel, A. H., and E. D. Maloney, 2000: Effect of ENSO and the MJO on western North Pacific tropical cyclones. Geophys. Res. Lett., 27(12), 1739–1742.CrossRefGoogle Scholar
  120. —, and —, 2013: Moisture modes and the eastward propagation of the MJO. J. Atmos. Sci., 70(1), 187–192.CrossRefGoogle Scholar
  121. Sperber, K. R., 2003: Propagation and the vertical structure of the Madden-Julian oscillation. Mon. Wea. Rev., 131(12), 3018–3037.CrossRefGoogle Scholar
  122. —, and T. N. Palmer, 1996: Interannual tropical rainfall variability in general circulation model simulations associated with the atmospheric model intercomparison project. J. Climate, 9, 2727–2750.CrossRefGoogle Scholar
  123. —, J. M. Slingo, P. M. Inness, et al., 1997: On the maintenance and initiation of the intraseasonal oscillation in the NCEP/NCAR reanalysis and in the GLA and UKMO AMIP simulations. Climate Dyn., 13(11), 769–795.CrossRefGoogle Scholar
  124. Stephens, G. L., P. J. Webster, R. H. Johnson, et al., 2004: Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical SST. J. Climate, 17(11), 2213–2224.CrossRefGoogle Scholar
  125. Straub, K. H., and G. N. Kiladis, 2003: Interactions between the boreal summer intraseasonal oscillation and higher-frequency tropical wave activity. Mon. Wea. Rev., 131(5), 945–960.CrossRefGoogle Scholar
  126. Takaya, K., and H. Nakamura, 2001: A formulation of a phase-independent wave-activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. J. Atmos. Sci., 58(6), 608–627.CrossRefGoogle Scholar
  127. Takayabu, Y. N., and T. Nitta, 1993: 3–5 day period disturbances coupled with convection over the tropical Pacific Ocean. J. Meteor. Soc. Japan, 71, 221–246.Google Scholar
  128. Vecchi, G. A., and D. E. Harrison, 2002: Monsoon breaks and subseasonal sea surface temperature variability in the Bay of Bengal. J. Climate, 15(12), 1485–1493.CrossRefGoogle Scholar
  129. Waliser, 2006: Intraseasonal Variability. Asian Monsoon, B. Wang, Ed., Springer, Heidelberg, Germ, 787 pp.Google Scholar
  130. —, K.-M. Lau, and J.-H. Kim, 1999: The influence of coupled sea surface temperatures on the Madden-Julian oscillation: A model perturbation experiment. J. Atmos. Sci., 56, 333–358.CrossRefGoogle Scholar
  131. —, R. Murtugudde, and L. E. Lucas, 2003: Indo-Pacific Ocean response to atmospheric intraseasonal variability. Part I: Austral summer and the Madden-Julian oscillation. J. Geophys. Res-Oceans, 108(C5), 3160, doi: 10.1029/2002JC001620.CrossRefGoogle Scholar
  132. Wang, B., 1988: Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci., 45(14), 2051–2065.CrossRefGoogle Scholar
  133. —, and H. Rui, 1990a: Synoptic climatology of transient tropical intraseasonal convection anomalies, 1975–1985. Meteor. Atmos. Phys., 44(1–4), 43–61.Google Scholar
  134. —, and —, 1990b: Dynamics of the coupled moist Kelvin-Rossby wave on an equatorial β-plane. J. Atmos. Sci, 47(4), 397–413.CrossRefGoogle Scholar
  135. —, and T. Li, 1993: A simple tropical atmospheric model of relevance to short-term climate variation. J. Atmos. Sci., 50, 260–284.CrossRefGoogle Scholar
  136. —, and T. Li, 1994: Convective interaction with boundary-layer dynamics in the development of a tropical intraseasonal system. J. Atmos. Sci., 51(11), 1386–1400.CrossRefGoogle Scholar
  137. —, and X. Xie, 1998: Coupled modes of the warm pool climate system. Part I: The role of air-sea interaction in maintaining Madden-Julian oscillation. J. Climate, 11(8), 2116–2135.CrossRefGoogle Scholar
  138. —, J.-Y. Lee, J. Shukla, et al., 2009: Advance and prospectus of seasonal prediction: Assessment of the APCC/CliPAS 14-model ensemble retrospective seasonal prediction (1980–2004). Climate Dyn., 33(1), 93–117.CrossRefGoogle Scholar
  139. —, and F. Liu, 2011: A model for scale interaction in the Madden-Julian oscillation. J. Atmos. Sci., 68(11), 2524–2536.CrossRefGoogle Scholar
  140. Wang, L., T. Li, T. Zhou, et al., 2013: Origin of the intraseasonal variability over the North Pacific in boreal summer. J. Climate, 26(4), 1211–1229.CrossRefGoogle Scholar
  141. Weickmann, K. M., 1983: Intraseasonal circulation and outgoing longwave radiation modes during Northern Hemisphere winter. Mon. Wea. Rev., 111(9), 1838–1858.CrossRefGoogle Scholar
  142. —, G. R Lussky, and J. E. Kutzbach, 1985: Intraseasonal (30–60 day) fluctuations of outgoing longwave radiation and the 250-mb streamfunction during northern winter. Mon. Wea. Rev., 113(6), 941–961.CrossRefGoogle Scholar
  143. Wheeler, M., and H. H. Hendon, 2004: An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon. Wea. Rev., 132, 1917–1932.CrossRefGoogle Scholar
  144. Wu, M. L. C., S. D. Schubert, M. J. Suarez, et al., 2005: Seasonality and meridional propagation of the MJO. J. Climate, 19(10), 1901–1921.CrossRefGoogle Scholar
  145. Yanai, M., S. Esbensen, and J.-H. Chu, 1973: Determination of bulk properties of tropical cloud clusters from large-scale heat and moisture budgets. J. Atmos. Sci., 30, 611–627.CrossRefGoogle Scholar
  146. Yang Hui and Li Chongyin, 2003: The relation between atmospheric intraseasonal oscillation and summer severe flood and drought in the Changjiang-Huaihe River basin. Adv. Atmos. Sci., 20(4), 540–553.CrossRefGoogle Scholar
  147. Yang, J, B. Wang, B. Wang, et al., 2010: Biweekly and 21–30-day variations of the subtropical summer monsoon rainfall over the lower reach of the Yangtze River basin. J. Climate, 23(5), 1146–1160.CrossRefGoogle Scholar
  148. Yasunari, T., 1979: Cloudiness fluctuation associated with the Northern Hemisphere summer monsoon. J. Meteor. Soc. Japan, 57, 227–242.Google Scholar
  149. —, 1980: A quasi-stationary appearance of 30–40 day period in the cloudiness fluctuation during summer monsoon over India. J. Meteor. Soc. Japan, 58, 225–229.Google Scholar
  150. Zhang, C., 2005: Madden-Julian oscillation. Rev. Geophys., 43, RG2003, doi: 10.1029/2004RG000158.Google Scholar
  151. Zhao, C.-B., T. Li, and T. Zhou, 2013: Precursor signals and processes associated with MJO initiation over the tropical Indian Ocean. J. Climate, 26, 291–307.CrossRefGoogle Scholar
  152. Zheng, Y., D. E. Waliser, W. Stern, et al., 2004: The role of coupled sea surface temperatures in the simulation of the tropical intraseasonal oscillation. J. Climate, 17, 4109–4134.CrossRefGoogle Scholar
  153. Zhou C., and T. Li, 2010: Upscale feedback of tropical synoptic variability to intraseasonal oscillations through the nonlinear rectification of the surface latent heat flux. J. Climate, 23(21), 5738–5754.CrossRefGoogle Scholar
  154. Zhu, C. W., T. Nakazawa, J. Li, et al., 2003: The 30–60 day intraseasonal oscillation over the western North Pacific Ocean and its impacts on summer flooding in China during 1998. Geophys. Res. Lett., 30(18), 1952, doi: 10.1029/2003GL017817.CrossRefGoogle Scholar
  155. Zhu, W., T. Li, X. Fu, et al., 2010: Influence of the maritime continent on the boreal smmer intraseasonal oscillation. J. Meteor. Soc. Japan, 88, 395–407.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.International Pacific Research Center and Department of Meteorology, School of Ocean and Earth Science and TechnologyUniversity of Hawaii at ManoaHonoluluUSA
  2. 2.Key Laboratory of Meteorological Disaster and College of Atmospheric ScienceNanjing University of Information Science & TechnologyNanjingChina

Personalised recommendations