Journal of Meteorological Research

, Volume 28, Issue 2, pp 281–295 | Cite as

Planetary-scale wave structures of the earth’s atmosphere revealed from the COSMIC observations

  • S. K. A. V. Prasad Rao Anisetty
  • P. S. Brahmanandam
  • G. Uma
  • A. Narendra Babu
  • Ching-Yuang Huang (黄清勇)
  • G. Anil Kumar
  • S. Tulasi Ram
  • Hsiao-Lan Wang (王筱岚)
  • Yen-Hsyang Chu (朱延祥)


GPS radio occultation (GPS RO) method, an active satellite-to-satellite remote sensing technique, is capable of producing accurate, all-weather, round the clock, global refractive index, density, pressure, and temperature profiles of the troposphere and stratosphere. This study presents planetary-scale equatorially trapped Kelvin waves in temperature profiles retrieved using COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) satellites during 2006–2009 and their interactions with background atmospheric conditions. It is found that the Kelvin waves are not only associated with wave periods of higher than 10 days (slow Kelvin waves) with higher zonal wave numbers (either 1 or 2), but also possessing downward phase progression, giving evidence that the source regions of them are located at lower altitudes. A thorough verification of outgoing longwave radiation (OLR) reveals that deep convection activity has developed regularly over the Indonesian region, suggesting that the Kelvin waves are driven by the convective activity. The derived Kelvin waves show enhanced (diminished) tendencies during westward (eastward) phase of the quasi-biennial oscillation (QBO) in zonal winds, implying a mutual relation between both of them. The El Niño and Southern Oscillation (ENSO) below 18 km and the QBO features between 18 and 27 km in temperature profiles are observed during May 2006–May 2010 with the help of an adaptive data analysis technique known as Hilbert Huang Transform (HHT). Further, temperature anomalies computed using COSMIC retrieved temperatures are critically evaluated during different phases of ENSO, which has revealed interesting results and are discussed in light of available literature.

Key words

radio occultation technique Kelvin waves outgoing long-wave radiation (OLR) quasi-biennial oscillation (QBO) El Niño and Southern Oscillation (ENSO) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexander, M. J., and J. R. Holton, 1997: A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves. J. Atmos. Sci., 54, 408–419.CrossRefGoogle Scholar
  2. Alexander, S. P., T. Tsuda, Y. Kawatani, et al., 2008: Global distribution of atmospheric waves in the equatorial upper troposphere and lower stratosphere: COSMIC observations of wave mean flow interactions. J. Geophys. Res., 113, D24115.CrossRefGoogle Scholar
  3. Angell, J. K., and J. Korshover, 1964: Quasibiennial variations in temperature, total ozone, and tropopause height. J. Atmos. Sci., 21, 479–492.CrossRefGoogle Scholar
  4. Anthes, R. A., D. Ector, D. C. Hunt, et al., 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313–333.CrossRefGoogle Scholar
  5. —, 2011: Exploring earth’s atmosphere with radio occultation: Contributions to weather, climate, and space weather. Atmos. Meas. Tech., 4, 1077–1103.CrossRefGoogle Scholar
  6. Ao, C. O., G. A. Hajj, T. K. Meehan, et al., 2009: Rising and setting GPS occultations by use of open-loop tracking. J. Geophys. Res., 114, D04101, doi: 10.1029/2008JD010483.Google Scholar
  7. Baldwin, M. P., L. J. Gray, T. J. Dunkerton, et al., 2001: The quasi-biennial oscillation. Rev. Geophys., 39, 179–229.CrossRefGoogle Scholar
  8. Brahmanandam, P. S, Y. H. Chu, and J. Liu, 2010: Observations of equatorial Kelvin wave modes in FORMOSAT-3/COSMIC GPS RO temperature profiles. Terr. Atmos. Ocean. Sci., 21(5), 829–840.CrossRefGoogle Scholar
  9. —, Y. H. Chu, K.-H. Wu, et al., 2011: Vertical and longitudinal electron density structures of equatorial Eand F-regions. Ann. Geophys., 29, 81–89.CrossRefGoogle Scholar
  10. —, U. Gouthu, J. Y. Liu, et al., 2012: Global S4 index variations observed using FORMOSAT-3/COSMIC GPS RO technique during a solar minimum year. J. Geophys. Res., 117, A09322, doi: 10.1029/2012JA017966.Google Scholar
  11. Canziani, P. O., J. R. Holton, E. F. Fishbein, et al., 1994: Equatorial Kelvin waves: A UARS MLS view. J. Atmos. Sci., 51, 3053–3076.CrossRefGoogle Scholar
  12. —, and J. R. Holton, 1998: Kelvin waves and the quasibiennial oscillation: An observational analysis. J. Geophys. Res., 103, 31509–31521.CrossRefGoogle Scholar
  13. Chu, Y.-H., P. S. Brahmanandam, C.-Y. Wang, et al., 2011: Coordinated sporadic E-layer observations made with Chung-Li 30 MHz radar, ionosonde and FORMOSAT-3/COSMIC satellites. J. Atmos. Terr. Phys., 73, 883–894.CrossRefGoogle Scholar
  14. Dunkerton, T. J., 1997: The role of gravity waves in the quasi-biennial oscillation. J. Geophys. Res., 102, 26053–26076.CrossRefGoogle Scholar
  15. Ern, M., P. Preusse, M. Krebsbach, et al., 2008: Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys., 8, 845–869.CrossRefGoogle Scholar
  16. Evan, S., M. J. Alexander, and J. Dudhia, 2012: WRF simulations of convectively-generated gravity waves in opposite QBO phases. J. Geophys. Res., 117, 1–17.Google Scholar
  17. Fjeldbo, G., A. J. Kliore, and V. R. Eshleman, 1971: The neutral atmosphere of Venus as studied with the Mariner V radio occultation experiments. The Astronomical Journal, 76, 123–140.CrossRefGoogle Scholar
  18. Fujiwara, M., K. Kita, and T. Ogawa, 1998: Stratosphere-troposphere exchange of ozone associated with the equatorial Kelvin wave as observed with ozonesondes and rawinsondes. J. Geophys. Res., 103, 19173–19182.CrossRefGoogle Scholar
  19. —, F. Hasebe, M. Shiotani, et al., 2001: Water vapor control at the tropopause by equatorial Kelvin waves observed over the Galápagos. Geophys. Res. Lett., 28, 3143–3146.CrossRefGoogle Scholar
  20. —, S.-P. Xie, M. Shiotani, et al., 2003: Uppertropospheric inversion and easterly jet in the tropics. J. Geophys. Res., 108, 4796, doi: 10.1029/2003JD003928.Google Scholar
  21. Garcia, R. R., and M. L. Salby, 1987: Transient response to localized episodic heating in the tropics. Part II: Far-field behavior. J. Atmos. Sci., 44, 499–532.CrossRefGoogle Scholar
  22. Hajj, G. A., C. O. Ao, B. A. Iijima, et al., 2004: CHAMP and SAC-C atmospheric occultation results and intercomparisons. J. Geophys. Res., 109, doi: 10.1029/2003JD003909.Google Scholar
  23. Highwood, E. J., and B. J. Hoskins, 1998: The tropical tropopause. Quart. J. Roy. Meteor. Soc., 124, 1579–1604.CrossRefGoogle Scholar
  24. Hitchman, M. H., and C. B. Leovy, 1988: Estimation of the Kelvin wave contribution to the semiannual oscillation. J. Atmos. Sci., 45, 1462–1475.CrossRefGoogle Scholar
  25. Holton, James R., and R. S. Lindzen, 1972: An updated theory for the quasi-biennial cycle of the tropical stratosphere. J. Atmos. Sci., 29, 1076–1080.CrossRefGoogle Scholar
  26. Huang, N. E., Z. Shen, S. R. Long, et al., 1998: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A, 454, 903–993, doi: 10.1098/rspa.1998.0193.CrossRefGoogle Scholar
  27. —, and Z. H. Wu, 2008: A review on Hilbert-Huang Transform: Method and its applications to geophysical studies. Rev. Geophys., 46, RG2006, doi: 10.1029/2007RG000228.CrossRefGoogle Scholar
  28. Kawatani, Y., S. Watanabe, K. Sato, et al., 2010: The roles of equatorial trapped waves and internal inertia-gravity waves in driving the quasi-biennial oscillation. Part I: Zonal mean wave forcing. J. Atmos. Sci., 67(4), 963–980.CrossRefGoogle Scholar
  29. Kishore, P., S. P. Namboothiri, J. H. Jiang, et al., 2009: Global temperature estimates in the troposphere and stratosphere: A validation study of COSMIC/FORMOSAT-3 measurements. Atmos. Chem. Phys., 9, 897–908.CrossRefGoogle Scholar
  30. Lindzen, R. S., 2003: The interaction of waves and convection in the tropics. J. Atmos. Sci., 60, 3009–3020.CrossRefGoogle Scholar
  31. Mannucci, A. J., S. T. Lowe, C. O. Ao, et al., 2012: New science opportunities on COSMIC-2/FORMOSAT-7. Sixth COSMIC/FORMOSAT-3 Data User’s Workshop, Boulder, Colorado, USA.Google Scholar
  32. Melbourne, W. G., E. S. Davis, G. A. Hajj, et al., 1994: The Application of Spaceborne GPS to Atmospheric Limb Sounding and Global Change Monitoring. JPL Publication, 147 pp.Google Scholar
  33. Mote, P. W., T. J. Dunkerton, and D. Wu, 2002: Kelvin waves in stratospheric temperature observed by the Microwave Limb Sounder. J. Geophys. Res., 107(D14), 4218.CrossRefGoogle Scholar
  34. Pires, P., J.-L. Redelsperger, and J.-P. Lafore, 1997: Equatorial atmospheric waves and their association to convection. Mon. Wea. Rev., 125, 1167–1184.CrossRefGoogle Scholar
  35. Potula, B. S., Y.-H. Chu, G. Uma, et al., 2011: A global comparative study on the ionospheric measurements between COSMIC radio occultation technique and IRI model. J. Geophys. Res., 116, A02310, doi: 10.1029/2010JA015814.Google Scholar
  36. Randel, W. J., F. Wu, and W. Rivera Ríos, 2003: Thermal variability of the tropical tropopause region derived from GPS/MET observations. J. Geophys. Res., 108(D1), 4024, doi: 10.1029/2002JD002595.CrossRefGoogle Scholar
  37. —, and —, 2005: Kelvin wave variability near the equatorial tropopause observed in GPS radio occultation measurements. J. Geophys. Res., 110, doi: 10.1029/2004JD005006.Google Scholar
  38. —, K. P. Shine, J. Austin, et al., 2009: An update of observed stratospheric temperature trends. J. Geophys. Res., 114, D02107, doi: 10.1029/2008JD010421.Google Scholar
  39. Rao, D. N., M. Venkat Ratnam, S. K. Mehta, et al., 2009: Validation of the COSMIC radio occultation data over Gadanki (13.48°N, 79.2°E): A tropical region. Terr. Atmos. Ocean. Sci., 20, 59–70.CrossRefGoogle Scholar
  40. Ratnam, M. V., T. Tsuda, T. Kozu, et al., 2006: Longterm behavior of the Kelvin waves revealed by CHAMP/GPS RO measurements and their effects on the tropopause structure. Ann. Geophys., 24, 1355–1366.CrossRefGoogle Scholar
  41. Salby, M. L., D. L. Hartmann, P. L. Bailey, et al., 1984: Evidence for equatorial Kelvin modes in Nimbus-7 LIMS. J. Atmos. Sci., 41, 220–235.CrossRefGoogle Scholar
  42. —, and R. R. Garcia, 1987: Transient response to localized episodic heating in the tropics. Part I: Excitation and short-time near-field behavior. J. Atmos. Sci., 44, 458–498.CrossRefGoogle Scholar
  43. Sasi, M. N., and V. Deepa, 2001: Seasonal variation of equatorial wave momentum fluxes at Gadanki (13.5°N, 79.2°E). Ann. Geophys., 19, 985–990, doi: 10.5194/angeo-19-985-2001.CrossRefGoogle Scholar
  44. Scherllin-Pirscher, B., C. Deser, S.-P. Ho, et al., 2012: The vertical and spatial structure of ENSO in the upper troposphere and lower stratosphere from GPS radio occultation measurements. Geophys. Res. Lett., 39, L20801, doi: 10.1029/2012GL053071.Google Scholar
  45. Seidel, D. J., R. J. Ross, J. K. Angell, et al., 2001: Climatological characteristics of the tropical tropopause as revealed by radiosondes. J. Geophys. Res., 106, 7857–7878.CrossRefGoogle Scholar
  46. Shiotani, M., and T. Horinouchi, 1993: Kelvin wave activity and the quasi-biennial oscillation in the equatorial lower stratosphere. J. Meteor. Soc. Japan., 71, 175–182.Google Scholar
  47. —, J. C. Gille, and A. E. Roche, 1997: Kelvin waves in the equatorial lower stratosphere as revealed by cryogenic limb array etalon spectrometer temperature data. J. Geophys. Res., 102, 26131–26140.CrossRefGoogle Scholar
  48. Smith, A. K., P. Preusse, and J. Oberheide, 2002: Middle atmosphere Kelvin waves observed in Cryogenic infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) 1 and 2 temperature and trace species. J. Geophys. Res., 107, doi: 10.1029/2001JD000577.Google Scholar
  49. Sridharan, S., T. Tsuda, T. Nakamura, et al., 2006: Observations of the 7-day Kelvin wave in the tropical atmosphere during the CPEA campaign. J. Meteor. Soc. Japan, 84a, 259–275.CrossRefGoogle Scholar
  50. Steiner, A. K., B. C. Lackner, F. Ladstädter, et al., 2011: GPS radio occultation for climate monitoring and change detection. Radio Sci., 46, RS0D24, doi: 10.1029/2010RS004614.CrossRefGoogle Scholar
  51. Sun, B. M., A. Reale, D. J. Seidel, et al., 2010: Comparing radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J. Geophys. Res., 115, D23104.CrossRefGoogle Scholar
  52. Tindall, J. C., J. Thuburn, and E. J. Highwood, 2006a: Equatorial waves in the lower stratosphere. Part I: A novel detection method. Quart. J. Roy. Meteor. Soc., 132, 177–194.CrossRefGoogle Scholar
  53. —, —, —, 2006b: Equatorial waves in the lower stratosphere. Part II: Annual and interannual variability. Quart. J. Roy. Meteor. Soc., 132, 195–212.CrossRefGoogle Scholar
  54. Tsuda, T., Y. Murayama, H. Wiryosumarto, et al., 1994: Radiosonde observations of equatorial atmosphere dynamics over Indonesia: 1. Equatorial waves and diurnal tides. J. Geophys. Res., 99, 10491–10505.CrossRefGoogle Scholar
  55. Uma, G., J. Y. Liu, S. P. Chen, et al., 2012: A comparison of the equatorial spread F derived by the international reference ionosphere and the S4 index observed by FORMOSAT-3/COSMIC during the solar minimum period of 2007–2009. Earth Planets Space, 64, 467–471.CrossRefGoogle Scholar
  56. Wallace, J. M., and V. E. Kousky, 1968: Observational evidence of Kelvin waves in the tropical stratosphere. J. Atmos. Sci., 25, 900–907.CrossRefGoogle Scholar
  57. Wheeler, M., and G. N. Kiladis, 1999: Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 56, 374–399.CrossRefGoogle Scholar
  58. Wickert, J., C. Reigber, G. Beyerle, et al., 2001: Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett., 28(17), 3263–3266.CrossRefGoogle Scholar
  59. Wu, Z., N. Huang, and Y. Chen, 2009: The multidimensional ensemble empirical mode decomposition method. Advances in Adaptive Data Analysis, 1, 339–372.CrossRefGoogle Scholar
  60. Yang, G. Y., and B. Hoskins, 2013: ENSO impact on Kelvin waves and associated tropical convection. J. Atmos. Sci., doi: 10.1175/JAS-D-13-081.1.Google Scholar
  61. Zhang, K., E. Fu, D. Silcock, et al., 2011: An investigation of atmospheric temperature profiles in the Australian region using collocated GPS radio occultation and radiosonde data. Atmos. Meas. Tech., 4, 2087–2092.CrossRefGoogle Scholar
  62. Zeng, Z., S.-P. Ho, S. Sokolovskiy, et al., 2012: Structural evolution of the Madden-Julian Oscillation from COSMIC radio occultation data. J. Geophys. Res., 117, D22108.Google Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • S. K. A. V. Prasad Rao Anisetty
    • 1
  • P. S. Brahmanandam
    • 2
  • G. Uma
    • 3
  • A. Narendra Babu
    • 4
  • Ching-Yuang Huang (黄清勇)
    • 1
  • G. Anil Kumar
    • 5
  • S. Tulasi Ram
    • 6
  • Hsiao-Lan Wang (王筱岚)
    • 1
  • Yen-Hsyang Chu (朱延祥)
    • 2
  1. 1.Department of Atmospheric SciencesNational Central UniversityChung-LiTaiwan, China
  2. 2.Institute of Space ScienceNational Central UniversityChung-LiTaiwan, China
  3. 3.Department of Electronics and Communication EngineeringKoneru Lakshmmaih UniversityVaddeswaramIndia
  4. 4.Department of Electronics and Communication EngineeringLakkireddy Bali Reddy Engineering CollegeMylavaramIndia
  5. 5.Department of PhysicsK L UniversityVaddeswaramIndia
  6. 6.Indian Institute of GeomagnetismNew Panvel, Navi MumbaiIndia

Personalised recommendations