Acta Meteorologica Sinica

, Volume 27, Issue 3, pp 446–454 | Cite as

Month-long simulations of gravity waves over North America and North Atlantic in comparison with satellite observations

  • Fuqing Zhang (张福青)
  • Meng Zhang (张 盟)
  • Junhong Wei (卫俊宏)
  • Shuguang Wang (汪曙光)
Article

Abstract

Mesoscale simulations of gravity waves in the upper troposphere and lower stratosphere over North America and North Atlantic Ocean in January 2003 are compared with satellite radiance measurements from the Advanced Microwave Sounding Unit-A (AMSU-A). Four regions of strong gravity wave (GW) activities are found in the model simulations and the AMSU-A observations: the northwestern Atlantic, the U.S. Rockies, the Appalachians, and Greenland. GWs over the northwestern Atlantic Ocean are associated with the midlatitude baroclinic jet-front system, while the other three regions are apparently related to high topography. Model simulations are further used to analyze momentum fluxes in the zonal and meridional directions. It is found that strong westward momentum fluxes are prevalent over these regions over the whole period. Despite qualitative agreement between model simulations and satellite measurements, sensitivity experiments demonstrate that the simulated GWs are sensitive to the model spin-up time.

Key words

gravity wave satellite radiance measurement baroclinic jet-front 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, M., M. Geller, C. McLandress, et al., 2010: Recent developments in gravity-wave effects in climate models and the global distribution of gravitywave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136(650), 1103–1124.Google Scholar
  2. Allen, S. J., and R. A. Vincent, 1995: Gravity wave activity in the lower atmosphere: Seasonal and latitudinal variations. J. Geophys. Res., 100(D1), 1327–1350.CrossRefGoogle Scholar
  3. Bei, N. F., and F. Q. Zhang, 2007: Impacts of initial condition errors on mesoscale predictability of heavy precipitation along the Mei-Yu front of China. Quart. J. Roy. Meteor. Soc., 133(622), 83–99.CrossRefGoogle Scholar
  4. Blumen, W., and R. S. Wu, 1995: Geostrophic adjustment: Frontogenesis and energy conversion. J. Phys. Oceanogr., 25(3), 428–438.CrossRefGoogle Scholar
  5. Fritts, D. C., and Z. G. Luo, 1992: Gravity wave excitation by geostrophic adjustment of the jet stream. Part I: Two-dimensional forcing. J. Atmos. Sci., 49(8), 681–697.CrossRefGoogle Scholar
  6. —, and G. D. Nastrom, 1992: Sources of mesoscale variability of gravity waves. Part I: Topographic excitation. J. Atmos. Sci., 49(2), 101–110.CrossRefGoogle Scholar
  7. —, and M. J. Alexander, 2003: Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41(1), 1003–1063.CrossRefGoogle Scholar
  8. Grell, G. A., J. Dudhia, and D. R. Stauffer, 1994: A description of the fifth-generation Penn State/NCAR Mesoscale Model (MM5). Tech. Note TN-3981IA, National Center for Atmospheric Research, Boulder, CO, 125 pp.Google Scholar
  9. Jiang, J. H., S. D. Eckermann, D. L. Wu, et al., 2005: Seasonal variation of gravity wave sources from satellite observation. Adv. Space Res., 35(11), 1925–1932.CrossRefGoogle Scholar
  10. Kim, S.-Y., H.-Y. Chun, and J.-J. Baik, 2005: A numerical study of gravity waves induced by convection associated with Typhoon Rusa. Geophys. Res. Lett., 32(24), L24816, doi: 10.1029/2005GL024662.CrossRefGoogle Scholar
  11. Kim, Y.-J., S. D. Eckermann, and H.-Y. Chun, 2003: An overview of the past, present and future of gravitywave drag parametrization for numerical climate and weather prediction models. Atmos. Ocean, 41(1), 65–98.CrossRefGoogle Scholar
  12. Kuester, M. A., M. J. Alexander, and E. A. Ray, 2008: A model study of gravity waves over Hurricane Humberto (2001). J. Atmos. Sci., 65(10), 3231–3246.CrossRefGoogle Scholar
  13. Plougonven, R., and F. Q. Zhang, 2013: Internal gravity waves from atmospheric jets and fronts. Rev. Geophys., in review.Google Scholar
  14. Powers, J. G., and R. J. Reed, 1993: Numerical simulation of the large-amplitude mesoscale gravity-wave event of 15 December 1987 in the central United States. Mon. Wea. Rev., 121(8), 2285–2308.CrossRefGoogle Scholar
  15. Sato, K., T. Kumakura, and M. Takahashi, 1999: Gravity waves appearing in a high-resolution GCM simulation. J. Atmos. Sci., 56(8), 1005–1018.CrossRefGoogle Scholar
  16. Shutts, G. J., and S. B. Vosper, 2011: Stratospheric gravity waves revealed in NWP model forecasts. Quart. J. Roy. Meteor. Soc., 137(655), 303–317.CrossRefGoogle Scholar
  17. Tsuda, T., M. Nishida, C. Rocken, et al., 2000: A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET). J. Geophys. Res., 105(D6), 7257–7274.CrossRefGoogle Scholar
  18. Uccellini, L. W., and S. E. Koch, 1987: The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon. Wea. Rev., 115(3), 721–729.CrossRefGoogle Scholar
  19. Wang, L., and M. A. Geller, 2003: Morphology of gravitywave energy as observed from 4 years (1998–2001) of high vertical resolution U.S. radiosonde data. J. Geophys. Res., 108(D16), 4489–4496.CrossRefGoogle Scholar
  20. Wang, S. G., and F. Q. Zhang, 2007: Sensitivity of mesoscale gravity waves to the baroclinicity of jetfront systems. Mon. Wea. Rev., 135(2), 670–688.CrossRefGoogle Scholar
  21. Wu, D. L., 2004: Mesoscale gravity wave variances from AMSU-A radiances. Geophys. Res. Lett., 31(12), L12114, doi: 10.1029/2004GL019562.CrossRefGoogle Scholar
  22. —, and F. Q. Zhang, 2004: A study of mesoscale gravity waves over the North Atlantic with satellite observations and a mesoscale model. J. Geophys. Res., 109, D22104, doi: 10.1029/2004JD005090.CrossRefGoogle Scholar
  23. Zhang, F. Q., 2004: Generation of mesoscale gravity waves in upper-tropospheric jet-front systems. J. Atmos. Sci., 61(4), 440–457.CrossRefGoogle Scholar
  24. —, C. A. Davis, M. L. Kaplan, et al., 2001: Wavelet analysis and the governing dynamics of a large-amplitude mesoscale gravity-wave event along the East Coast of the United States. Quart. J. Roy. Meteor. Soc., 127(577), 2209–2245.CrossRefGoogle Scholar
  25. —, S. E. Koch, and M. L. Kaplan, 2003: Numerical simulations of a large-amplitude mesoscale gravity wave event. Meteor. Atmos. Phys., 84(3–4), 199–216.Google Scholar
  26. —, N. F. Bei, R. Rotunno, et al., 2007: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics. J. Atmos. Sci., 64(10), 3579–3594.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Fuqing Zhang (张福青)
    • 1
  • Meng Zhang (张 盟)
    • 1
    • 3
  • Junhong Wei (卫俊宏)
    • 1
  • Shuguang Wang (汪曙光)
    • 2
  1. 1.Department of MeteorologyPennsylvania State UniversityUniversity ParkUSA
  2. 2.Department of Applied Physics and Applied MathematicsColumbia UniversityNew YorkUSA
  3. 3.IBM ResearchBeijingChina

Personalised recommendations