Acta Meteorologica Sinica

, Volume 27, Issue 1, pp 26–39 | Cite as

Observational characteristics of cloud vertical profiles over the continent of East Asia from the CloudSat data

  • Jinfang Yin (尹金方)
  • Donghai Wang (王东海)
  • Guoqing Zhai (翟国庆)
  • Zhien Wang (王志恩)
Article

Abstract

The CloudSat satellite data from June 2006 to April 2011 are used to investigate the characteristics of cloud vertical profiles over East Asia (20°–50°N, 80°–120°E), with particular emphasis on the profiles of precipitative clouds in comparison with those of nonprecipitative clouds, as well as the seasonal variations of these profiles. There are some obvious differences between the precipitative and nonprecipitative cloud profiles. Generally, precipitative clouds mainly locate below 8 km with radar reflectivity in the range of −20 to 15 dBZ and maximum values appearing within 2–4-km height, and the clouds usually reach the ground; while nonprecipitative clouds locate in the layers of 4–12 km with radar reflectivity between −28 and 0 dBZ and maximum values within 8–10-km height. There are also some differences among the liquid precipitative, solid precipitative, and possible drizzle precipitative cloud profiles. In precipitative clouds, radar reflectivity increases rapidly from 11 to 7 km in vertical, implying that condensation and collision-coalescence processes play a crucial role in the formation of large-size drops. The frequency distribution of temperature at −15°C is consistent with the highest frequency of radar reflectivity in solid precipitative clouds, which suggests that the temperatures near −15°C are conductive to deposition and accretion processes. The vertical profiles of liquid precipitative clouds show almost the same distributions in spring, summer, and autumn but with differences in winter at mainly lower levels. In contrast, the vertical profiles of solid precipitative clouds change from spring to winter with an alternate double and single high-frequency core, which is consistent with variations of the frequency distribution of temperature at −15°C. The vertical profiles of nonprecipitative clouds show a little change with season. The observations also show that the precipitation events over East Asia are mostly related to deep convective clouds and nimbostratus clouds. These results are expected to be useful for evaluation of weather and climate models and for improvement of microphysical parameterizations in numerical models.

Key words

CloudSat cloud vertical profile precipitative and nonprecipitative clouds cloud radar reflectivity frequency distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Austin, R. T., A. J. Heymsfield, and G. L. Stephens, 2009: Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature. J. Geophys. Res., 114(D8), D00A23, doi:10.1029/2008jd010049.CrossRefGoogle Scholar
  2. Barker, D. M., W. Huang, Y. R. Guo, et al., 2004: A three-dimensional variational data assimilation system for MM5: Implementation and initial results. Mon. Wea. Rev., 132(4), 897–914, doi:10.1175/1520-0493 (2004)132〈0897:atvdas〉2.0.co;2.CrossRefGoogle Scholar
  3. Barker, H. W., A. V. Korolev, D. R. Hudak, et al., 2008: A comparison between CloudSat and aircraft data for a multilayer, mixed phase cloud system during the Canadian CloudSat-CALIPSO Validation Project. J. Geophys. Res., 113(D8), D00A16, doi:10.1029/2008jd009971.CrossRefGoogle Scholar
  4. Bodas-Salcedo, A., M. J. Webb, M. E. Brooks, et al., 2008: Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities. J. Geophys. Res., 113(D8), D00A13, doi:10.1029/2007jd009620.CrossRefGoogle Scholar
  5. Botton, L. J., 1960: Radar Meteorology. University of Chicago Press, Chicago, 79–84.Google Scholar
  6. Carey, L. D., J. Niu, P. Yang, et al., 2008: The vertical profile of liquid and ice water content in midlatitude mixed-phase altocumulus clouds. J. Appl. Meteor. Climatol., 47(9), 2487–2495, doi: 10.1175/2008JAMC1885.1.CrossRefGoogle Scholar
  7. Chen Wenxuan, Wang Jun, and Liu Wen, 1999: Analysis of the microphysical precipitation mechanism for a cold vortex process. J. Appl. Meteor. Sci., 10(2), 190–198. (in Chinese)Google Scholar
  8. Donaldson, R. J., 1961: Radar reflectivity profiles in thunderstorms. J. Meteor., 18(3), 292–305, doi: 10.1175/1520-0469(1961)018〈0292:rrpit〉2.0.co;2.CrossRefGoogle Scholar
  9. Engholm, C. D. K., and S. W. Troxel, 1990: Beam Filling Loss Adjustments for ASR-9 Weather Channel Reflectivity Estimates. MIT Lincoln Laboratory, Lexington, MA, Project Report, 4–33.Google Scholar
  10. Fu Yunfei, Lin Yihua, Liu Guosheng, et al., 2003: Seasonal characteristics of precipitation in 1998 over East Asia as derived from TRMM PR. Adv. Atmos. Sci., 20(4), 511–529.CrossRefGoogle Scholar
  11. Greenwald, T. J., Y.-K. Lee, J. A. Otkin, et al., 2010: Evaluation of midlatitude clouds in a large-scale high-resolution simulation using CloudSat observations. J. Geophys. Res., 115(D19), D19203, doi: 10.1029/2009jd013552.CrossRefGoogle Scholar
  12. Gultepe, I., and G. A. Isaac, 1997: Liquid water content and temperature relationship from aircraft observations and its applicability to GCMs. J. Climate, 10(3), 446–452, doi: 10.1175/1520-0442(1997)010〈0446:LWCATR〉2.0.CO;2.CrossRefGoogle Scholar
  13. Hobbs, P. V., S. Chang, and J. D. Locatelli, 1974: The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79(15), 2199–2206, doi: 10.1029/JC079i015p02199.CrossRefGoogle Scholar
  14. Jakob, C., and S. A. Klein, 1999: The role of vertically varying cloud fraction in the parameterization of microphysical processes in the ECMWF model. Quart. J. Roy. Meteor. Soc., 125, 941–965.CrossRefGoogle Scholar
  15. Korolev, A. V., G. A. Isaac, J. W. Strapp, et al., 2007: In-situ measurements of liquid water content profiles in midlatitude stratiform clouds. Quart. J. Roy. Meteor. Soc., 133(628), 1693–1699, doi: 10.1002/qj.147.CrossRefGoogle Scholar
  16. Li Shuri, 2006: Case study of cloud and precipitation microphysics structure over Northwest China. Meteor. Mon., 32(8), 59–63. (in Chinese)Google Scholar
  17. Lin, Y.-L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Appl. Meteor., 22(6), 1065–1092.CrossRefGoogle Scholar
  18. —, and B. A. Colle, 2011: A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics. Mon. Wea. Rev., 139(3), 1013–1035, doi: 10.1175/2010 MWR3293.1.CrossRefGoogle Scholar
  19. Liu, G. S., and Y. F. Fu, 2001: The characteristics of tropical precipitation profiles as inferred from satellite radar measurements. J. Meteor. Soc. Japan (Ser. II), 79(1), 131–143.CrossRefGoogle Scholar
  20. Liu, Y., T. T. Warner, J. F. Bowers, et al., 2008: The operational mesogamma-scale analysis and forecast system of the U.S. army test and evaluation command. Part I: Overview of the modeling system, the forecast products, and how the products are used. J. Appl. Meteor. Climatol., 47(4), 1077–1092.CrossRefGoogle Scholar
  21. Luo, Y., R. Zhang, and H. Wang, 2009: Comparing occurrences and vertical structures of hydrometeors between eastern China and the Indian monsoon region using CloudSat/CALIPSO data. J. Climate, 22(4), 1052–1064.CrossRefGoogle Scholar
  22. Miles, N. L., J. Verlinde, and E. E. Clothiaux, 2000: Cloud droplet size distributions in low-level stratiform clouds. J. Atmos. Sci., 57(2), 295–311.CrossRefGoogle Scholar
  23. Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one- and two-moment schemes. Mon. Wea. Rev., 137(3), 991–1007.CrossRefGoogle Scholar
  24. Paquita, Z., and M. Brian, 2008: Cloud vertical structure observed from space and ship over the Bay of Bengal and the eastern tropical Pacific. J. Meteor. Soc. Japan (Ser. II), 86A, 205–218.CrossRefGoogle Scholar
  25. Poore, K. D., J. Wang, and W. B. Rossow, 1995: Cloud layer thicknesses from a combination of surface and upper-air observations. J. Climate, 8, 550–568.CrossRefGoogle Scholar
  26. Protat, A., D. Bouniol, J. Delanoë, et al., 2009: Assessment of Cloudsat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26(9), 1717–1741, doi: 10.1175/2009jtecha1246.1.CrossRefGoogle Scholar
  27. Randall, D. A., Harshvardhan, D. A. Dazlich, et al., 1989: Interactions among radiation, convection, and largescale dynamics in a general circulation model. J. Atmos. Sci., 46(13), 1943–1970, doi:10.1175/1520-0469 (1989)046〈1943:IARCAL〉2.0.CO;2.CrossRefGoogle Scholar
  28. Rogers, D. C., 1974: The Aggregation of Natural Ice Crystals. Department of Atmospheric Resources Engineering, Research Rep. AR 110, University of Wyoming, Laramie, WY, 35 pp.Google Scholar
  29. Rosenfeld, D., 2000: Suppression of rain and snow by urban and industrial air pollution. Science, 287, 1793–1796.CrossRefGoogle Scholar
  30. —, and W. Woodley, 2000: Deep convective clouds with sustained supercooled liquid water down to −37.5°C. Nature, 405, 440–442.CrossRefGoogle Scholar
  31. Slingo, J. M., and A. Slingo, 1991: The response of a general circulation model to cloud longwave radiative forcing. Part II: Further studies. Quart. J. Roy. Meteor. Soc., 117(498), 333–364, doi: 10.1002/qj.49711749805.CrossRefGoogle Scholar
  32. Smedsmo, J. L., E. Foufoula-Georgiou, V. Vuruputur, et al., 2005: On the vertical structure of modeled and observed deep convective storms: Insights for precipitation retrieval and microphysical parameterization. J. Appl. Meteor., 44(12), 1866–1884, doi: 10.1175/jam2306.1.CrossRefGoogle Scholar
  33. Squires, P., 1958: The microstructure and colloidal stability of warm clouds. Part I: The relation between structure and stability. Tellus, 10(2), 256–261, doi: 10.1111/j.2153-3490.1958.tb02011.x.CrossRefGoogle Scholar
  34. Stephens, G. L., D. G. Vane, S. Tanelli, et al., 2008: CloudSat mission: Performance and early science after the first year of operation. J. Geophys. Res., 113(D8), D00A18, doi: 10.1029/2008jd009982.CrossRefGoogle Scholar
  35. Vanderlei Martins, J., A. Marshak, L. A. Remer, et al., 2007: Remote sensing the vertical profile of cloud droplet effective radius, thermodynamic phase, and temperature. Atmos. Chem. Phys. Discuss., 7(2), 4481–4519, doi:10.5194/acpd-7-4481-2007.CrossRefGoogle Scholar
  36. Waliser, D. E., J.-L. F. Li, C. P. Woods, et al., 2009: Cloud ice: A climate model challenge with signs and expectations of progress. J. Geophys. Res., 114(D8), D00A21, doi: 10.1029/2008jd010015.CrossRefGoogle Scholar
  37. Wang Biao, 2011: Review of vertical profile observations of atmosphere in climate change studies. J. Atmos. Environ. Optics, 6(1), 2–10. (in Chinese)Google Scholar
  38. Wang, J., and W. B. Rossow, 1998: Effects of cloud vertical structure on atmospheric circulation in the GISS GCM. J. Climate, 11(11), 3010–3029, doi: 10.1175/1520-0442(1998)011〈3010:EOCVSO〉2.0.CO;2.CrossRefGoogle Scholar
  39. Wang Shuaihui, Han Zhigang, Yao Zhigang, et al., 2011: Analysis on cloud vertical structure over China and its neighborhood based on CloudSat data. Plateau Meteor., 30(1), 38–52. (in Chinese)Google Scholar
  40. Wang Yangfeng, Lei Hengchi, Wu Yuxia, et al., 2005: Size distributions of the water drops in the warm layer of stratiform clouds in Yan’an. J. Nanjing Inst. Meteor., 28(8), 787–793. (in Chinese)Google Scholar
  41. Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40(10), 1665–1682.CrossRefGoogle Scholar
  42. Willis, P. T., and A. J. Heymsfield, 1989: Structure of the melting layer in mesoscale convective system stratiform precipitation. J. Atmos. Sci., 46(13), 2008–2025, doi: 10.1175/1520-0469(1989)046〈2008:sotmli〉2.0.co;2.CrossRefGoogle Scholar
  43. Wu Dui, 1987: The characteristics of cloud droplets size in precipitable stratiform clouds during June–July over Ningxia region. Meteor. Mon., 13 (9), 48–50. (in Chinese)Google Scholar
  44. Xu, W., E. J. Zipser, and C. Liu, 2009: Rainfall characteristics and convective properties of Mei-yu precipitation systems over South China, Taiwan region, and the South China Sea. Part I: TRMM observations. Mon. Wea. Rev., 137(12), 4261–4275, doi: 10.1175/2009mwr2982.1.CrossRefGoogle Scholar
  45. Xue, M., D. Wang, J. Gao, et al., 2003: The Advanced Regional Prediction System (ARPS), storm-scale numerical weather prediction and data assimilation. Meteor. Atmos. Phys., 82, 139–170.CrossRefGoogle Scholar
  46. Yin, J., D. Wang, and G. Zhai, 2011: Long-term in-situ measurements of the cloud-precipitation microphysical properties over East Asia. Atmos. Res., 102(1–2), 206–217.CrossRefGoogle Scholar
  47. Yuan, J., R. A. Houze, and A. J. Heymsfield, 2011: Vertical structures of anvil clouds of tropical mesoscale convective systems observed by CloudSat. J. Atmos. Sci., 68(8), 1653–1674, doi: 10.1175/2011jas3687.1.CrossRefGoogle Scholar
  48. Yuter, S. E., and R. A. Houze, 1995: Threedimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea Rev., 123(7), 1941–1963, doi:p10.1175/1520-0493 (1995)123〈1941:tdkame〉2.0.co;2.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jinfang Yin (尹金方)
    • 1
    • 2
  • Donghai Wang (王东海)
    • 2
  • Guoqing Zhai (翟国庆)
    • 1
  • Zhien Wang (王志恩)
    • 3
  1. 1.Department of Earth ScienceZhejiang UniversityHangzhouChina
  2. 2.State Key Laboratory of Severe WeatherChinese Academy of Meteorological SciencesBeijingChina
  3. 3.Department of Atmospheric ScienceUniversity of WyomingLaramieUSA

Personalised recommendations