Advertisement

Acta Meteorologica Sinica

, Volume 25, Issue 5, pp 581–592 | Cite as

Impacts of cumulus convective parameterization schemes on summer monsoon precipitation simulation over China

  • Entao Yu (于恩涛)
  • Huijun Wang (王会军)Email author
  • Yongqi Gao (郜永祺)
  • Jianqi Sun (孙建奇)
Article

Abstract

By using the Betts-Miller-Janjić, Grell-Devenyi, and Kain-Fritsch cumulus convective parameterization schemes in theWeather Research and Forecasting (WRF) model, long time simulations from 2000 to 2009 are conducted to investigate the impacts of different cumulus convective parameterization schemes on summer monsoon precipitation simulation over China. The results show that all the schemes have the capability to reasonably reproduce the spatial and temporal distributions of summer monsoon precipitation and the corresponding background circulation. The observed north-south shift of monsoon rain belt is also well simulated by the three schemes. Detailed comparison indicates that the Grell-Devenyi scheme gives a better performance than the others. Deficiency in simulated water vapor transport is one possible reason for the precipitation simulation bias.

Key words

WRF model cumulus schemes summer monsoon precipitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betts, A. K., 1986: A new convective adjustment scheme. Part I: Observational and theoretical basis. Quart. J. Roy. Meteor. Soc., 112, 677–691.Google Scholar
  2. —, and M. J. Miller, 1986: A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Quart. J. Roy. Meteor. Soc., 112, 693–709.Google Scholar
  3. Cheng Anning, Chen Wen, and Huang Ronghui, 1998: Influence of convective parameterization schemes on climate mumerical simulation. Chinese J. Atmos. Sci., 22(006), 814–824. (in Chinese)Google Scholar
  4. Fu Congbin, Wei Helin, Chen Ming, et al., 1998: Simulation of the evolution of summer monsoon rain belts over eastern China using a regional climate model. Scientia Meteorologica Sinica, 22(4), 522–534. (in Chinese)Google Scholar
  5. Gao Xuejie, Zhao Zengci, Ding Yihui, et al., 2001: Climate change due to greenhouse effects in China as simulated by a regional climate model. Adv. Atmos. Sci., 18(6), 1224–1230.CrossRefGoogle Scholar
  6. Grell, G., and D. Devenyi, 2002: A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett., 29(14), 38–31.CrossRefGoogle Scholar
  7. Gu Ming and Huang Anning, 2008: Effects of cumulus convective parameterization on the precipitation simulation over eastern China with the p-σ RCM9 regional climate model. Scientia Meteorologica Sinica, 28(005), 488–493. (in Chinese)Google Scholar
  8. Janjić, Z. I., 1994: The step-mountain Eta-coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122(5), 927–945.CrossRefGoogle Scholar
  9. Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteorol., 43(1), 170–181.CrossRefGoogle Scholar
  10. —, and J. M. Fritsch, 1993: Convective parameterization for mesoscale models: The Kain-Fritsch scheme, the representation of cumulus convection in numerical models. Meteor. Monogr., 46, 165–170.Google Scholar
  11. Liang, X. Z., M. Xu, K. E. Kunkel, et al., 2007: Regional climate model simulation of U.S.-Mexico summer precipitation using the optimal ensemble of two cumulus parameterizations. J. Climate, 20(20), 5201–5207.CrossRefGoogle Scholar
  12. Liu Yiming and Ding Yihui, 2001a: Modified mass flux cumulus parameterization scheme and its simulation experiment. Part I: Mass flux scheme and its simulation of the 1991 flooding in China. Acta Meteor. Sinica, 59, 10–22. (in Chinese)Google Scholar
  13. — and —, 2001b: Modified mass flux cumulus parameterization scheme and its simulation experiment. Part II: Cumulus convection of the schemes and the sensitivity experiments of MFS. Acta Meteor. Sinica, 59, 129–142. (in Chinese)Google Scholar
  14. Mukhopadhyay, P., S. Taraphdar, B. N. Goswamet, et al., 2010: Indian summer monsoon precipitation climatology in a high-resolution regional climate model: Impacts of convective parameterization on systematic biases. Wea. Forecasting, 25(2), 369–387.CrossRefGoogle Scholar
  15. Pan Jinsong, Zhai Guoqing, and Gao Kun, 2002: Comparisons of three convection parameterization schemes in regional climate simulations. Chinese J. Atmos. Sci., 26(2), 206–220. (in Chinese)Google Scholar
  16. Wang, W., and N. L. Seaman, 1997: A comparison study of convective parameterization schemes in a mesoscale model. Mon. Wea. Rev., 125(2), 252–278.CrossRefGoogle Scholar
  17. Xu Ying, Gao Xuejie, Shen Yan, et al., 2009: A daily temperature dataset over China and its application in validating a RCM simulation. Adv. Atmos. Sci., 26(4), 763–772.CrossRefGoogle Scholar

Copyright information

© The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Entao Yu (于恩涛)
    • 1
    • 2
    • 3
  • Huijun Wang (王会军)
    • 1
    • 2
    Email author
  • Yongqi Gao (郜永祺)
    • 1
    • 4
  • Jianqi Sun (孙建奇)
    • 1
  1. 1.Nansen-Zhu International Research Center, Institute of Atmospheric PhysicsChinese Academy of SciencesBeijingChina
  2. 2.Climate Change Research CenterChinese Academy of SciencesBeijingChina
  3. 3.Graduate School of the Chinese Academy of SciencesBeijingChina
  4. 4.Nansen Environmental and Remote Sensing CenterBergenNorway

Personalised recommendations