Advertisement

Journal of Civil Structural Health Monitoring

, Volume 9, Issue 5, pp 617–637 | Cite as

Ambient and free-vibration tests to improve the quantification and estimation of modal parameters in existing bridges

  • Filippo Lorenzoni
  • Nicola De ContoEmail author
  • Francesca da Porto
  • Claudio Modena
Original Paper
  • 36 Downloads

Abstract

The correct estimation of modal parameters has an important role in ensuring the structural reliability of existing bridges. Operational modal analysis provides rather accurate extraction of natural frequency and mode shapes, but the corresponding damping estimates are subjected to higher uncertainties. This paper reports the results of ambient and free-vibration tests performed on five different typologies of road and railway bridges: steel trusses, steel box, multi-girder reinforced concrete, masonry and reinforced concrete arch bridges. In one case, data acquired by a continuous structural health monitoring system over a period of 1 year are available. In another case, the passage of trains is exploited to perform free decays. The processing of ambient vibrations is performed through several frequency and time-domain identification techniques, whereas the measured free decays are analyzed by the logarithmic decrement method applied to the autocorrelation functions of the signals. Outcomes are compared, evaluating the quality of modal damping estimates and the accuracy of results. The influence on modal parameters extraction of structural typologies, length of acquired time histories and ambient noise, loading and environmental effects are studied. At the end, it is demonstrated that the estimation of modal damping is more reliable for flexible structures when SHM and free-vibration data are available.

Keywords

Damping Ambient vibration tests Free vibration tests System identification 

Notes

References

  1. 1.
    Omenzetter P, Beskhyroun S, Shabbir F, Chen G, Chen X, Wang S, Zha A (2013) Forced and ambient vibration testing of full scale bridges. A report submitted to Earthquake Commission Research FoundationGoogle Scholar
  2. 2.
    Anderson P, Brincker R, Peeters B, Roeck G, Hermans L, Krämer C (1999) Comparison of system identification methods using ambient bridge test. In: Data proceedings of the 17th international modal analysis conference (IMAC), Kissimmee, Florida, USAGoogle Scholar
  3. 3.
    Ko JM, Ni YQ (2005) Technology developments in structural health monitoring of large-scale bridges. Eng Struct 27:1715–1725CrossRefGoogle Scholar
  4. 4.
    Aktan AE, Catbas FN, Grimmelsman KA, Pervizpour M (2003) Development of a model health monitoring guide for major bridges. Drexel Intelligent Infrastructure and Transportation Safety Institute, TokyoGoogle Scholar
  5. 5.
    Magalhaes F, Caetano E, Cunha A (2007) Challenges in the application of stochastic modal identification methods to a cable-stayed bridge. J Bridge Eng 12:746–754CrossRefGoogle Scholar
  6. 6.
    Brownjohn JMW, Magalhaes F, Caetano E, Cunha A (2010) Ambient vibration re-testing and operational modal analysis of the Humber Bridge. Eng Struct 32(8):2003–2018.  https://doi.org/10.1016/j.engstruct.2010.02.034 CrossRefGoogle Scholar
  7. 7.
    Chen G, Beskhyroun S, Omenzetter P (2015) A comparison of operational modal parameter identification methods for a multi-span concrete motorway bridge. In: NZSEE ConferenceGoogle Scholar
  8. 8.
    Cunha A, Caetano E, Magalhães F, Moutinho C (2013) Recent perspectives in dynamic testing and monitoring of bridges. Struct Control Health Monit 20:853–877CrossRefGoogle Scholar
  9. 9.
    Magalhães F, Cunha A (2011) Explaining operational modal analysis with data from an arch bridge. Mech Syst Signal Process 25(5):1431–1450CrossRefGoogle Scholar
  10. 10.
    Moaveni B, Barbos AR, Conte JP, Hemez FM (2007) Uncertainty analysis of system identification results obtained for a seven story building slice tested on the UCSD-NEES shake table. In: International conference on modal analysis, Orlando, USAGoogle Scholar
  11. 11.
    Magalhaes F, Cunha A, Caetano E, Brinker R (2010) Damping estimation using free decays and ambient vibration tests. Mech Syst Signal Process 24(5):1274–1290.  https://doi.org/10.1016/j.ymssp.2009.02.011 CrossRefGoogle Scholar
  12. 12.
    Brinker R, Ventura C, Andersen P (2001) Damping estimation by frequency domain decomposition. In: International modal analysis conference, Kissimmee, FL, USAGoogle Scholar
  13. 13.
    Tamura Y, Yoshida A, Zhang L, Ito T, Nakata S, Sato K (2005) Example of modal identification of structures in japan by FDD and MRD techniques. In: Proceedings of the 1st international operational modal analysis conference, Copenhagen, DenmarkGoogle Scholar
  14. 14.
    Bajric A, Brincker R, Thön S (2015) Evaluation of damping estimates in the presence of closely spaced modes using operational modal analysis techniques. In: Proceedings of the 6th international operational modal analysis conference, Gijòn, SpainGoogle Scholar
  15. 15.
    Peeters B, De Roeck G (1999) Reference-based stochastic subspace identification for output-only modal analysis. Mech Syst Signal Process 13(6):855–878CrossRefGoogle Scholar
  16. 16.
    Au S-K (2011) Fast Bayesian FFT method for ambient modal identification with separated modes. In: Proceedings of the 8th international conference on structural dynamics, EURODYN, Leuven, BelgiumMathSciNetCrossRefGoogle Scholar
  17. 17.
    Zhang F-L, Ni Y-C, Au S-K, Lam H-F (2016) Fast Bayesian approach for modal identification using free vibration data, part II—posterior uncertainty and application. Mech Syst Signal Process 70–71:221–244.  https://doi.org/10.1016/j.ymssp.2015.06.009 CrossRefGoogle Scholar
  18. 18.
    Au S-K (2012) Fast Bayesian ambient modal identification in the frequency domain, part I: posterior most probable value. Mech Syst Signal Process 26:60–75.  https://doi.org/10.1016/j.ymssp.2011.06.017 CrossRefGoogle Scholar
  19. 19.
    Au S-K (2012) Fast Bayesian ambient modal identification in the frequency domain, part II: posterior uncertainty. Mech Syst Signal Process 26:76–90.  https://doi.org/10.1016/j.ymssp.2011.06.019 CrossRefGoogle Scholar
  20. 20.
    Caldon M, Islami K, Lorenzoni F, Modena C (2014) Integrated system for continuous dynamic monitoring: “Ponte Nuovo Del Popolo” Bridge. In: 2014, La Cité, Nantes, France, 7th European Workshop on Structural Health MonitoringGoogle Scholar
  21. 21.
    Ülker-Kaustell M, Karoumi R (2011) Application of the continuous wavelet transform on the free vibrations of a steel–concrete composite railway bridge. Eng Struct 33:911–919CrossRefGoogle Scholar
  22. 22.
    Huang C, Yang Y, Lu L, Chen H (2011) Dynamic testing and system identification of a multi-span highway bridge. Earthq Eng Struct Dyn 28:857–878CrossRefGoogle Scholar
  23. 23.
    Ewins D (1984) Modal testing: theory and practice, Letchworth, Hertfordshire. Research Studies Press Ltd., LondonGoogle Scholar
  24. 24.
    Brincker R, Zhang L, Andersen P (2001) Modal identification of output-only systems using frequency domain decomposition. Smart Mater Struct 10:441–445CrossRefGoogle Scholar
  25. 25.
    Allemang R, Brown DL (1982) A correlation coefficient for modal vector analysis. In: 1st international modal analysis conference, Bethel, ConnecticutGoogle Scholar
  26. 26.
    Overschee P, De Moor B (1996) Subspace identification for linear systems. Theory, implementation, applications. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  27. 27.
    Delgado R, Cunha A, Caetano E, Caetano R (1998) Dynamic test of Vasco da Gama Bridge. Rep. under contract with NOVAPONTE, Facu of Engrg, University of PortoGoogle Scholar
  28. 28.
    Ventura C, Felber A, Stiemer S (1996) Determination of the dynamic characteristics of the Colquitz River Bridge by full-scale testing. Can J Civ Eng 23(2):536–548CrossRefGoogle Scholar
  29. 29.
    Johnson RA, Wichern DW (1992) Applied multivariate statistical analysis. Prentice Hall, Upper Saddle RiverzbMATHGoogle Scholar
  30. 30.
    Tecchio G, Lorenzoni F, Caldon M, Donà M, da Porto F, Claudio M (2017) Monitoring of orthotropic steel decks for experimental evaluation of residual fatigue life. J Civil Struct Health Monit 7:517.  https://doi.org/10.1007/s13349-017-0240-9 CrossRefGoogle Scholar
  31. 31.
    Islami K, Tecchio G, Da Porto F, Modena C (2011) Dynamic validation of a masonry arch bridge seismic retrofit. In: Experimental vibration analysis for civil engineering strutures (EVACES), Varenna, ItalyGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of GeoscienceUniversity of PadovaPaduaItaly

Personalised recommendations