Journal of Civil Structural Health Monitoring

, Volume 6, Issue 1, pp 17–41 | Cite as

Recent advances in wireless smart sensors for multi-scale monitoring and control of civil infrastructure

  • Billie F. SpencerJr.
  • Hongki Jo
  • Kirill A. Mechitov
  • Jian Li
  • Sung-Han Sim
  • Robin E. Kim
  • Soojin Cho
  • Lauren E. Linderman
  • Parya Moinzadeh
  • Ryan K. Giles
  • Gul Agha
Original Paper


While much of the technology associated with wireless smart sensors (WSS) has been available for over a decade, only a limited number of full-scale implementations have been realized for civil infrastructure, primarily due to the lack of critical hardware and software elements. Using the Imote2, a flexible WSS framework has been developed for full-scale, autonomous structural health monitoring (SHM) that integrates the necessary software and hardware elements, while addressing key implementation requirements for civil infrastructure. This paper discusses the recent advances in the development of this WSS framework and extensions to structural control. Their successful implementations at full-scale for SHM of the 2nd Jindo Bridge in South Korea and the Government Bridge at the Rock Island Arsenal in Illinois, USA, as well as for wireless control of a lab-scale structure are presented.


Structural health monitoring Wireless smart sensors Full-scale bridge implementations Service-oriented architecture 



This study was supported by the National Science Foundation (CMS 06-00433, CMMI 07-24172, CMS 09-28886, and CPS 10-35773), the Korea Research Foundation (NRF-2008-220-D00117), Smart Infrastructure Technology Center (SISTeC) at KAIST, and the US Army Corps of Engineers (MEC W9132T-ILL-006). This support is gratefully acknowledged.


  1. 1.
    Brincker R, Zhang L, Anderson P (2001) Modal identification of output-only systems using frequency domain decomposition. Smart Mater Struct 10(3):441–445CrossRefGoogle Scholar
  2. 2.
    Candy JC, Temes GC (1992) Oversampling methods for A/D and D/A conversion. Oversampling delta-sigma data converters, pp 1–25Google Scholar
  3. 3.
    Çelebi M (2006) Real-time seismic monitoring of the New Cape Girardeau bridge and preliminary analyses of recorded data: an overview. Earthq Spectra 22:609–630CrossRefGoogle Scholar
  4. 4.
    Cho S, Lynch JP, Lee J-J, Yun C-B (2010) Development of an automated wireless tension force estimation system for cable-stayed bridge. J Intell Mater Syst Struct 21(3):361–376CrossRefGoogle Scholar
  5. 5.
    Cho S, Jang S, Jo H, Park J, Jung H-J, Yun C-B, Spencer BF Jr, Seo J (2010) Structural health monitoring of a cable-stayed bridge using wireless smart sensor technology: data analyses. Smart Struct Syst 6(5–6):461–480CrossRefGoogle Scholar
  6. 6.
    Cho S, Giles RK, Spencer BF Jr (2014) System identification of a historic swing truss bridge using a wireless sensor network employing orientation correction. Struct Control Health Monit 22(2):255–272CrossRefGoogle Scholar
  7. 7.
    Cole HA (1968) On-the-analysis of random vibrations. Paper No. 68–288. American Institute of Aeronautics and AstronauticsGoogle Scholar
  8. 8.
    De Couto DS, Aguayo D, Bicket J, Morris R (2005) A high-throughput path metric for multi-hop wireless routing. Wirel Netw 11(4):419–434CrossRefGoogle Scholar
  9. 9.
    Frailey FW (2011) The Iowa Interstate Story. Trains Magazine, June, pp 30-37Google Scholar
  10. 10.
    Giles RK, Kim R, Spencer BF Jr, Bergman LA, Shield CK, Sweeney SC (2011) Structural Health Indices for Steel Truss Bridges. In: Proceedings of the International Modal Analysis Conference (IMAC XXIX), Jacksonville, FLGoogle Scholar
  11. 11.
    Giles RK (2014) Development of a Long-term, Multimetric Structural Health Monitoring System for a Historic Steel Truss Swing Bridge. Ph.D. Dissertation, University of Illinois at Urbana-ChampaignGoogle Scholar
  12. 12.
    Gnawali O, Fonseca R, Jamieson K, Moss D, Levis P (2009) Collection tree protocol. In: Sensys 2009: the 7th ACM conference on embedded networked sensor systems, pp 1-14Google Scholar
  13. 13.
    Gobriel S, Mosse D, Cleric R (2009) TDMA-ASAP: Sensor Network TDMA Scheduling with Adaptive Slot-Stealing and Parallelism. In: Proceedings of the 29th International Conference on Distributed Computing Systems (ICDCS’09). IEEE, Montreal, QC, pp 458–465Google Scholar
  14. 14.
    IEEE Std 802-1990 (1990) IEEE Standards for Local and Metropolitan Networks: Overview and Architecture, New YorkGoogle Scholar
  15. 15.
    James GH, Carne TG, Lauffer JP (1993) The natural excitation technique (NExT) for modal parameter extraction from operating wind turbines. Sandia Report, SAND92-1666, Sandia National Laboratories, Albuquerque, NMGoogle Scholar
  16. 16.
    Jang S, Jo H, Cho S, Mechitov KA, Rice JA, Sim SH, Jung H-J, Yun C-B, Spencer BF Jr, Agha G (2010a) Structural health monitoring of a cable-stayed bridge using smart sensor technology: deployment and evaluation. Smart Struct Syst 6(5–6):439–459CrossRefGoogle Scholar
  17. 17.
    Jang S, Sim S-H, Jo H, Spencer BF Jr (2010b) Decentralized bridge health monitoring using wireless smart sensors. In: Proceedings of the SPIE Smart Structures/NDE Conference, vol 7647, p 76473IGoogle Scholar
  18. 18.
    Jo H, Sim S-H, Mechitov KA, Kim R, Li J, Moinzadeh P, Spencer BF Jr, Park JW, Cho S, Jung H-J, Yun C-B, Rice JA, Nagayama T (2011) Hybrid Wireless Smart Sensor Network for Full-scale Structural Health Monitoring of a Cable-stayed Bridge. In: Proceedings of the SPIE Smart Structures/NDE ConferenceGoogle Scholar
  19. 19.
    Jo H, Sim SH, Nagayama T, Spencer BF Jr (2012) Development and application of high-sensitivity wireless smart sensors for decentralized stochastic modal identification. J Eng Mech ASCE 138(6):683–694CrossRefGoogle Scholar
  20. 20.
    Jo H, Park JW, Spencer BF Jr, Jung HJ (2013) Development of high-sensitivity wireless strain sensor for structural health monitoring. Smart Struct Syst 11(5):477–496CrossRefGoogle Scholar
  21. 21.
    Kiryushin A, Sadkov A, Mainwaring A (2008) Real-World Performance of Clear Channel Assessment in 802.15.4 Wireless Sensor Networks. In: Proceedings of the Second International Conference on Sensor Technologies and Applications, pp 625–630Google Scholar
  22. 22.
    Levis P, Madden S, Polastre J, Szewczyk R, Woo A, Gay D, Hill J, Welsh M, Brewer E, Culler D (2005) TinyOS: an operating system for sensor networks. Ambient intelligence. Springer, Berlin, pp 115–147Google Scholar
  23. 23.
    Li J, Mechitov KA, Spencer BF Jr (2014a) Long-term and Short-term Autonomous Structural Health Monitoring Strategies using Wireless Smart Sensor Networks. In: Proceedings of the Sixth World Conference on Structural Control and Monitoring (6WCSCM), Barcelona, SpainGoogle Scholar
  24. 24.
    Li J, Mechitov KA, Kim R, Spencer BF Jr (2014b) Improved Synchronized Sensing for Structural Health Monitoring using Wireless Smart Sensor Networks. In: Proceedings of the Sixth World Conference on Structural Control and Monitoring (6WCSCM), Barcelona, SpainGoogle Scholar
  25. 25.
    Linderman LE, Mechitov KA, Spencer BF Jr (2011) Real-time wireless data acquisition for structural health monitoring and control. NSEL Report No. 029, University of Illinois at Urbana-Champaign. Available at
  26. 26.
    Linderman LE (2013) Smart Wireless Control of Civil Structures. PhD. Dissertation. University of Illinois at Urbana-ChampaignGoogle Scholar
  27. 27.
    Linderman LE, Jo H, Spencer BF Jr (2015) Low-latency data acquisition for wireless control applications. IEEE Sens J 15(3):1800–1809Google Scholar
  28. 28.
    Lynch JP, Loh KJ (2006) A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib Dig 38(2):28–91CrossRefGoogle Scholar
  29. 29.
    Miller TI, Spencer BF Jr, Li J, Jo H (2010) Solar energy harvesting and software enhancements for autonomous wireless smart sensor networks. NSEL Report No. 022, University of Illinois at Urbana-Champaign. Available at
  30. 30.
    Moore M, Phares B, Graybeal B, Rolander D, Washer G (2001) Reliability of Visual Inspection for Highway Bridges, Technical Report #FHWA-RD-01-020, Federal Highway Administration, Washington DCGoogle Scholar
  31. 31.
    Nagayama T, Sim S-H, Miyamori Y, Spencer BF Jr (2007) Issues in structural health monitoring employing smart sensors. Smart Struct Syst 3(3):299–320CrossRefGoogle Scholar
  32. 32.
    Nagayama T, Spencer BF Jr, Mechitov KA, Agha GA (2009) Middleware services for structural health monitoring using smart sensors. Smart Struct Syst 5(2):119–137CrossRefGoogle Scholar
  33. 33.
    Nagayama T, Moinzadeh P, Mechitov KA, Ushita M, Makihata N, Leiri M, Agha G, Spencer BF Jr, Fujino Y, Seo J (2010) Reliable Multi-hop Communication for Structural Health Monitoring. Smart Struct Syst 6(5–6):481–504CrossRefGoogle Scholar
  34. 34.
    Okada H, Ha Y-C (1992) Comparison of wind tunnel and full-scale pressure measurement tests on the Texas Tech Building. J Wind Eng Ind Aerodyn 43(1–3):1601–1612CrossRefGoogle Scholar
  35. 35.
    Park JW, Jung HJ, Jo H, Spencer BF Jr (2012) Feasibility study of micro wind turbines for powering wireless sensors in a cable-stayed bridge. Energies 5:3450–3464CrossRefGoogle Scholar
  36. 36.
    Pakzad SN, Fenves GL, Kim S, Culler DE (2008) Design and implementation of scalable wireless sensor network for structural monitoring. J Infrastruct Syst 14(1):89–101CrossRefGoogle Scholar
  37. 37.
    Perkins C, Belding-Royer E, Das S (2003) Ad hoc On-Demand Distance Vector (AODV) Routing. IETF. RFC 3561Google Scholar
  38. 38.
    Rice JA, Spencer BF Jr (2009) Flexible Smart Sensor Framework for Autonomous Full-scale Structural Health Monitoring. NSEL Report Series, No. 18, University of Illinois at Urbana-Champaign. Available at
  39. 39.
    Rice JA, Mechitov KA, Spencer BF Jr, Agha GA (2010) Autonomous smart sensor network for full-scale structural health monitoring. In: Proceedings of SPIE Smart Structures/NDE 2010, San Diego, CAGoogle Scholar
  40. 40.
    Shimada T (1994) Estimating method of cable tension from natural frequency of high mode. Proc JSCE 501(1–29):163–171 (in Japanese)Google Scholar
  41. 41.
    Sim S-H, Spencer BF Jr (2009) Decentralized Strategies for Monitoring Structures using Wireless Smart Sensor Networks. NSEL Report Series, 019, University of Illinois at Urbana-Champaign. Available at
  42. 42.
    Sim S-H, Spencer BF Jr, Zhang M, Xie H (2010) Automated decentralized modal analysis using smart sensors. J Struct Control Health Monit 17(8):423–438. doi: 10.1002/stc.348 CrossRefGoogle Scholar
  43. 43.
    Sim S-H, Carbonell-Marquez JF, Spencer BF Jr, Jo H (2010) Decentralized random decrement technique for efficient data aggregation and system identification in wireless smart sensor networks. Probab Eng Mech 26(1):81–91CrossRefzbMATHGoogle Scholar
  44. 44.
    Sim S-H, Li J, Jo H, Park JW, Cho S, Spencer BF Jr, Jung HJ (2014) A wireless smart sensor network for automated monitoring of cable tension. Smart Mater Struct 23(2):025006CrossRefGoogle Scholar
  45. 45.
    TinyOS (2006)
  46. 46.
    U.S. Department of Transportation (2010) 2010 Status of the National Highways, Bridges, and Transit: Conditions and Performance. Report to CongressGoogle Scholar
  47. 47.
    van Hoesel LFW, Havinga PJM (2004) A TDMA-based MAC protocol for WSNs. In: Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys ‘04). ACM, New York, NY, USAGoogle Scholar
  48. 48.
    Walt K (2005) ADC Architecture III: Sigma-Delta ADC Basics. Analog Devices. MT-022 TutorialGoogle Scholar
  49. 49.
    Wang Y, Swartz RA, Lynch JP, Law KH, Lu K-C, Loh C-H (2007) Decentralized civil structural control using real-time wireless sensing and embedded computing. Smart Struct Syst 3(3):321–340CrossRefGoogle Scholar
  50. 50.
    Wardhana K, Hadipriono FC (2003) Analysis of recent bridge failures in the United States. J Perform Constr Facil 17(3):144–150CrossRefGoogle Scholar
  51. 51.
    Zui H, Shinke T, Namita YH (1996) Practical formulas for estimation of cable tension by vibration method. J Struct Eng ASCE 122(6):651–656CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Billie F. SpencerJr.
    • 1
  • Hongki Jo
    • 2
  • Kirill A. Mechitov
    • 3
  • Jian Li
    • 4
  • Sung-Han Sim
    • 5
  • Robin E. Kim
    • 1
  • Soojin Cho
    • 5
  • Lauren E. Linderman
    • 6
  • Parya Moinzadeh
    • 7
  • Ryan K. Giles
    • 8
  • Gul Agha
    • 3
  1. 1.Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Civil Engineering and Engineering MechanicsThe University of ArizonaTucsonUSA
  3. 3.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Department of Civil, Environmental and Architectural EngineeringThe University of KansasLawrenceUSA
  5. 5.School of Urban and Environmental EngineeringUNISTUlsanSouth Korea
  6. 6.Department of Civil, Environmental, and Geo-EngineeringUniversity of Minnesota Twin CitiesMinneapolisUSA
  7. 7.GoogleKirklandUSA
  8. 8.Department of Mechanical Engineering, Civil Engineering ProgramStony Brook UniversityStony BrookUSA

Personalised recommendations