State-of-the-art in structural health monitoring of large and complex civil infrastructures

  • Hong-Nan Li
  • Liang Ren
  • Zi-Guang Jia
  • Ting-Hua Yi
  • Dong-Sheng Li
Original Paper

Abstract

Researchers and administrative authorities have long recognized the significance of implementing long-term structural health monitoring (SHM) systems for civil infrastructures, especially large-span space structures or other complex infrastructures, in order to secure structural safety and issue warnings regarding the structural damage prior to costly repair or even collapse. This paper starts with a critical review of SHM objectives and standardization for the SHM in civil infrastructures. At the same time as an example, the authors present their experiences through the case study of SHM applications for large and complex civil infrastructures through a custom-made polytypic and synchronous data acquisition device that was utilized in the SHM of the large-span gymnasium in Dalian. The paper concludes with a discussion of state-of-the-art in the SHM for civil infrastructures, highlighting areas where further work is needed.

Keywords

Structural health monitoring SHM standardization Large-span civil infrastructure Complex civil infrastructure Monitoring system 

Notes

Acknowledgments

This research work was jointly supported by the National Natural Science Foundation of China (Grant Nos. 51421064, 51222806, 51327003), the Fok Ying Tong Education Foundation (141072), and the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20130041110031).

References

  1. 1.
    Mufti AA (2002) Structural health monitoring of innovative Canadian civil engineering structures. Struct Health Monit 1(1):89–103. doi: 10.1177/147592170200100106 CrossRefGoogle Scholar
  2. 2.
    Zhou GD, Yi TH (2013) Recent developments on wireless sensor networks technology for bridge health monitoring. Math Probl Eng 2013. doi: 10.1155/2013/947867 Google Scholar
  3. 3.
    Guang-Dong Z, Ting-Hua Y (2013) The node arrangement methodology of wireless sensor networks for long-span bridge health monitoring. Int J Distrib Sens Netw 2013. doi:  10.1155/2013/865324
  4. 4.
    Wong K (2004) Instrumentation and health monitoring of cable-supported bridges. Struct Control Health Monit 2:91–124. doi: 10.1002/stc.33 CrossRefGoogle Scholar
  5. 5.
    Schenewerk MS, Scott-Harris R, Stowell J (2006) Structural health monitoring using gps observing the sunshine skyway bridge. Bridges Mag Online 2:18–25Google Scholar
  6. 6.
    Wenzel H (2008) Health monitoring of bridges. Wiley, Hoboken, NJGoogle Scholar
  7. 7.
    Chen S, Chen Z, Wang W (2010) Multi-scale detection techniques for local scour monitoring in River Bed: case study at Sutong Bridge. In: The 12th international conference on engineering, science, construction and operations in challenging environments, ASCE. doi:  10.1061/41096(366)226
  8. 8.
    Cigada A, Moschioni G, Vanali M et al (2010) The measurement network of the San Siro Meazza Stadium in Milan: origin and implementation of a new data acquisition strategy for structural health monitoring. Exp Tech 34(1):70–81. doi: 10.1111/j.1747-1567.2009.00536.x CrossRefGoogle Scholar
  9. 9.
    Mohamad H, Bennett PJ, Soga K et al (2007) Monitoring tunnel deformation induced by close-proximity bored tunneling using distributed optical fiber strain measurements. In: 7th FMGM 2007, pp 1–13. doi: 10.1061/40940(307)84
  10. 10.
    Bennett PJ, Soga K, Wassell I et al (2010) Wireless sensor networks for underground railway applications: case studies in Prague and London. Smart Struct Syst 6(5–6):619–639. doi: 10.12989/sss.2010.6.5_6.619 CrossRefGoogle Scholar
  11. 11.
    Ni YQ, Xia Y, Liao WY et al (2009) Technology innovation in developing the structural health monitoring system for Guangzhou New TV Tower. Struct Control Health Monit 16(1):73–98. doi: 10.1002/stc.303 CrossRefGoogle Scholar
  12. 12.
    Ko JM, Ni YQ (2005) Technology developments in structural health monitoring of large-scale bridges. Eng Struct 27(12):1715–1725. doi: 10.1016/j.engstruct.2005.02.021 CrossRefGoogle Scholar
  13. 13.
    Brownjohn JMW (1851) Structural health monitoring of civil infrastructure. Philos Trans R Soc A Math Phys Eng Sci 2007(365):589–622. doi: 10.1098/rsta.2006.1925 Google Scholar
  14. 14.
    ISIS Canada (2001) Guidelines for structural health monitoring. Design manual No. 2 ISIS Canada Corporation. http://www.isiscanada.com
  15. 15.
    ISO (2004) Mechanical vibration-evaluation of measurement results from dynamic tests and investigations on bridges, ISO 18649:2004. http://www.iso.org/iso/home.htm
  16. 16.
    Aktan AE, Catbas FN, Grimmelsman KA, Pervizpour M (2002) Development of a model health monitoring guide for major bridges. Report DTFH61-01-P-00347. Federal Highway Administration Research and Development, Drexel Intelligent Infrastructure and Transportation Safety Institute, Federal Highway Administration, US Department of Transportation. http://www.ishmii.org/Download%20Folder/FHWA%20Guide%209-8%20-%20SHM%20Guidelines.pdf. Accessed 26 Jan 2010
  17. 17.
    Bergmeister K (2002) Monitoring and safety evaluation of existing concrete structures: state-of-the-art report, Fib Task Group 5.1Google Scholar
  18. 18.
    Rucker W, Hille F, Rohrmann R (2006) F08b guideline for structural health monitoring. Federal Institute of Materials Research and Testing (BAM), SAMCO, Berlin, GermanyGoogle Scholar
  19. 19.
    Design code (2012) Design standard for structural health monitoring systems (CECS 333: 2012). Standard for China Association for Engineering Construction Standardization, BeijingGoogle Scholar
  20. 20.
    Li H (2002) Safety assessment, health monitoring and damage diagnosis for structures in civil engineering. Earthq Eng Eng Vib 22(3):82–90Google Scholar
  21. 21.
    Li HN, Li DS, Song GB (2004) Recent applications of fiber optic sensors to health monitoring in civil engineering. Eng Struct 26(11):1647–1657. doi: 10.1016/j.engstruct.2004.05.018 MathSciNetCrossRefGoogle Scholar
  22. 22.
    Li HN, Yi TH, Ren L et al (2014) Reviews on innovations and applications in structural health monitoring for infrastructures. Struct Monit Maint 1(1):1–45Google Scholar
  23. 23.
    Jia ZG, Ren L, Li D et al (2011) Cable stretching construction monitoring based on FBG sensor. In: Proc. SPIE 7981, sensors and smart structures technologies for civil, mechanical, and aerospace systems 2011, 79812I. doi: 10.1117/12.882628
  24. 24.
    Ou JP (2003) Some recent advances of intelligent health monitoring systems for civil infrastructures in mainland China. In: Proceeding of the 1st international conference on structural health monitoring and intelligent infrastructure. Harbin Institute of Technology Publishing Company, Tokyo, China, pp 131–44Google Scholar
  25. 25.
    Bhalla S, Yang YW, Zhao J et al (2005) Structural health monitoring of underground facilities–technological issues and challenges. Tunn Undergr Space Technol 20(5):487–500CrossRefGoogle Scholar
  26. 26.
    Goel RK (2001) Status of tunnelling and underground construction activities and technologies in India. Tunn Undergr Space Technol 16(2):63–75. doi: 10.1016/S0886-7798(01)00035-9 CrossRefGoogle Scholar
  27. 27.
    Bakker KJ (2000) Soil retaining structures: development of models for structural analysis. TU Delft, Delft University of Technology, 2000. doi: 10.1115/1.1421120
  28. 28.
    van Oosterhout GPC (2003) Recent Dutch experiences in developing structural monitoring systems tor shield driven tunnels. HERON 48:1Google Scholar
  29. 29.
    Ran L, Ye XW, Zhu HH (2011) Long-term monitoring and safety evaluation of a metro station during deep excavation. Proced Eng 14:785–792. doi: 10.1016/j.proeng.2011.07.099 CrossRefGoogle Scholar
  30. 30.
    Xie XY, Feng L (2014) Real-time health monitoring system for power tunnel. Bridges 10(9780784412121):317. doi: 10.1061/9780784412121.317 Google Scholar
  31. 31.
    Inaudi D, Elamari A, Pflug L et al (1994) Low-coherence deformation sensors for the monitoring of civil-engineering structures. Sens Actuators A 44(2):125–130. doi: 10.1016/0924-4247(94)00797-7 CrossRefGoogle Scholar
  32. 32.
    Chen WH, Lu ZR, Lin W et al (2011) Theoretical and experimental modal analysis of the Guangzhou New TV Tower. Eng Struct 33(12):3628–3646. doi: 10.1016/j.engstruct.2011.07.028 CrossRefGoogle Scholar
  33. 33.
    Yi TH, Li HN, Gu M (2011) Optimal sensor placement for structural health monitoring based on multiple optimization strategies. Struct Design Tall Spec Build 20(7):881–900. doi: 10.1002/tal.712 CrossRefGoogle Scholar
  34. 34.
    Balendra T, Ma Z, Tan CL (2003) Design of tall residential buildings in Singapore for wind effects. Wind Struct 6(3):221–248. doi: 10.12989/was.2003.6.3.221 CrossRefGoogle Scholar
  35. 35.
    Li QS, Xiao YQ, Fu JY et al (2007) Full-scale measurements of wind effects on the Jin Mao building. J Wind Eng Ind Aerodyn 95(6):445–466. doi: 10.1016/j.jweia.2006.09.002 MathSciNetCrossRefGoogle Scholar
  36. 36.
    Ogaja C, Rizos C, Wang J et al (2001) A dynamic GPS system for on-line structural monitoring. In: International Symposium on Kinematic Systems in Geodesy, Geomatics and Navigation (KIS 2001), Banff, Canada: 5–8Google Scholar
  37. 37.
    Su JZ, Xia Y, Chen L et al (2013) Long-term structural performance monitoring system for the Shanghai Tower. J Civil Struct Health Monit 3(1):49–61. doi: 10.1007/s13349-012-0034-z CrossRefGoogle Scholar
  38. 38.
    Xu-jun W (2012) Analysis of retaining wall deformation for deep and big foundation pits podium in Shanghai Tower. Chin J Rock Mech Eng 31(2):421–431Google Scholar
  39. 39.
    Ou JP, Li HW, Xiao YQ et al (2005) Health dynamic measurement of tall building using wireless sensor network. In: Smart structures and materials. International Society for Optics and Photonics, pp 205–216. doi: 10.1117/12.601074
  40. 40.
    Xu YL, Zhan S (2001) Field measurements of Di Wang Tower during Typhoon York. J Wind Eng Ind Aerodyn 89(1):73–93. doi: 10.1016/S0167-6105(00)00029-5 CrossRefGoogle Scholar
  41. 41.
    Roussel M, Glisic B, Lau JM et al (2014) Long-term monitoring of high-rise buildings connected by link bridges. J Civil Struct Health Monit 4(1):57–67. doi: 10.1007/s13349-013-0045-4 CrossRefGoogle Scholar
  42. 42.
    Lo JM, Incera AQ Echevarrı J (2005) Fiber optic civil structure monitoring system. Opt Eng 44(4):044401. doi: 10.1117/1.1882392 CrossRefGoogle Scholar
  43. 43.
    Dong ZJ, Li SL, Wen JY et al (2012) Asphalt pavement structural health monitoring utilizing FBG sensors. Adv Eng Forum 5:339–344. doi: 10.4028/www.scientific.net/AEF.5.339 CrossRefGoogle Scholar
  44. 44.
    Wang H, Liu W, He J et al (2014) Functionality enhancement of industrialized optical fiber sensors and system developed for full-scale pavement monitoring. Sensors 14(5):8829–8850. doi: 10.3390/s140508829 MathSciNetCrossRefGoogle Scholar
  45. 45.
    Park HS, Shin Y, Choi SW et al (2013) An integrative structural health monitoring system for the local/global responses of a large-scale irregular building under construction. Sensors 13(7):9085–9103. doi: 10.3390/s130709085 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hong-Nan Li
    • 1
  • Liang Ren
    • 1
  • Zi-Guang Jia
    • 1
  • Ting-Hua Yi
    • 1
  • Dong-Sheng Li
    • 1
  1. 1.State Key Lab of Coastal and Offshore Engineering, Faculty of Infrastructure EngineeringDalian University of TechnologyDalianPeople’s Republic of China

Personalised recommendations