Supercyclicity of weighted composition operators on spaces of continuous functions

  • M. J. Beltrán-Meneu
  • E. JordáEmail author
  • M. Murillo-Arcila


Our study is focused on the dynamics of weighted composition operators defined on a locally convex space \(E\hookrightarrow (C(X),\tau _p)\) with X being a topological Hausdorff space containing at least two different points and such that the evaluations \(\{\delta _x:\ x\in X\}\) are linearly independent in \(E'\). We prove, when X is compact and E is a Banach space containing a nowhere vanishing function, that a weighted composition operator \(C_{w,\varphi }\) is never weakly supercyclic on E. We also prove that if the symbol \(\varphi \) lies in the unit ball of \(A(\mathbb {D})\), then every weighted composition operator can never be \(\tau _p\)-supercyclic neither on \(C(\mathbb {D})\) nor on the disc algebra \(A(\mathbb {D})\). Finally, we obtain Ansari–Bourdon type results and conditions on the spectrum for arbitrary weakly supercyclic operators, and we provide necessary conditions for a composition operator to be weakly supercyclic on the space of holomorphic functions defined in non necessarily simply connected planar domains. As a consequence, we show that no composition operator can be weakly supercyclic neither on the space of holomorphic functions on the punctured disc nor in the punctured plane.


Weighted composition operator Weak supercyclicity Disc algebra Space of holomorphic functions 

Mathematics Subject Classification

47A16 47B33 46E15 



The authors are very thankful to the referee for his/her careful reading of the manuscript and his/her valuable comments and observations. The first and the second author were supported by MEC, MTM2016-76647-P. The third author was supported by MEC, MTM2016-75963-P and GVA/2018/110.


  1. 1.
    Albanese, A., Jornet, D.: A note on supercyclic operators in locally convex spaces. Mediterr. J. Math. 16, 107 (2019). MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Aleman, A., Suciu, L.: On ergodic operator means in Banach spaces. Integr. Equ. Oper. Theory 85(2), 259–287 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Ansari, S.: Hypercyclic and cyclic vectors. J. Funct. Anal. 128(2), 374–383 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ansari, S.I., Bourdon, P.S.: Some properties of cyclic operators. Acta Sci. Math. 63, 195–207 (1997)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bayart, F., Matheron, É.: Hyponormal operators, weighted shifts and weak forms of supercyclicity. Proc. Edinb. Math. Soc. 49, 1–15 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)zbMATHCrossRefGoogle Scholar
  7. 7.
    Bermudo, S., Montes-Rodríguez, A., Shkarin, S.: Orbits of operators commuting with the Volterra operator. J. Math. Pures Appl. 89(2), 145–173 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Bernal-Rodríguez, L., Montes-Rodríguez, A.: Universal functions for composition operators. Complex Var. Theory Appl. 27(1), 47–56 (1995)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bès, J.: Dynamics of weighted composition operators. Complex Anal. Oper. Theory 8, 159–176 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Bonet, J., Peris, A.: Hypercyclic operators on non-normable Fréchet spaces. J. Funct. Anal. 159, 587–595 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Bourdon, P.S., Shapiro, J.S.: Cyclic Phenomena for Composition Operators, Mem. Am. Math. Soc. 125 (1997), no. 596, Providence, Rhode IslandGoogle Scholar
  12. 12.
    Chan, K.C., Sanders, R.: A weakly hypercyclic operator that is not norm hypercyclic. J. Oper. Theory 52, 39–59 (2004)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Duggal, B.P.: Weak supercyclicity: dynamics of paranormal operators. Rend. Circ. Mat. Palermo 65(2), 297–306 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Fernández, C., Galbis, A., Jordá, E.: Dynamics and spectra of composition operators on the Schwartz space. J. Funct. Anal. 274(12), 3503–3530 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Grosse-Erdmann, K.G., Mortini, R.: Universal functions for composition operators with non-automorphic symbol. J. Anal. Math. 107, 355–376 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  17. 17.
    Garling, D.J.H.: A Course in Mathematical Analysis: Volume III, Complex analysis, Measure and Integration. Cambridge University Press, New York (2013)zbMATHCrossRefGoogle Scholar
  18. 18.
    Garrido, M.I., Jaramillo, J.A.: Variations on the Banach–Stone theorem. In: IV Course on Banach spaces and Operators (Laredo, 2001), Extracta Math. 17, 351–383 (2002)Google Scholar
  19. 19.
    Gadgil, S.: Dynamics on the circle-interval dynamics and rotation number. Reson. J. Sci. Educ. 8(11), 25–36 (2003)Google Scholar
  20. 20.
    Grosse-Erdmann, K.G., Peris, A.: Linear Chaos. Springer, Berlin (2011)zbMATHCrossRefGoogle Scholar
  21. 21.
    Grosse-Erdmann, K.G., Mortini, R.: Universal functions for composition operators with non-automorphic symbol. J. Anal. Math. 107, 355–376 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gunatillake, G.: Invertible weighted composition operators. J. Funct. Anal. 261, 831–860 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Herrero, D.A.: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99(1), 179–190 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Hilden, H.M., Wallen, L.J.: Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J. 23, 557–565 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Kalmes, T.: Dynamics of weighted composition operators on function spaces defined by local properties. Studia Math. 249(3), 259–301 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Kamali, Z., Hedayatian, K., Khani Robati, B.: Non-weakly supercyclic weighted composition operators. Abstr. Appl. Anal. Art. (2010) ID 143808Google Scholar
  27. 27.
    Köthe, G.: Topological Vector Spaces II. Springer, New York (1979)zbMATHCrossRefGoogle Scholar
  28. 28.
    Liang, Y.X., Zhou, Z.H.: Supercyclic tuples of the adjoint weighted composition operators on Hilbert spaces. Bull. Iran. Math. Soc. 41(1), 121–139 (2015)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Milnor, J.: Dynamics in One Complex Variable, 3rd edn. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
  30. 30.
    Montes-Rodríguez, A., Rodríguez-Martínez, A., Shkarin, S.: Cyclic behaviour of Volterra composition operators. Proc. Lond. Math. Soc. 103(3), 535–562 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Montes-Rodríguez, A., Shkarin, S.: Non-weakly supercyclic operators. J. Oper. Theory 58(1), 39–62 (2007)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Moradi, A., Khani Robati, B., Hedayatian, K.: Non-weakly supercyclic classes of weighted composition operators on Banach spaces of analytic functions. Bull. Belg. Math. Soc. Simon Stevin 24(2), 227–241 (2017)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Peris, A.: Multi-hypercyclic operators are hypercyclic. Math. Z. 236(4), 779–786 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Sanders, R.: Weakly supercyclic operators. J. Math. Anal. Appl. 292, 148–159 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Sanders, R.: An isometric bilateral shift that is weakly supercyclic. Integr. Equ. Oper. Theory 53, 547–552 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Shapiro, J.H.: Composition Operators and Classical Function Theory. Universitext. Tracts in Mathematics. Springer, New York (1993)CrossRefGoogle Scholar
  37. 37.
    Shapiro, J.H.: Simple connectivity and linear chaos. Rend. Circ. Mat. Palermo (2) Suppl 56, 27–48 (1998)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Shkarin, S.: Non-sequential weak supercyclicity and hypercyclicity. J. Funct. Anal. 242(1), 37–77 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    de Welington, M., van Strien, S.: One-Dimensional Dynamics. Springer, Berlin (1993)zbMATHGoogle Scholar
  40. 40.
    Yousefi, B., Rezaei, H.: Hypercyclic property of weighted composition operators. Proc. Am. Math. Soc. 135(10), 3263–3271 (2007)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Universitat de Barcelona 2019

Authors and Affiliations

  1. 1.Universitat Jaume ICastellón de la PlanaSpain
  2. 2.Universitat Politècnica de ValènciaValenciaSpain

Personalised recommendations