Supercyclicity of weighted composition operators on spaces of continuous functions
- 33 Downloads
Abstract
Our study is focused on the dynamics of weighted composition operators defined on a locally convex space \(E\hookrightarrow (C(X),\tau _p)\) with X being a topological Hausdorff space containing at least two different points and such that the evaluations \(\{\delta _x:\ x\in X\}\) are linearly independent in \(E'\). We prove, when X is compact and E is a Banach space containing a nowhere vanishing function, that a weighted composition operator \(C_{w,\varphi }\) is never weakly supercyclic on E. We also prove that if the symbol \(\varphi \) lies in the unit ball of \(A(\mathbb {D})\), then every weighted composition operator can never be \(\tau _p\)-supercyclic neither on \(C(\mathbb {D})\) nor on the disc algebra \(A(\mathbb {D})\). Finally, we obtain Ansari–Bourdon type results and conditions on the spectrum for arbitrary weakly supercyclic operators, and we provide necessary conditions for a composition operator to be weakly supercyclic on the space of holomorphic functions defined in non necessarily simply connected planar domains. As a consequence, we show that no composition operator can be weakly supercyclic neither on the space of holomorphic functions on the punctured disc nor in the punctured plane.
Keywords
Weighted composition operator Weak supercyclicity Disc algebra Space of holomorphic functionsMathematics Subject Classification
47A16 47B33 46E15Notes
Acknowledgements
The authors are very thankful to the referee for his/her careful reading of the manuscript and his/her valuable comments and observations. The first and the second author were supported by MEC, MTM2016-76647-P. The third author was supported by MEC, MTM2016-75963-P and GVA/2018/110.
References
- 1.Albanese, A., Jornet, D.: A note on supercyclic operators in locally convex spaces. Mediterr. J. Math. 16, 107 (2019). https://doi.org/10.1007/s00009-019-1386-y MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Aleman, A., Suciu, L.: On ergodic operator means in Banach spaces. Integr. Equ. Oper. Theory 85(2), 259–287 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 3.Ansari, S.: Hypercyclic and cyclic vectors. J. Funct. Anal. 128(2), 374–383 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Ansari, S.I., Bourdon, P.S.: Some properties of cyclic operators. Acta Sci. Math. 63, 195–207 (1997)MathSciNetzbMATHGoogle Scholar
- 5.Bayart, F., Matheron, É.: Hyponormal operators, weighted shifts and weak forms of supercyclicity. Proc. Edinb. Math. Soc. 49, 1–15 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
- 6.Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge University Press, Cambridge (2009)zbMATHCrossRefGoogle Scholar
- 7.Bermudo, S., Montes-Rodríguez, A., Shkarin, S.: Orbits of operators commuting with the Volterra operator. J. Math. Pures Appl. 89(2), 145–173 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
- 8.Bernal-Rodríguez, L., Montes-Rodríguez, A.: Universal functions for composition operators. Complex Var. Theory Appl. 27(1), 47–56 (1995)MathSciNetzbMATHGoogle Scholar
- 9.Bès, J.: Dynamics of weighted composition operators. Complex Anal. Oper. Theory 8, 159–176 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Bonet, J., Peris, A.: Hypercyclic operators on non-normable Fréchet spaces. J. Funct. Anal. 159, 587–595 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
- 11.Bourdon, P.S., Shapiro, J.S.: Cyclic Phenomena for Composition Operators, Mem. Am. Math. Soc. 125 (1997), no. 596, Providence, Rhode IslandGoogle Scholar
- 12.Chan, K.C., Sanders, R.: A weakly hypercyclic operator that is not norm hypercyclic. J. Oper. Theory 52, 39–59 (2004)MathSciNetzbMATHGoogle Scholar
- 13.Duggal, B.P.: Weak supercyclicity: dynamics of paranormal operators. Rend. Circ. Mat. Palermo 65(2), 297–306 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Fernández, C., Galbis, A., Jordá, E.: Dynamics and spectra of composition operators on the Schwartz space. J. Funct. Anal. 274(12), 3503–3530 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Grosse-Erdmann, K.G., Mortini, R.: Universal functions for composition operators with non-automorphic symbol. J. Anal. Math. 107, 355–376 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 16.Cowen, C., MacCluer, B.: Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
- 17.Garling, D.J.H.: A Course in Mathematical Analysis: Volume III, Complex analysis, Measure and Integration. Cambridge University Press, New York (2013)zbMATHCrossRefGoogle Scholar
- 18.Garrido, M.I., Jaramillo, J.A.: Variations on the Banach–Stone theorem. In: IV Course on Banach spaces and Operators (Laredo, 2001), Extracta Math. 17, 351–383 (2002)Google Scholar
- 19.Gadgil, S.: Dynamics on the circle-interval dynamics and rotation number. Reson. J. Sci. Educ. 8(11), 25–36 (2003)Google Scholar
- 20.Grosse-Erdmann, K.G., Peris, A.: Linear Chaos. Springer, Berlin (2011)zbMATHCrossRefGoogle Scholar
- 21.Grosse-Erdmann, K.G., Mortini, R.: Universal functions for composition operators with non-automorphic symbol. J. Anal. Math. 107, 355–376 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Gunatillake, G.: Invertible weighted composition operators. J. Funct. Anal. 261, 831–860 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Herrero, D.A.: Limits of hypercyclic and supercyclic operators. J. Funct. Anal. 99(1), 179–190 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
- 24.Hilden, H.M., Wallen, L.J.: Some cyclic and non-cyclic vectors of certain operators. Indiana Univ. Math. J. 23, 557–565 (1974)MathSciNetzbMATHCrossRefGoogle Scholar
- 25.Kalmes, T.: Dynamics of weighted composition operators on function spaces defined by local properties. Studia Math. 249(3), 259–301 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
- 26.Kamali, Z., Hedayatian, K., Khani Robati, B.: Non-weakly supercyclic weighted composition operators. Abstr. Appl. Anal. Art. (2010) ID 143808Google Scholar
- 27.Köthe, G.: Topological Vector Spaces II. Springer, New York (1979)zbMATHCrossRefGoogle Scholar
- 28.Liang, Y.X., Zhou, Z.H.: Supercyclic tuples of the adjoint weighted composition operators on Hilbert spaces. Bull. Iran. Math. Soc. 41(1), 121–139 (2015)MathSciNetzbMATHGoogle Scholar
- 29.Milnor, J.: Dynamics in One Complex Variable, 3rd edn. Princeton University Press, Princeton (2006)zbMATHGoogle Scholar
- 30.Montes-Rodríguez, A., Rodríguez-Martínez, A., Shkarin, S.: Cyclic behaviour of Volterra composition operators. Proc. Lond. Math. Soc. 103(3), 535–562 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
- 31.Montes-Rodríguez, A., Shkarin, S.: Non-weakly supercyclic operators. J. Oper. Theory 58(1), 39–62 (2007)MathSciNetzbMATHGoogle Scholar
- 32.Moradi, A., Khani Robati, B., Hedayatian, K.: Non-weakly supercyclic classes of weighted composition operators on Banach spaces of analytic functions. Bull. Belg. Math. Soc. Simon Stevin 24(2), 227–241 (2017)MathSciNetzbMATHGoogle Scholar
- 33.Peris, A.: Multi-hypercyclic operators are hypercyclic. Math. Z. 236(4), 779–786 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
- 34.Sanders, R.: Weakly supercyclic operators. J. Math. Anal. Appl. 292, 148–159 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
- 35.Sanders, R.: An isometric bilateral shift that is weakly supercyclic. Integr. Equ. Oper. Theory 53, 547–552 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
- 36.Shapiro, J.H.: Composition Operators and Classical Function Theory. Universitext. Tracts in Mathematics. Springer, New York (1993)CrossRefGoogle Scholar
- 37.Shapiro, J.H.: Simple connectivity and linear chaos. Rend. Circ. Mat. Palermo (2) Suppl 56, 27–48 (1998)MathSciNetzbMATHGoogle Scholar
- 38.Shkarin, S.: Non-sequential weak supercyclicity and hypercyclicity. J. Funct. Anal. 242(1), 37–77 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
- 39.de Welington, M., van Strien, S.: One-Dimensional Dynamics. Springer, Berlin (1993)zbMATHGoogle Scholar
- 40.Yousefi, B., Rezaei, H.: Hypercyclic property of weighted composition operators. Proc. Am. Math. Soc. 135(10), 3263–3271 (2007)MathSciNetzbMATHCrossRefGoogle Scholar