Abstract
We prove a sharp common generalization of endpoint multilinear Kakeya and local discrete Brascamp–Lieb inequalities.
Mathematics Subject Classification
Primary 26D15 Secondary 42B99 52C07Notes
Acknowledgements
The extension of Theorem 1.3 beyond the scale-invariant case (1.9) is motivated by ongoing joint work with Shaoming Guo and Ruixiang Zhang. This work was partially supported by the Hausdorff Center for Mathematics (DFG EXC 2047). I thank the anonymous referees for numerous corrections and helpful suggestions pertaining to exposition.
References
- 1.Bennett, J., Bez, N., Gutiérrez, S.: Transversal multilinear Radon-like transforms: local and global estimates. Rev. Mat. Iberoam. 29(3), 765–788 (2013). https://doi.org/10.4171/RMI/739 MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Bennett, J., Carbery, A., Tao, T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196(2), 261–302 (2006). https://doi.org/10.1007/s11511-006-0006-4. arXiv:math/0509262 MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Bourgain, J., Demeter, C.: The proof of the \(l^2\) decoupling conjecture. Ann. Math. (2) 182(1), 351–389 (2015). https://doi.org/10.4007/annals.2015.182.1.9. arXiv:1403.5335 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
- 4.Bourgain, J., Demeter, C.: A study guide for the \(l^2\) decoupling theorem. Chin. Ann. Math. Ser. B 38(1), 173–200 (2017). https://doi.org/10.1007/s11401-016-1066-1. arXiv:1604.06032 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
- 5.Bourgain, J., Demeter, C., Guth, L.: Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. Math. (2) 184(2), 633–682 (2016). https://doi.org/10.4007/annals.2016.184.2.7. arXiv:1512.01565 [math.NT]MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Bennett, J., et al.: Stability of the Brascamp–Lieb constant and applications. Am. J. Math. 140(2), 543–569 (2018). https://doi.org/10.1353/ajm.2018.0013. arXiv:1508.07502 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Bennett, J., et al.: The Brascamp–Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal. 17(5), 1343–1415 (2008). https://doi.org/10.1007/s00039-007-0619-6. arXiv:math/0505065 MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Bennett, J., et al.: Finite bounds for Hölder–Brascamp–Lieb multilinear inequalities. Math. Res. Lett. 17(4), 647–666 (2010). https://doi.org/10.4310/MRL.2010.v17.n4.a6. arXiv:math/0505691 MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Bennett, J., et al.: Behaviour of the Brascamp–Lieb constant. Bull. Lond. Math. Soc. 49(3), 512–518 (2017). https://doi.org/10.1112/blms.12049. arXiv:1605.08603 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Bourgain, J., Guth, L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21(6), 1239–1295 (2011). https://doi.org/10.1007/s00039-011-0140-9. arXiv:1012.3760 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
- 11.Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math. 20(2), 151–173 (1976). https://doi.org/10.1016/0001-8708(76)90184-5 MathSciNetCrossRefzbMATHGoogle Scholar
- 12.Carbery, A., Hänninen, T. S., Valdimarsson, S.I.: Multilinear duality and factorisation for Brascamp–Lieb-type inequalities with applications. Preprint (2018). arXiv:1809.02449 [math.FA]
- 13.Carbery, A., Valdimarsson, S.I.: The endpoint multilinear Kakeya theorem via the Borsuk–Ulam theorem. J. Funct. Anal. 264(7), 1643–1663 (2013). https://doi.org/10.1016/j.jfa.2013.01.012. arXiv:1205.6371 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Finner, H.: A generalization of Hölder’s inequality and some probability inequalities. Ann. Probab. 20(4), 1893–1901 (1992)MathSciNetCrossRefGoogle Scholar
- 15.Fulton, W.: Intersection Theory, 2nd edn. Springer, Berlin (1998). ISBN: 978-0-387-98549-7. https://doi.org/10.1007/978-1-4612-1700-8 CrossRefGoogle Scholar
- 16.Garg, A., et al.: Algorithmic and optimization aspects of Brascamp–Lieb inequalities, via operator scaling. Geom. Funct. Anal. 28(1), 100–145 (2018). https://doi.org/10.1007/s00039-018-0434-2. arXiv:1607.06711 [cs.CC]MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Guth, L.: The endpoint case of the Bennett–Carbery–Tao multilinear Kakeya conjecture. Acta Math. 205(2), 263–286 (2010). https://doi.org/10.1007/s11511-010-0055-6. arXiv:0811.2251 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Guth, L.: A short proof of the multilinear Kakeya inequality. Math. Proc. Cambr. Philos. Soc. 158(1), 147–153 (2015). https://doi.org/10.1017/S0305004114000589. arXiv:1409.4683 [math.AP]MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Guo, S., Zorin-Kranich, P.: Decoupling for moment manifolds associated to Arkhipov–Chubarikov–Karatsuba systems. Adv. Math. (2019). https://doi.org/10.1016/j.aim.2019.106889 MathSciNetCrossRefGoogle Scholar
- 20.John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187–204. Interscience Publishers, Inc., New York (1948) Google Scholar
- 21.Lieb, E.H.: Gaussian kernels have only Gaussian maximizers. Invent. Math. 102(1), 179–208 (1990). https://doi.org/10.1007/BF01233426 MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Loomis, L.H., Whitney, H.: An inequality related to the isoperimetric inequality. Bull. Am. Math. Soc 55, 961–962 (1949). https://doi.org/10.1090/S0002-9904-1949-09320-5 MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Maldague, D.: Weak Hölder–Brascamp–Lieb inequalities. Preprint (2019). arXiv:1904.06450 [math.CA]
- 24.Matouek, J.: Using the Borsuk–Ulam theorem. Universitext. Lectures on topological methods in combinatorics and geometry, Written in cooperation with Anders Björner and Günter M. Ziegler. Springer, Berlin (2003). ISBN: 3-540-00362-2. https://doi.org/10.1007/978-3-540-76649-0 CrossRefGoogle Scholar
- 25.Rogers, C.A., Shephard, G.C.: Convex bodies associated with a given convex body. J. Lond. Math. Soc. 33, 270–281 (1958). https://doi.org/10.1112/jlms/s1-33.3.270 MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Schep, A.R.: Factorization of positive multilinear maps. Illinois J. Math. 28(4), 579–591 (1984)MathSciNetCrossRefGoogle Scholar
- 27.Zhang, R.: The endpoint perturbed Brascamp–Lieb inequalities with examples. Anal. PDE 11(3), 555–581 (2018). https://doi.org/10.2140/apde.2018.11.555. arXiv:1510.09132 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
Copyright information
© Universitat de Barcelona 2019