Kakeya–Brascamp–Lieb inequalities

  • Pavel Zorin-KranichEmail author


We prove a sharp common generalization of endpoint multilinear Kakeya and local discrete Brascamp–Lieb inequalities.

Mathematics Subject Classification

Primary 26D15 Secondary 42B99 52C07 



The extension of Theorem 1.3 beyond the scale-invariant case (1.9) is motivated by ongoing joint work with Shaoming Guo and Ruixiang Zhang. This work was partially supported by the Hausdorff Center for Mathematics (DFG EXC 2047). I thank the anonymous referees for numerous corrections and helpful suggestions pertaining to exposition.


  1. 1.
    Bennett, J., Bez, N., Gutiérrez, S.: Transversal multilinear Radon-like transforms: local and global estimates. Rev. Mat. Iberoam. 29(3), 765–788 (2013). MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bennett, J., Carbery, A., Tao, T.: On the multilinear restriction and Kakeya conjectures. Acta Math. 196(2), 261–302 (2006). arXiv:math/0509262 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bourgain, J., Demeter, C.: The proof of the \(l^2\) decoupling conjecture. Ann. Math. (2) 182(1), 351–389 (2015). arXiv:1403.5335 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bourgain, J., Demeter, C.: A study guide for the \(l^2\) decoupling theorem. Chin. Ann. Math. Ser. B 38(1), 173–200 (2017). arXiv:1604.06032 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bourgain, J., Demeter, C., Guth, L.: Proof of the main conjecture in Vinogradov’s mean value theorem for degrees higher than three. Ann. Math. (2) 184(2), 633–682 (2016). arXiv:1512.01565 [math.NT]MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bennett, J., et al.: Stability of the Brascamp–Lieb constant and applications. Am. J. Math. 140(2), 543–569 (2018). arXiv:1508.07502 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bennett, J., et al.: The Brascamp–Lieb inequalities: finiteness, structure and extremals. Geom. Funct. Anal. 17(5), 1343–1415 (2008). arXiv:math/0505065 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bennett, J., et al.: Finite bounds for Hölder–Brascamp–Lieb multilinear inequalities. Math. Res. Lett. 17(4), 647–666 (2010). arXiv:math/0505691 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bennett, J., et al.: Behaviour of the Brascamp–Lieb constant. Bull. Lond. Math. Soc. 49(3), 512–518 (2017). arXiv:1605.08603 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Bourgain, J., Guth, L.: Bounds on oscillatory integral operators based on multilinear estimates. Geom. Funct. Anal. 21(6), 1239–1295 (2011). arXiv:1012.3760 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Brascamp, H.J., Lieb, E.H.: Best constants in Young’s inequality, its converse, and its generalization to more than three functions. Adv. Math. 20(2), 151–173 (1976). MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Carbery, A., Hänninen, T. S., Valdimarsson, S.I.: Multilinear duality and factorisation for Brascamp–Lieb-type inequalities with applications. Preprint (2018). arXiv:1809.02449 [math.FA]
  13. 13.
    Carbery, A., Valdimarsson, S.I.: The endpoint multilinear Kakeya theorem via the Borsuk–Ulam theorem. J. Funct. Anal. 264(7), 1643–1663 (2013). arXiv:1205.6371 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Finner, H.: A generalization of Hölder’s inequality and some probability inequalities. Ann. Probab. 20(4), 1893–1901 (1992)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Fulton, W.: Intersection Theory, 2nd edn. Springer, Berlin (1998). ISBN: 978-0-387-98549-7. CrossRefGoogle Scholar
  16. 16.
    Garg, A., et al.: Algorithmic and optimization aspects of Brascamp–Lieb inequalities, via operator scaling. Geom. Funct. Anal. 28(1), 100–145 (2018). arXiv:1607.06711 [cs.CC]MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Guth, L.: The endpoint case of the Bennett–Carbery–Tao multilinear Kakeya conjecture. Acta Math. 205(2), 263–286 (2010). arXiv:0811.2251 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Guth, L.: A short proof of the multilinear Kakeya inequality. Math. Proc. Cambr. Philos. Soc. 158(1), 147–153 (2015). arXiv:1409.4683 [math.AP]MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Guo, S., Zorin-Kranich, P.: Decoupling for moment manifolds associated to Arkhipov–Chubarikov–Karatsuba systems. Adv. Math. (2019). MathSciNetCrossRefGoogle Scholar
  20. 20.
    John, F.: Extremum problems with inequalities as subsidiary conditions. In: Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187–204. Interscience Publishers, Inc., New York (1948) Google Scholar
  21. 21.
    Lieb, E.H.: Gaussian kernels have only Gaussian maximizers. Invent. Math. 102(1), 179–208 (1990). MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Loomis, L.H., Whitney, H.: An inequality related to the isoperimetric inequality. Bull. Am. Math. Soc 55, 961–962 (1949). MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Maldague, D.: Weak Hölder–Brascamp–Lieb inequalities. Preprint (2019). arXiv:1904.06450 [math.CA]
  24. 24.
    Matouek, J.: Using the Borsuk–Ulam theorem. Universitext. Lectures on topological methods in combinatorics and geometry, Written in cooperation with Anders Björner and Günter M. Ziegler. Springer, Berlin (2003). ISBN: 3-540-00362-2. CrossRefGoogle Scholar
  25. 25.
    Rogers, C.A., Shephard, G.C.: Convex bodies associated with a given convex body. J. Lond. Math. Soc. 33, 270–281 (1958). MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Schep, A.R.: Factorization of positive multilinear maps. Illinois J. Math. 28(4), 579–591 (1984)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhang, R.: The endpoint perturbed Brascamp–Lieb inequalities with examples. Anal. PDE 11(3), 555–581 (2018). arXiv:1510.09132 [math.CA]MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Universitat de Barcelona 2019

Authors and Affiliations

  1. 1.Mathematical InstituteUniversity of BonnBonnGermany

Personalised recommendations