Collectanea Mathematica

, Volume 69, Issue 3, pp 315–336 | Cite as

\(C^{1,\theta }\)-Estimates on the distance of inertial manifolds

  • José M. ArrietaEmail author
  • Esperanza Santamaría


In this paper we obtain \(C^{1,\theta }\)-estimates on the distance of inertial manifolds for dynamical systems generated by evolutionary parabolic type equations. We consider the situation where the systems are defined in different phase spaces and we estimate the distance in terms of the distance of the resolvent operators of the corresponding elliptic operators and the distance of the nonlinearities of the equations.


Inertial manifolds Evolution equations Perturbations 

Mathematics Subject Classification

35B42 35K90 



We appreciate the carefull comments of the referee that led to a better exposition of the results.


  1. 1.
    Arrieta, J.M., Santamaría, E.: Estimates on the distance of inertial manifolds. Discrete Continuous Dyn. Syst. A 34 10, 3921–3944 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Arrieta, J.M., Santamaría, E.: Distance of attractors for thin domains. J. Differ. Equ. 263 7#, 4222–4266 (2017)CrossRefGoogle Scholar
  3. 3.
    Babin, A.V., Vishik, M.I.: Attractors of Evolution Equations, Studies in Mathematics and its Applications, vol. 25. North-Holland Publishing Co., Amsterdam (1992)Google Scholar
  4. 4.
    Bates, P.W., Lu, K., Zeng, C.: Existence and persistence of invariant manifolds for semiflows in Banach space. Memoirs of the American Mathematical Society, vol. 135, issue 645, pp. viii+129. American Mathematical Society, Providence, Rhode Island (1998)Google Scholar
  5. 5.
    Carvalho, A.N., Langa, J., Robinson, J.C.: Attractors for Infinite-Dimensional Non-autonomous Dynamical-Systems, Applied Mathematical Sciences, vol. 182. Springer, Berlin (2012)Google Scholar
  6. 6.
    Carvalho, A.N., Pires, L.: Rate of convergence of attractors for singularly perturbed semilinear problems. J. Math. Anal. Appl. 452, 258–296 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chow, S.N., Lin, X.-B., Lu, K.: Smooth invariant foliations in infinite dimensional spaces. J. Differ. Equ. 94(2), 266291 (1991)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chow, S.N., Lu, K., Sell, G.R.: Smoothness of inertial manifolds. J. Math. Anal. Appl. 169(1), 283–312 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cholewa, J.W., Dlotko, T.: Global Attractors in Abstract Parabolic Problems, London Mathematical Society Lecture Note Series, vol. 278. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Foias, C., Sell, G.R., Temam, R.: Inertial manifolds for nonlinear evolutionary equations. J. Differ. Equ. 73, 309–353 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hale, J.K.: Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence (1988)zbMATHGoogle Scholar
  12. 12.
    Hale, J.K., Raugel, G.: Reaction–diffusion equation on thin domains. J. Math. Pures Appl. (9) 71(1), 33–95 (1992)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Henry, D.B.: Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, vol. 840. Springer, Berlin (1981)CrossRefGoogle Scholar
  14. 14.
    Jones, D.A., Stuart, A.M., Titi, E.S.: Persistence of invariant sets for dissipative evolution equations. J. Math. Anal. Appl. 219, 479–502 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mallet-Paret, J., Sell, G.: Inertial manifolds for reaction diffusion equations. J. Am. Math. Soc. 1, 805–866 (1988)CrossRefzbMATHGoogle Scholar
  16. 16.
    Ngiamsunthorn, P.S.: Invariant manifolds for parabolic equations under perturbation of the domain. Nonlinear Anal. TMA 80, 23–48 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Raugel, G.: Dynamics of partial differential equations on thin domains. In: Dynamical Systems (Montecatini Terme, 1994), Lecture Notes in Math., vol. 1609, pp. 208–315. Springer, Berlin (1995)Google Scholar
  18. 18.
    Robinson, J.C.: Infinite-Dimensional Dynamical Systems. An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2001)Google Scholar
  19. 19.
    Rodríguez-Bernal, A.: Inertial manifolds for dissipative semiflows in Banach spaces. Appl. Anal. 37, 95–141 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Santamaría, E.: Distance of attractors of evolutionary equations. Ph.D. Thesis, Universidad Complutense de Madrid (November 2013)Google Scholar
  21. 21.
    Sell, G.R., You, Y.: Dynamics of Evolutionary Equations, Applied Mathematical Sciences, vol. 143. Springer, Berlin (2002)CrossRefzbMATHGoogle Scholar
  22. 22.
    Varchon, N.: Domain perturbation and invariant manifolds. J. Evol. Equ. 12, 547–569 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Universitat de Barcelona 2018

Authors and Affiliations

  1. 1.Departamento de Análisis Matemático y Matemática AplicadaUniversidad Complutense de MadridMadridSpain
  2. 2.Instituto de Ciencias MatemáticasCSIC-UAM-UC3M-UCMMadridSpain
  3. 3.Universidad a Distancia de MadridMadridSpain

Personalised recommendations