# Koszul properties of the moment map of some classical representations

- 25 Downloads

## Abstract

This work concerns the moment map \(\mu \) associated with the standard representation of a classical Lie algebra. For applications to deformation quantization it is desirable that \(S/(\mu )\), the coordinate algebra of the zero fibre of \(\mu \), be Koszul. The main result is that this algebra is not Koszul for the standard representation of \(\mathfrak {sl}_{n}\), and of \(\mathfrak {sp}_{n}\). This is deduced from a computation of the Betti numbers of \(S/(\mu )\) as an *S*-module, which are of interest also from the point of view of commutative algebra.

## Keywords

Betti number Classical Lie algebra Koszul algebra Moment map Poincaré series Standard representation## Mathematics Subject Classification

13D02 16S37 53D20## Notes

### Acknowledgements

Our thanks to Lucho Avramov for helpful conversations regarding this work; in particular, for pointing out Lemma 3.3, and the work of Hreinsdottir [13]. Part of this article is based on work supported by the National Science Foundation under Grant No. 0932078000, while AC and SBI were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the 2012–2013 Special Year in Commutative Algebra. AC was supported by INdAM-GNSAGA and PRIN “Geometry of Algebraic Varieties” 2015EYPTSB_008. SBI was partly supported by NSF Grants DMS-1503044.

## References

- 1.Avramov, L.L.: The Hopf algebra of a local ring. Izv. Akad. Nauk SSSR Ser. Mat.
**38**, 253–277 (1974)MathSciNetGoogle Scholar - 2.Avramov, L.L.: Infinite free resolutions. In: Six Lectures on Commutative Algebra (Bellaterra, 1996). Progress in Mathematics, vol. 166, pp. 1–118, Birkhuser, Basel (1998)Google Scholar
- 3.Avramov, L.L., Conca, A., Iyengar, S.B.: Free resolutions over commutative Koszul algebras. Math. Res. Lett.
**17**, 197–210 (2010)MathSciNetCrossRefMATHGoogle Scholar - 4.Avramov, L.L., Conca, A., Iyengar, S.B.: Subadditivity of syzygies of Koszul algebras. Math. Ann.
**361**, 511–534 (2015)MathSciNetCrossRefMATHGoogle Scholar - 5.Bordemann, M., Herbig, H.-C., Pflaum, M.J.: A homological approach to singular reduction in deformation quantization. In: Sternberg, S. (ed.) Singularity Theory, pp. 443–461. World Sci. Publ, Hackensack (2007)CrossRefGoogle Scholar
- 6.Bruns, W., Vetter, U.: Determinantal rings. Lecture Notes in Mathematics, vol. 1327. Springer, Berlin (1988)Google Scholar
- 7.Conca, A., De Negri, E., Rossi, M.E.: Koszul Algebras and Regularity, Commutative Algebra, 285–315. Springer, New York (2013)Google Scholar
- 8.Fröberg, R.: Koszul algebras. In: Advances in Commutative Ring Theory, Proceedings of Fez Conference 1997. Lectures Notes in Pure and Applied Mathematics, vol. 205. Marcel Dekker, New York (1999)Google Scholar
- 9.Griffiths, P., Harris, J.: Principles of Algebraic Geometry, Reprint of the 1978 original, Wiley Classics Library. Wiley, New York (1994)Google Scholar
- 10.Gugenheim, V.K.A.M., May, J.P.: On the Theory and Applications of Differential Torsion Products, Memoirs of the American Mathematical Society, 142. American Mathematical Society, Providence (1974)Google Scholar
- 11.Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)MATHGoogle Scholar
- 12.Herbig, H.-C., Schwarz, G.W.: The Koszul complex of a moment map. J. Symplectic Geom.
**11**, 497–508 (2013)MathSciNetCrossRefMATHGoogle Scholar - 13.Hreinsdottir, F.: The Koszul dual of the ring of commuting matrices. Commun. Algebra
**26**, 3807–3819 (2011)MathSciNetCrossRefMATHGoogle Scholar - 14.Koshy, T.: Catalan Numbers with Applications, p. 422. Oxford University Press, Oxford (2009)MATHGoogle Scholar
- 15.Kraines, D.: Massey higher products. Trans. Am. Math. Soc.
**124**, 431–449 (1966)MathSciNetCrossRefMATHGoogle Scholar - 16.May, J.P.: Matrix massey products. J. Algebra
**12**, 533–568 (1969)MathSciNetCrossRefMATHGoogle Scholar - 17.The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org (2014)
- 18.Polischuk, A., Positselski, L.: Quadratic Algebras. AMS University Lecture Series (2005)Google Scholar
- 19.Roos, J.-E.: Homological properties of the homology algebra of the Koszul complex of a local ring: examples and questions. J. Algebra
**465**, 399–436 (2016)MathSciNetCrossRefMATHGoogle Scholar - 20.Shapiro, L.W.: A Catalan triangle. Discret. Math.
**14**, 83–90 (1976)MathSciNetCrossRefMATHGoogle Scholar - 21.Schwarz, G.W.: Differential operators on quotients of simple groups. J. Algebra
**169**, 248–273 (1994)MathSciNetCrossRefMATHGoogle Scholar - 22.Schwarz, G.W.: Lifting differential operators from orbit spaces. Ann. Sci. École Norm. Super.
**28**(4), 253–305 (1995)MathSciNetCrossRefMATHGoogle Scholar - 23.Stanley, R.P.: Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, vol. xii, p. 581. Cambridge University Press, Cambridge (1999)Google Scholar
- 24.Tate, J.: Homology of Noetherian rings and local rings. Ill. J. Math.
**1**, 14–27 (1957)MathSciNetMATHGoogle Scholar - 25.Vinberg, È.B.: Complexity of actions of reductive groups. Funktsional. Anal. i Prilozhen.
**20**, 1–13 (1986)MathSciNetCrossRefMATHGoogle Scholar