On generalized Littlewood–Paley functions
- 103 Downloads
Abstract
We study the \(L^{p}\) boundedness of certain classes of generalized Littlewood–Paley functions \(\mathcal{S}_{\Phi }^{(\lambda )}(f)\). We obtain \(L^{p}\) estimates of \(\mathcal{S}_{\Phi }^{(\lambda )}(f)\) with sharp range of p and under optimal conditions on \(\Phi \). By using these estimates along with an extrapolation argument we obtain some new and improved results on generalized Littlewood–Paley functions. The approach in proving our results is mainly based on proving vector-valued inequalities and in turn the proof of our results (in the case \(\lambda =2)\) provides us with alternative proofs of the results obtained by Duoandikoetxea as his approach is based on proving certain weighted norm inequalities.
Keywords
Littlewood–Paley functions Triebel–Lizorkin spaces Orlicz spaces Block spaces Extrapolation \(L^{p}\)boundednessMathematics Subject Classification
Primary 42B20 Secondary 42B25 42B35 42B99Notes
Acknowledgements
The authors would like to express their gratitude to the referee for his/her very careful reading and for many important valuable comments.
References
- 1.Al-Qassem, H., Pan, Y.: On rough maximal operators and Marcinkiewicz integrals along submanifolds. Stud. Math. 190(1), 73–98 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 2.Al-Qassem, H., Pan, Y.: On certain estimates for Marcinkiewicz integrals and extrapolation. Collect. Math. 60(2), 123–145 (2009)MathSciNetCrossRefMATHGoogle Scholar
- 3.Al-Qassem, H., Cheng, L.C., Pan, Y.: On rough generalized parametric Marcinkiewicz integrals. J. Math. Inequal. 11(3), 763–780 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 4.Al-Salman, A., Al-Qassem, H., Cheng, L., Pan, Y.: \(L^{p}\) bounds for the function of Marcinkiewicz. Math. Res. Lett. 9, 697–700 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 5.Benedek, A., Calderón, A., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Nat. Acad. Sci. U.S.A. 48, 356–365 (1962)MathSciNetCrossRefMATHGoogle Scholar
- 6.Bourgain, J.: Averages in the plane over convex curves and maximal operators. J. Anal. Math. 47, 69–85 (1986)MathSciNetCrossRefMATHGoogle Scholar
- 7.Cheng, L.C.: On Littlewood–Paley functions. Proc. Am. Math. Soc. 135, 3241–3247 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 8.Chen, J., Fan, D., Ying, Y.: Singular integral operators on function spaces. J. Math. Anal. Appl. 276, 691–708 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 9.Coifman, R., Weiss, G.: Extension of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)MathSciNetCrossRefMATHGoogle Scholar
- 10.Ding, Y., Fan, D., Pan, Y.: On Littlewood–Paley functions and singular integrals. Hokkaido Math. J. 29, 537–552 (2000)MathSciNetCrossRefMATHGoogle Scholar
- 11.Ding, Y., Sato, S.: Littlewood–Paley functions on homogeneous groups. Forum Math. 28, 43–55 (2014)MathSciNetMATHGoogle Scholar
- 12.Duoandikoetxea, J.: Sharp \(L^{p}\) boundedness for a class of square functions. Rev. Mat. Complut. 26(2), 535–548 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 13.Duoandikoetxea, J., Rubio de Francia, J.L.: Maximal functions and singular integral operators via Fourier transform estimates. Invent. Math. 84, 541–561 (1986)MathSciNetCrossRefMATHGoogle Scholar
- 14.Fan, D., Sato, S.: Remarks on Littlewood–Paley functions and singular integrals. J. Math. Soc. Jpn. 54(3), 565–585 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 15.Fan, D., Wu, H.: On the generalized Marcinkiewicz integral operators with rough kernels. Can. Math. Bull. 54(1), 100–112 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 16.Iwaniec, T., Onninen, J.: \(H^{1}\)-estimates of Jacobians by subdeterminants. Math. Ann. 324(2), 341–358 (2002)MathSciNetCrossRefMATHGoogle Scholar
- 17.Keitoku, M., Sato, E.: Block spaces on the unit sphere in \({ R} ^{n}\). Proc. Am. Math. Soc. 119, 453–455 (1993)MathSciNetMATHGoogle Scholar
- 18.Le, H.V.: Singular integrals with mixed homogeneity in Triebel–Lizorkin spaces. J. Math. Anal. Appl. 345, 903–916 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 19.Lu, S., Taibleson, M., Weiss, G.: Spaces Generated by Blocks. Beijing Normal University Press, Beijing (1989)MATHGoogle Scholar
- 20.Sato, S.: Remarks on square functions in the Littlewood–Paley theory. Bull. Aust. Math. Soc. 58, 199–211 (1998)MathSciNetCrossRefMATHGoogle Scholar
- 21.Sato, S.: Estimates for Littlewood–Paley functions and extrapolation. Integral Equ. Oper. Theory 62(3), 429–440 (2008)MathSciNetCrossRefMATHGoogle Scholar
- 22.Sawano, Y., Yabuta, K.: Fractional type Marcinkiewicz integral operators associated to surfaces. J. Inequal. Appl. 2014, 232 (2014)MathSciNetCrossRefMATHGoogle Scholar
- 23.Stein, E.M.: On the functions of Littlewood–Paley, Lusin and Marcinkiewicz. Trans. Am. Math. Soc. 88, 430–466 (1958)MathSciNetCrossRefMATHGoogle Scholar
- 24.Stein, E.M.: The development of square functions in the work of Zygmund. Bull. Am. Math. Soc. 7, 359–376 (1982)MathSciNetCrossRefMATHGoogle Scholar
- 25.Stein, E.M.: Maximal functions. I. Spherical means. Proc. Nat. Acad. Sci. U.S.A 73(7), 2174–2175 (1976)MathSciNetCrossRefMATHGoogle Scholar
- 26.Yabuta, K.: Triebel–Lizorkin space boundedness of Marcinkiewicz integrals associated to surfaces. Appl. Math. A J. Chin. Univ. 30(4), 418–446 (2015)MathSciNetCrossRefMATHGoogle Scholar
- 27.Yano, S.: An extrapolation theorem. J. Math. Soc. Jpn. 3, 296–305 (1951)CrossRefMATHGoogle Scholar
- 28.Walsh, T.: On the function of Marcinkiewicz. Stud. Math. 44, 203–217 (1972)MathSciNetCrossRefMATHGoogle Scholar