Collectanea Mathematica

, Volume 68, Issue 2, pp 265–278 | Cite as

Disjoint supercyclic weighted translations generated by aperiodic elements

Article

Abstract

Given a locally compact group G, the disjoint supercyclicity of finite weighted translations with the same translation part generated by an aperiodic element acting on \(L^p(G)\), \(1\le p<\infty \), was investigated.

Keywords

Supercyclicity Weighted translation Locally compact group \(L^p\)-space 

Mathematics Subject Classification

Primary: 47A16 Secondary: 44A35 43A15 

References

  1. 1.
    Bernal-González, L.: Disjoint hypercyclic operators. Studia Math. 2, 113–131 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bayart, F., Matheron, E.: Matheron, Dynamics of Linear Operators. Camberidge University Press, Camberidge (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Bès, J., Martin, Ö.: Compositional disjoint hypercyclicity equals disjoint supercyclicity. Houston J. Math. 38, 1149–1163 (2012)MathSciNetMATHGoogle Scholar
  4. 4.
    Bès, J., Martin, Ö., Peris, A.: Disjoint hypercyclic linear fractional composition operators. J. Math. Appl. 381, 843–856 (2011)MathSciNetMATHGoogle Scholar
  5. 5.
    Bès, J., Martin, Ö., Peris, A., Shkarin, R.: Disjoint mixing operators. J. Funct. Anal. 263, 1283–1322 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bès, J., Martin, Ö., Sanders, R.: Weighted shifts and disjoint hypercyclicity. J. Operator Theory 72, 15–40 (2014)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bés, J., Peris, A.: Disjointness in hypercyclicity. J. Math. Anal. Appl. 336, 297–315 (2007)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chen, C.C.: Chaotic weighted translations on groups. Arch. Math. 97, 61–68 (2011)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Chen, C.C.: Supercyclic and cesàro hypercyclic weighted transaltions on groups. Taiwanese J. Math. 16, 1815–1827 (2012)MathSciNetMATHGoogle Scholar
  10. 10.
    Chen, C.C.: Hypercyclic weighted translations generated by non-torsion elements. Arch. Math. 101, 135–141 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chen, C.C., Chu, C.H.: Hypercyclicity of weighted convolution operators on homogeneous spaces. Proc. Amer. Math. Soc. 137, 2709–2781 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Chen, C.C., Chu, C.H.: Hypercyclic weighted translations on groups. Proc. Amer. Math. Soc. 139, 2839–2846 (2011)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Grosse-Erdmann, K.G., Manguillot, A.Peris: Linear Chaos. Springer, New York (2011)CrossRefMATHGoogle Scholar
  14. 14.
    Grosser, S., Moskowitz, M.: On central topological groups. Trans. Amer. Math. Soc. 127, 317–340 (1967)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Han, S.A., Liang, Y.X.: Disjoint hypercyclic weighted translations generated by aperiodic elements. Collect. Math. DOI:10.1007/s13348-015-0136-0
  16. 16.
    Hewitt, E., Ross, K.A.: Abstract harmonic analysis. Springer-Verlag, Heidelberg (1979)MATHGoogle Scholar
  17. 17.
    Hilden, H.M., Wallen, L.J.: Some cyclic and non-cyclic vectors of certain operators. Ind. Univ. Math. J. 23, 557–565 (1974)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Liang, Y.X., Zhou, Z.H: Disjoint mixing composition operators on the Hardy space in the unit ball. C. R. Acad. Sci. Paris. Ser. I 352, 289–294 (2014)Google Scholar
  19. 19.
    Liang, Y.X., Zhou, Z.H.: Disjoint supercyclic powers of weighted shifts on weighted sequence spaces. Turk. J. Math. 38, 1007–1022 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Liang, Y.X., Zhou, Z.H.: Hereditarily hypercyclicity and supercyclicity of different weighted shifts. J. Korean Math. Soc. 2, 363–382 (2014)CrossRefMATHGoogle Scholar
  21. 21.
    Liang, Y.X., Zhou, Z.H.: Supercyclic tuples of the adjoint weighted composition operators on Hilbert spaces. Bull. Iranian Math. Soc. 41, 121–139 (2015)MathSciNetMATHGoogle Scholar
  22. 22.
    Liang, Y.X., Zhou, Z.H.: Supercyclic translation \(C_0\)-semigroup on complex sectors. Discrete Contin. Dyn. Syst. 36(1), 361–370 (2016)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Martin, Ö.: Disjoint hypercyclic and supercyclic composition operators, Ph.D thesis, Bowling Green State University (2011)Google Scholar
  24. 24.
    Martin, Ö., Sanders, R.: Disjoint supercyclic weighted shifts, preprint (2016)Google Scholar
  25. 25.
    Salas, H.: Supercyclicity and weighted shifts. Studia Math. 135(1), 55–74 (1999)MathSciNetMATHGoogle Scholar
  26. 26.
    Salas, H.: Dual disjoint hypercyclic weighted shifts. J. Math. Anal. Appl. 374(1), 106–117 (2011)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Salas, H.: The Strong Disjoint Blow-up/Collapse Property, J. Funct. Spaces and Appl. (146517), 6 (2013)Google Scholar
  28. 28.
    Shkarin, S.: A short proof of existence of disjoint hypercyclic operators. J. Math. Anal. Appl. 367, 713–715 (2010)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Sanders, R., Shkarin, S.: Existence of disjoint weakly mixing operators that fail to satisfy the Disjoint Hypercyclicity Criterion. J. Math. Anal. Appl. 417, 834–855 (2014)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Universitat de Barcelona 2016

Authors and Affiliations

  1. 1.School of Mathematical SciencesTianjin Normal UniversityTianjinPeople’s Republic of China
  2. 2.School of TextileTianjin Polytechnic UniversityTianjinPeople’s Republic of China

Personalised recommendations