Collectanea Mathematica

, Volume 66, Issue 2, pp 285–295 | Cite as

Extension of CR maps between real-analytic hypersurfaces of different dimensions

Article

Abstract

We consider a CR mapping \(f: M\rightarrow M'\) between real-analytic hypersurfaces of finite D’Angelo type in complex spaces \({\mathbb C}^{n+1}\) and \({\mathbb C}^{N+1}\), respectively, that extends as a holomorphic correspondence to a neighborhood of some point \(z_0\in M\) and that \(M'\) is Levi-nondegenerate at \(z_0'=f(z_0)\). In this paper, we give sufficient conditions to extend \(f\) as a holomorphic mapping across \(z_0\). In contrast with the equidimensional case, our result fails in general, when \(M'\) is Levi-degenerate at \(z_0'\). The proof uses the transversality of the mapping, which can be regarded as a type of Hopf’s lemma, the existence of points in \(M\) where the rank of the mapping is maximal; equal to \(n+1\) and the reflection principle in several variables. Related results were proved by Huang (Comm Partial Differ Equ 25:299–317, 2000); Pinchuk and Verma (Proc Am Math Soc 129(9):2623–2632, 2001); Diederich and Pinchuk (Doc Math 2:703–712, 1998); Diederich and Pinchuk (J Geom Anal 14(2):231–239, 2004) and Meylan et al. (Asian J Math 7(4):493–509, 2003).

Keywords

Analytic sets CR maps Holomorphic correspondences Segre varieties 

Mathematics Subject Classification (2010)

32H02 32H40 32H35 53C15 

Notes

Acknowledgments

The author would like to thank professor R. Shafikov for pointing out the Example 1 and the referee for his comments and suggestions which improved the paper greatly.

References

  1. 1.
    Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Real submanifolds in complex space and their mappings, Princeton Math. Series 47, Princeton Univ. Press (1999)Google Scholar
  2. 2.
    Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Algebraicity of holomorphic mappings between real algebraic sets in \({\mathbb{C}}^n\). Acta Math. 177(2), 225–273 (1996)CrossRefMathSciNetMATHGoogle Scholar
  3. 3.
    Baouendi, M.S., Ebenfelt, P., Rothschild, L.P.: Transversality of holomorphic mappings between real hypersurfaces in different dimensions. Comm. Anal. Geom. 15(3), 589–611 (2007)CrossRefMathSciNetMATHGoogle Scholar
  4. 4.
    Baouendi, M.S., Jacobowitz, H., Trèves, F.: On the analyticity of CR mappings. Ann. Math. 122, 365–400 (1985)CrossRefMATHGoogle Scholar
  5. 5.
    Baouendi, M.S., Rothschild, L.P.: Germs of CR maps between real-analytic hypersurfaces. Invent. Math. 93, 481–500 (1988)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Boggess, A.: CR manifold and the tangential Cauchy–Riemann complex. Stud. Adv. Math (1991)Google Scholar
  7. 7.
    Chirka, E.M.: Complex Analytic Sets. Kluwer Academic Publishers, Dordrecht, The Netherlands (1989)Google Scholar
  8. 8.
    Coupet, B., Damour, S., Merker, J., Sukhov, A.: Sur l’analyticité des applications CR lisses à valeurs dans un ensemble algébrique réel. C. R. Math. Acad. Sci. Paris 334(11), 953–956 (2002)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    D’Angelo, J.: Real hypersurfaces, orders of contact, and applications. Ann. Math. 115, 615–637 (1982)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Derridj, M.: Le principe de réflexion en des points de faible pseudoconvexité pour des applications holomorphes propres. Invent. Math. 79, 197–215 (1985)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Diederich, K., Fornaess, J.E.: Proper holomorphic mappings between real-analytic pseudoconvex domains in \({\mathbb{C}}^n\). Math. Ann. 282(4), 681–700 (1988)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Diederich, K., Fornaess, J.E.: Pseudoconvex domains with real-analytic boundaries. Ann. Math 2(107), 371–384 (1978)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Diederich, K., Pinchuk, S.: Reflection principle in higher dimensions. Doc. Math. 2, 703–712 (1998)MathSciNetGoogle Scholar
  14. 14.
    Diederich, K., Pinchuk, S.: Analytic sets extending the graphs of holomorphic mappings. J. Geom. Anal. 14(2), 231–239 (2004)CrossRefMathSciNetMATHGoogle Scholar
  15. 15.
    Diederich, K., Pinchuk, S.: Proper holomorphic maps in dimension 2 extend. Indiana Univ. Math. J. 44, 1089–1126 (1995)CrossRefMathSciNetMATHGoogle Scholar
  16. 16.
    Diederich, K., Pinchuk, S.: Regularity of continuous CR maps in arbitrary dimension. Michigan Math. J. 51(1), 111–140 (2003)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Diederich, K., Pinchuk, S.: The geometric reflection principle in several complex variables. Complex Var. Elliptic Equ. 54(3–4), 223–224 (2009)CrossRefMathSciNetMATHGoogle Scholar
  18. 18.
    Diederich, K., Webster, S.M.: A reflection principle for degenerate real hypersurfaces. Duke Math. J. 47, 835–843 (1980)CrossRefMathSciNetMATHGoogle Scholar
  19. 19.
    Forstnerič, F.: Extending proper holomorphic mappings of positive codimension. Invent. Math. 95, 31–62 (1989)CrossRefMathSciNetMATHGoogle Scholar
  20. 20.
    Forstnerič, F.: A survey on proper holomorphic mappings, Proceeding of Year in SCVs at Mittag-Leffler Institute, Math. Notes 38, Princeton, N. J., Princeton University Press, (1992)Google Scholar
  21. 21.
    Han, C.K.: Analyticity of CR equivalences between some real hypersurfaces in \({\mathbb{C}}^n\) with degenerate Levi forms. Invent. Math. 73, 51–69 (1983)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Huang, X.: On the mapping problem for algebraic real hypersurfaces in the complex spaces of different dimensions. Ann. Inst. Fourier (Grenoble) 44(2), 433–463 (1994)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Huang, X.: On some problems in several complex variables and CR geometry, First International Congress of Chinese Mathematicians (Beijing, 1998), eds. L. Yang, S.-T. Yau. AMS/IP Stud. Adv. Math. Vol. 20, pp. 383–396. Providence, RI: American Mathematical Society (2001)Google Scholar
  24. 24.
    Huang, X.: A removable singularity property for CR mappings between real-analytic hypersurfaces. Comm. Partial Differ. Equ. 25, 299–317 (2000)CrossRefMATHGoogle Scholar
  25. 25.
    Lewy, H.: On the boundary behaviour of holomorphic mappings. Accad. Naz. Lincei 35, 1–8 (1977)Google Scholar
  26. 26.
    Merker, J., Meylan, F.: On the Schwarz symmetry principle in a model case. Proc. Amer. Math. Soc. 127, 1097–1102 (1999)CrossRefMathSciNetMATHGoogle Scholar
  27. 27.
    Meylan, F., Mir, N., Zaitsev, D.: Holomorphic extension of smooth CR-mappings between real-analytic and real-algebraic CR-manifolds. Asian J. Math. 7(4), 493–509 (2003)MathSciNetMATHGoogle Scholar
  28. 28.
    Pinchuk, S.: On the analytic continuation of holomorphic mappings. Mat. Sb. 27, 345–392 (1975)Google Scholar
  29. 29.
    Pinchuk, S.: Analytic Continuation of Holomorphic Mappings and the Problem of Holomorphic Classification of Multidimensional Domains, Doctoral Dissertation. Moscow State Univ, Habilitation (1980)Google Scholar
  30. 30.
    Pinchuk, S.: Bogoljubovs theorem on the edge of the wedge for generic manifolds. Math. USSR Sbornik 23, 441–455 (1974)CrossRefGoogle Scholar
  31. 31.
    Pinchuk, S., Sukhov, A.: Extension of CR maps of positive codimension. Proc. Steklov Inst. Math. 253(2), 246–255 (2006)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Pinchuk, S., Verma, K.: Analytic sets and the boundary regularity of CR mappings. Proc. Amer. Math. Soc. 129(9), 2623–2632 (2001)CrossRefMathSciNetMATHGoogle Scholar
  33. 33.
    Shafikov, R., Verma, K.: Extension of holomorphic maps between real hypersurfaces of different dimensions. Ann. Inst. Fourier (Grenoble) 57(6), 2063–2080 (2007)CrossRefMathSciNetMATHGoogle Scholar
  34. 34.
    Trepreau, J.M.: Sur le prolongement holomorphe des fonctions CR définies sur une hypersurface réelle de classe \({\cal {C}}^2\) dans \({\mathbb{C}}^{n}\). Invent. Math. 83, 583–592 (1986)CrossRefMathSciNetMATHGoogle Scholar
  35. 35.
    Vladimirov, V.S.: Methods of the theory of functions of many complex variables, p. 1551. Mit Press MR, Cambridge, MA (1966)Google Scholar
  36. 36.
    Webster, S.: On the mapping problem for algebraic real hypersurfaces. Invent. Math. 43, 53–68 (1977)CrossRefMathSciNetMATHGoogle Scholar
  37. 37.
    Zaitsev, D.: Algebraicity of local holomorphisms between real-algebraic submanifolds of complex spaces. Acta Math. 183(2), 273–305 (1999)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Universitat de Barcelona 2014

Authors and Affiliations

  1. 1.Department of mathematicKing Saud UniversityRiyadhKing Saudi Arabia

Personalised recommendations