Advertisement

Collectanea mathematica

, Volume 62, Issue 1, pp 95–118 | Cite as

Capacitary function spaces

  • Joan Cerdà
  • Joaquim Martín
  • Pilar Silvestre
Article

Abstract

These notes are devoted to the analysis on a capacity space, with capacities as substitutes of measures in the study of function spaces. The goal is to extend to the associated function lattices some aspects of the theory of Banach function spaces, to show how the general theory can be applied to classical function spaces such as Lorentz spaces, and to complete the real interpolation theory for these spaces included in Cerdà (J Math Anal Appl 304:269–295, 2005) and Cerdà et al. (AMS Contemp Math 445:49–55, 2007).

Mathematics Subject Classification (2000)

Primary 46E30 Secondary 46B70 46M35 28A12 

Keywords

Capacity Lorentz spaces Interpolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams D.R.: Choquet integrals in potential theory. Publ. Mat. 42, 3–66 (1998)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Adams D.R., Hedberg L.I.: Function Spaces and Potential Theory. Springer, Berlin (1996)Google Scholar
  3. 3.
    Asekritova, I., Cerdà, J., Krugljak, N.: The Riesz-Herz equivalence for capacitary maximal functions. Rev. Mat. Complut. (to appear)Google Scholar
  4. 4.
    Asekritova I., Krugljak N.: On equivalence of K- and J-methods for (n + 1)-tuples of Banach spaces. Studia Math. 122, 99–116 (1997)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Asekritova I., Krugljak N., Maligranda L., Nikolova L., Persson L.-E.: Lions-Peetre reiteration formulas for triples and their applications. Studia Math. 145, 219–254 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Barza S., Persson L.E., Soria J.: Multidimensional rearrangement and Lorentz spaces. Acta Math. Hungar 104, 203–224 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bennett C., Sharpley B.: Interpolation of Operators. Academic Press Inc, New York (1988)zbMATHGoogle Scholar
  8. 8.
    Bergh J., Löfström J.: Interpolation Spaces. Springer, Berlin (1976)zbMATHGoogle Scholar
  9. 9.
    Boza S., Soria J.: Rearrangement transformations on general measure spaces. Indag. Math. 19, 33–51 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Brudnyi Y., Krugljak N.: Interpolation Functors and Interpolation Spaces. North-Holland, Amsterdam (1991)zbMATHGoogle Scholar
  11. 11.
    Carleson L.: Selected Problems on Exceptional Sets. D. Van Nostrand Company, Inc., Princeton (1967)zbMATHGoogle Scholar
  12. 12.
    Carro, M.J., Raposo, J.A., Soria, J.: Recent developments in the theory of Lorentz spaces and weighted inequalities. Mem. Am. Math. Soc. 187 (2007)Google Scholar
  13. 13.
    Carro M.J., Soria J.: Weighted Lorentz spaces and the Hardy operator. J. Funct. Anal. 112, 480–494 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Cerdà J.: Lorentz capacity spaces. AMS Contemp. Math. 445, 49–55 (2007)Google Scholar
  15. 15.
    Cerdà J., Coll H., Martín J.: Entropy function spaces and interpolation. J. Math. Anal. Appl. 304, 269–295 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Choquet, G.: Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1953–1954)Google Scholar
  17. 17.
    Fefferman R.A.: A theory of entropy in Fourier analysis. Adv. Math. 30, 171–201 (1978)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Fuglede B.: On the theory of potentials in locally compact spaces. Acta Math. 103, 139–215 (1960)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Garcia-Domingo J.L., Soria J.: A decreasing rearrangement for functions on homogeneous trees. Eur. J. Combin. 26, 201–225 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Maz’ja V.: Sobolev Spaces (translated from the Russian by T. O. Shaposhnikova). Springer, Berlin (1985)Google Scholar
  21. 21.
    Meyers N.: A theory of capacities for potentials of functions in Lebesgue classes. Math. Scand. 103, 255–292 (1970)MathSciNetGoogle Scholar
  22. 22.
    Sparr G.: Interpolation of several Banach spaces. Ann. Mat. Pura Appl. 99, 247–316 (1974)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Universitat de Barcelona 2010

Authors and Affiliations

  1. 1.Departament de Matemàtica Aplicada i AnàlisiUniversitat de BarcelonaBarcelonaSpain
  2. 2.Departament de MatemàtiquesUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations