Advertisement

Philosophy & Technology

, Volume 30, Issue 2, pp 161–178 | Cite as

Towards Scalable Governance: Sensemaking and Cooperation in the Age of Social Media

  • Iyad RahwanEmail author
Research Article

Abstract

Cybernetics, or self-governance of animal and machine, requires the ability to sense the world and to act on it in an appropriate manner. Likewise, self-governance of a human society requires groups of people to collectively sense and act on their environment. I argue that the evolution of political systems is characterized by a series of innovations that attempt to solve (among others) two ‘scalability’ problems: scaling up a group’s ability to make sense of an increasingly complex world, and to cooperate in increasingly larger groups. I then explore some recent efforts toward using the Internet and social media to provide alternative means for addressing these scalability challenges, under the banners of crowdsourcing and computer-supported argumentation. I present some lessons from those efforts about the limits of technology, and the research directions more likely to bear fruit.

Keywords

Argumentation Cooperation Crowdsourcing Governance 

References

  1. Alstott, J., Madnick, S., Velu, C., & Sánchez, A. (2014). Homophily and the speed of social mobilization: the effect of acquired and ascribed traits. PloS one, 9(4), e95140.CrossRefGoogle Scholar
  2. Arrow, K.J., Forsythe, R., Gorham, M., Hahn, R., Hanson, R., Ledyard, J.O., Levmore, S., Litan, R., Milgrom, P., Nelson, F.D., & et al (2008). The promise of prediction markets. Science-new york then washington-, 320(5878), 877.CrossRefGoogle Scholar
  3. Awad, E., Booth, R., Tohme, F., & Rahwan, I. (2016). Judgement aggregation in multi-agent argumentation. Journal of Logic and Computation, (in press).Google Scholar
  4. Baldassarri, D., & Grossman, G. (2011). Centralized sanctioning and legitimate authority promote cooperation in humans. Proceedings of the National Academy of Sciences, 108(27), 11023–11027.CrossRefGoogle Scholar
  5. Bernstein, A., Klein, M., & Malone, T.W. (2012). Programming the global brain. Communications of the ACM, 55(5), 41–43.CrossRefGoogle Scholar
  6. Bevir, M. (2012). Governance: A very short introduction, volume 333. Oxford University Press.Google Scholar
  7. Bex, F., Lawrence, J., Snaith, M., & Reed, C. (2013). Implementing the argument web. Communications of the ACM, 56(10), 66–73.CrossRefGoogle Scholar
  8. Boyd, R., & Richerson, P.J. (2004). The origin and evolution of cultures. Oxford University Press.Google Scholar
  9. Bryan, C., Tambini, D., & Tsagarousianou, R. (2002). Cyberdemocracy, Technology, cities and civic networks. Routledge.Google Scholar
  10. Chadwick, A. (2006). Internet politics: States, citizens and new communication technologies. USA: Oxford University Press.Google Scholar
  11. Chen, Y., Lai, J.K., Parkes, D.C., & Procaccia, A.D. (2013). Truth, justice, and cake cutting. Games and Economic Behavior, 77(1), 284–297.CrossRefGoogle Scholar
  12. Chen, Y., & Pennock, D.M. (2010). Designing markets for prediction. AI Magazine, 31(4), 42–52.Google Scholar
  13. Chesñevar, C.I., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., Vreeswijk, G., & Willmott, S. (2006). Towards an argument interchange format. The Knowledge Engineering Review, 21(4), 293–316.CrossRefGoogle Scholar
  14. Conover, M., Ratkiewicz, J., Francisco, M.R., Gonçalves, B., Menczer, F., & Flammini, A. (2011). Political polarization on twitter. ICWSM, 133, 89–96.Google Scholar
  15. Dahlberg, L. (2001). The internet and democratic discourse: exploring the prospects of online deliberative forums extending the public sphere. Information, Communication & Society, 4(4), 615– 633.CrossRefGoogle Scholar
  16. DARPA (2011). Darpa shredder challenge. http://archive.darpa.mil/shredderchallenge. Accessed: 2013-12-26.
  17. Dickinson, J.L., Zuckerberg, B., & Bonter, D.N. (2010). Citizen science as an ecological research tool: challenges and benefits. Annual review of ecology, evolution, and systematics, 41, 149–172.CrossRefGoogle Scholar
  18. Dietrich, F., & List, C. (2007a). Arrow’s theorem in judgment aggregation. Social Choice and Welfare, 29(1), 19–33.CrossRefGoogle Scholar
  19. Dietrich, F., & List, C. (2007b). Strategy-proof judgment aggregation. Economics and Philosophy, 23(03), 269–300.CrossRefGoogle Scholar
  20. Dietz, T., Ostrom, E., & Stern, P.C. (2003). The struggle to govern the commons. Science, 302(5652), 1907–1912.CrossRefGoogle Scholar
  21. Doan, A., Ramakrishnan, R., & Halevy, A.Y. (2011). Crowdsourcing systems on the world-wide web. Communications of the ACM, 54(4), 86–96.CrossRefGoogle Scholar
  22. Endriss, U., Grandi, U., & Porello, D. (2012). Complexity of judgment aggregation. Journal of Artificial Intelligence Research, 45, 481–514.Google Scholar
  23. Faliszewski, P., & Procaccia, A.D. (2010). Ai’s war on manipulation: are we winning?. AI Magazine, 31(4), 53–64.Google Scholar
  24. Fukuyama, F. (2011). The origins of political order: from prehuman times to the French Revolution. Profile books.Google Scholar
  25. Goodwin, J. (2009). The authority of wikipedia. In Argument cultures: Proceedings of the Ontario Society for the Study of Argumentation conference: Ontario Society for the Study of Argumentation.Google Scholar
  26. Gupta, A., Kumaraguru, P., Castillo, C., & Meier, P. (2014). Tweetcred: Real-time credibility assessment of content on twitter. In Social Informatics (pp. 228–243): Springer.Google Scholar
  27. Gürerk, Ö., Irlenbusch, B., & Rockenbach, B. (2006). The competitive advantage of sanctioning institutions. Science, 312(5770), 108–111.CrossRefGoogle Scholar
  28. Hague, B.N. (1999). Digital democracy: Discourse and decision making in the information age. Psychology Press.Google Scholar
  29. Hamilton, W.D. (1963). The evolution of altruistic behavior, (pp. 354–356): American naturalist.Google Scholar
  30. Hardin, G. (1968). The tragedy of the commons. science, 162(3859), 1243–1248.CrossRefGoogle Scholar
  31. Haviland, W., Prins, H., McBride, B., & Walrath, D. (2013). Cultural anthropology: the human challenge. Cengage Learning.Google Scholar
  32. Hayek, F.A. (1945). The use of knowledge in society. The American Economic Review, 35(4), 519–530.Google Scholar
  33. Henrich, J. (2015a). The Secret of Our Success: How Culture Is Driving Human Evolution, Domesticating Our Species, and Making Us Smarter. Princeton University Press.Google Scholar
  34. Henrich, J. (2015b). The secret of our success: how culture is driving human evolution, domesticating our species, and making us smarter. Princeton University Press.Google Scholar
  35. Hobbes, T. (1651). Leviathan, or, the Matter, Forme, and Power of a Common-Wealth Ecclesiasticall and Civill.Google Scholar
  36. Hoffman, K., Zage, D., & Nita-Rotaru, C. (2009). A survey of attack and defense techniques for reputation systems. ACM Computing Surveys (CSUR), 42(1), 1.CrossRefGoogle Scholar
  37. Holland, J.H. (2000). Emergence: from chaos to order. Oxford University Press.Google Scholar
  38. Howe, J. (2006). The rise of crowdsourcing. Wired magazine, 14(6), 1–4.Google Scholar
  39. Hunter, A. (2013). Modelling uncertainty in persuasion. In International Conference on Scalable Uncertainty Management (pp. 57–70): Springer.Google Scholar
  40. Iribarren, J., & Moro, E. (2009). Impact of human activity patterns on the dynamics of information diffusion. Physical Review Letters, 103(3).Google Scholar
  41. Jøsang, A., Ismail, R., & Boyd, C. (2007). A survey of trust and reputation systems for online service provision. Decision support systems, 43(2), 618–644.CrossRefGoogle Scholar
  42. Kittur, A., Chi, E., Pendleton, B.A., Suh, B., & Mytkowicz, T. (2007). Power of the few vs. wisdom of the crowd: Wikipedia and the rise of the bourgeoisie. World wide web, 1(2), 19.Google Scholar
  43. Kittur, A., Smus, B., Khamkar, S., & Kraut, R.E. (2011). Crowdforge: Crowdsourcing complex work. In Proceedings of the 24th annual ACM symposium on User interface software and technology (pp. 43–52): ACM.Google Scholar
  44. Kulkarni, A., Can, M., & Hartmann, B. (2012). Collaboratively crowdsourcing workflows with turkomatic. In Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work (pp. 1003–1012): ACM.Google Scholar
  45. Kulkarni, A.P., Can, M., & Hartmann, B. (2011). Turkomatic: automatic recursive task and workflow design for mechanical turk. In CHI’11 Extended Abstracts on Human Factors in Computing Systems (pp. 2053–2058): ACM.Google Scholar
  46. Lerman, K. (2016). Information is not a virus, and other consequences of human cognitive limits. Future Internet, 8(2), 21.CrossRefGoogle Scholar
  47. Lessig, L. (1998). Open code and open societies: values of internet governance. Chi.-Kent L. Rev., 74, 1405.Google Scholar
  48. Liben-Nowell, D., Novak, J., Kumar, R., Raghavan, P., & Tomkins, A. (2005). Geographic routing in social networks. Proceedings of the National Academy of Sciences, 102(33), 11623–11628.CrossRefGoogle Scholar
  49. Lin, A.Y.-M., Huynh, A., Lanckriet, G., & Barrington, L. (2014). Crowdsourcing the unknown: the satellite search for genghis khan. PloS one, 9(12), e114046.CrossRefGoogle Scholar
  50. List, C., & Polak, B. (2010). Introduction to judgment aggregation. Journal of economic theory, 145(2), 441–466.CrossRefGoogle Scholar
  51. Lorenz, J., Rauhut, H., Schweitzer, F., & Helbing, D. (2011). How social influence can undermine the wisdom of crowd effect. Proceedings of the National Academy of Sciences, 108(22), 9020–9025.CrossRefGoogle Scholar
  52. Lupia, A., & McCubbins, M. (1998). The democratic dilemma: Can citizens learn what they need to know?: Cambridge University Press.Google Scholar
  53. Mani, A., Rahwan, I., & Pentland, A. (2013). Inducing peer pressure to promote cooperation. Scientific reports, 3.Google Scholar
  54. Mao, A., Mason, W., Suri, S., & Watts, D.J. (2016). An experimental study of team size and performance on a complex task. PloS one, 11(4), e0153048.CrossRefGoogle Scholar
  55. Medina, E. (2011). Cybernetic revolutionaries: technology and politics in Allende’s Chile. MIT Press.Google Scholar
  56. Meier, P. (2015). Digital humanitarians. How Big Data Is Changing the Face of Humanitarian Response. CRC.Google Scholar
  57. Mercier, H., & Sperber, D. (2011). Why do humans reason? arguments for an argumentative theory. Behavioral and brain sciences, 34(02), 57–74.CrossRefGoogle Scholar
  58. Mesoudi, A., Whiten, A., & Laland, K.N. (2006). Towards a unified science of cultural evolution. Behavioral and Brain Sciences, 29(04), 329–347.Google Scholar
  59. Minsky, M. (1988). Society of mind. Simon and Schuster.Google Scholar
  60. Morozov, E. (2011). The Net Delusion: How not to liberate the world. Penguin.Google Scholar
  61. Moulin, H., Brandt, F., Conitzer, V., Endriss, U., Lang, J., & Procaccia, A.D. (2016). Handbook of Computational Social Choice. Cambridge University Press.Google Scholar
  62. Muchnik, L., Aral, S., & Taylor, S.J. (2013). Social influence bias: a randomized experiment. Science, 341(6146), 647–651.CrossRefGoogle Scholar
  63. Naroditskiy, V., Rahwan, I., Cebrian, M., & Jennings, N. (2012). Verification in referral-based crowdsourcing. PLoS ONE, 7(10), e45924.CrossRefGoogle Scholar
  64. Narodny, I. (1912). Marconi’s plans for the world. Technical World Magazine, 145–150.Google Scholar
  65. Nisan, N., Roughgarden, T., Tardos, E., & Vazirani, V.V. (2007). Algorithmic game theory Vol. 1. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  66. Nowak, M.A., & Sigmund, K. (1998). Evolution of indirect reciprocity by image scoring. Nature, 393(6685), 573–577.CrossRefGoogle Scholar
  67. Parkes, D.C., & Wellman, M.P. (2015). Economic reasoning and artificial intelligence. Science, 349(6245), 267–272.CrossRefGoogle Scholar
  68. Pentland, A.S. (2013). Beyond the echo chamber. Harvard Business Review, 91 (11), 80–+.Google Scholar
  69. Pickard, G., Pan, W., Rahwan, I., Cebrian, M., Crane, R., Madan, A., & Pentland, A. (2011). Time-critical social mobilization. Science, 334(6055), 509–512.CrossRefGoogle Scholar
  70. Piketty, T. (1999). The information-aggregation approach to political institutions. European Economic Review, 43(4), 791–800.CrossRefGoogle Scholar
  71. Plato (2015). First Alcibiades. CreateSpace Independent Publishing Platform.Google Scholar
  72. Popoola, A., Krasnoshtan, D., Toth, A.-P., Naroditskiy, V., Castillo, C., Meier, P., & Rahwan, I. (2013). Information verification during natural disasters. In Proceedings of the 22nd international conference on World Wide Web companion (pp. 1029–1032): International World Wide Web Conferences Steering Committee.Google Scholar
  73. Procaccia, A.D. (2013). Cake cutting: not just child’s play. Communications of the ACM, 56(7), 78–87.CrossRefGoogle Scholar
  74. Rahwan, I. (2008). Mass argumentation and the Semantic Web. Journal of Web Semantics, 6(1), 29–37.CrossRefGoogle Scholar
  75. Rahwan, I., Banihashemi, B., Reed, C., Walton, D., & Abdallah, S. (2011). Representing and classifying arguments on the semantic web. The Knowledge Engineering Review, 26(04), 487–511.CrossRefGoogle Scholar
  76. Rahwan, I., Dsouza, S., Rutherford, A., Naroditskiy, V., McInerney, J., Venanzi, M., Jennings, N.R., & Cebrian, M. (2013). Global manhunt pushes the limits of social mobilization. IEEE Computer, 46(4).Google Scholar
  77. Rahwan, I., & Larson, K. (2008a). Mechanism design for abstract argumentation. In Padgham, L., Parkes, D., Mueller, J., & Parsons, S. (Eds.) 7th International Joint Conference on Autonomous Agents & Multi Agent Systems, AAMAS’2008, Estoril, Portugal (pp. 1031–1038).Google Scholar
  78. Rahwan, I., & Larson, K. (2008b). Pareto optimality in abstract argumentation. In Fox, D., & Gomes, C. (Eds.) Proceedings of the 23rd AAAI Conference on Artificial Intelligence (AAAI-2008), Menlo Park CA, USA.Google Scholar
  79. Rahwan, I., Larson, K., & Tohmé, F. (2009a). A characterisation of strategy-proofness for grounded argumentation semantics. In Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI) (pp. 251–256).Google Scholar
  80. Rahwan, I., Simari, G.R., & van Benthem, J. (2009b). Argumentation in artificial intelligence Vol. 47: Springer.Google Scholar
  81. Rahwan, I., & Tohmé, F. (2010). Collective argument evaluation as judgement aggregation. In Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: volume 1-Volume 1, pages 417–424. International Foundation for Autonomous Agents and Multiagent Systems.Google Scholar
  82. Rahwan, I., Zablith, F., & Reed, C. (2007). Laying the foundations for a world wide argument web. Artificial Intelligence, 171(10–15), 897–921.CrossRefGoogle Scholar
  83. Read, D. (2001). Intrapersonal dilemmas. Human Relations, 54(8), 1093–1117.CrossRefGoogle Scholar
  84. Reagle, J.M. (2010). Good faith collaboration: The culture of Wikipedia. MIT Press.Google Scholar
  85. Rienstra, T., Thimm, M., & Oren, N. (2013). Opponent models with uncertainty for strategic argumentation. In IJCAI.Google Scholar
  86. Rutherford, A., Cebrian, M., Dsouza, S., Moro, E., Pentland, A., & Rahwan, I. (2013a). The limits of social mobilization. PNAS, 110(16), 6281–6286.CrossRefGoogle Scholar
  87. Rutherford, A., Cebrian, M., Rahwan, I., Dsouza, S., McInerney, J., Naroditskiy, V., Venanzi, M., Jennings, N., deLara, J., Wahlstedt, E., & Miller, S. (2013b). Targted social mobilisation in a global manhunt. PLOS ONE, (in press).Google Scholar
  88. Sakama, C., Caminada, M., & Herzig, A. (2015). A formal account of dishonesty. Logic Journal of IGPL, 23(2), 259–294.CrossRefGoogle Scholar
  89. Schelling, T.C. (2006). Micromotives and macrobehavior. WW Norton & Company.Google Scholar
  90. Sigmund, K., De Silva, H., Traulsen, A., & Hauert, C. (2010). Social learning promotes institutions for governing the commons. Nature, 466(7308), 861–863.CrossRefGoogle Scholar
  91. Stefanovitch, N., Alshamsi, A., Cebrian, M., & Rahwan, I. (2014). Error and attack tolerance of collective problem solving: The darpa shredder challenge. EPJ Data Science, 3(13).Google Scholar
  92. Strogatz, S.H. (2014). Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. Westview press.Google Scholar
  93. Taleb, N.N. (2012). Antifragile: Things that gain from disorder, Vol. 3: Random House Incorporated.Google Scholar
  94. Tang, J., Cebrian, M., Giacobe, N., Kim, H., Kim, T., & Wickert, D. (2011). Reflecting on the DARPA Red Balloon Challenge. Communications of the ACM, 54(4), 78–85.CrossRefGoogle Scholar
  95. Tausczik, Y.R., Kittur, A., & Kraut, R.E. (2014). Collaborative problem solving: a study of mathoverflow. In Proceedings of the 17th ACM conference on Computer supported cooperative work & social computing (pp. 355–367): ACM.Google Scholar
  96. Thagard, P. (2002). Coherence in thought and action. MIT press.Google Scholar
  97. Tomasello, M. (2009). Why we cooperate. MIT press.Google Scholar
  98. Trivers, R.L. (1971). The evolution of reciprocal altruism. Quarterly review of biology, 35–57.Google Scholar
  99. Weng, L., Flammini, A., Vespignani, A., & Menczer, F. (2012). Competition among memes in a world with limited attention. Scientific reports, 2.Google Scholar
  100. Wiener, N., & et al (1948). Cybernetics. Hermann Paris.Google Scholar
  101. Wolfers, J., & Zitzewitz, E. (2004). Prediction markets. The Journal of Economic Perspectives, 18(2), 107–126.CrossRefGoogle Scholar
  102. Wu, T., & Vietor, M. (2011). The master switch: The rise and fall of information empires. Vintage Books.Google Scholar
  103. Yoeli, E., Hoffman, M., Rand, D.G., & Nowak, M.A. (2013). Powering up with indirect reciprocity in a large-scale field experiment. Proceedings of the National Academy of Sciences, 110(Supplement 2), 10424–10429.CrossRefGoogle Scholar
  104. Young, H.P. (2001). Individual strategy and social structure: An evolutionary theory of institutions. Princeton University Press.Google Scholar
  105. Zhang, H., Law, E., Miller, R., Gajos, K., Parkes, D., & Horvitz, E. (2012). Human computation tasks with global constraints. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 217–226): ACM.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations