Philosophy & Technology

, Volume 30, Issue 2, pp 209–238 | Cite as

A Plea for Ecological Argument Technologies

  • Fabio Paglieri
Research Article


In spite of significant research efforts, argument technologies do not seem poised to scale up as much as most commentators would hope or even predict. In this paper, I discuss what obstacles bar the way to more widespread success of argument technologies and venture some suggestions on how to circumvent such difficulties: doing so will require a significant shift in how this research area is typically understood and practiced. I begin by exploring a much broader yet closely related question: To what extent are people natively good at arguing? This issue has always been central to philosophical reflection and it has become even more urgent nowadays, with the explosion of persuasive technologies and unprecedented opportunities for large-scale social influence. The answer hinges on what aspect of argumentation is taken under consideration: evidence suggests that people are relatively bad at analyzing the structure of arguments, especially when these are presented out of context and in abstract terms; in contrast, data show that even laymen tend to excel in the interactive practice of argumentation, in particular when motivation is high and something significant is at stake. Unfortunately, current argument technologies are more closely tailored to the former type of activity than to the latter, which is the main reason behind their relative lack of success with the general public. Changing this state of affair will require a commitment to ecological argument technologies: that is, technologies designed to support real-time, engaging and meaningful argumentative interactions performed by laypeople in their ordinary life, instead of catering to the highly specific needs of a minority of niche users (typically, argumentation scholars).


Argumentation Argument technologies Psychology of reasoning Ecological rationality 


  1. Amgoud, L., & Prade, H. (2009). Using arguments for making and explaining decisions. Artificial Intelligence, 173(3–4), 413–436.CrossRefGoogle Scholar
  2. Antoci, A., Sabatini, F., & Sodini, M. (2015). Online and offline social participation and social poverty traps. Journal of Mathematical Sociology. forthcoming.Google Scholar
  3. Baroni, P., & Giacomin, M. (2007). On principle-based evaluation of extension-based argumentation semantics. Artificial Intelligence, 171(10), 675–700.CrossRefGoogle Scholar
  4. Bench-Capon, T., & Dunne, P. (2007). Argumentation in artificial intelligence. Artificial Intelligence, 171(10), 619–641.CrossRefGoogle Scholar
  5. Besnar, P., & Hunter, A. (2001). A logic-based theory of deductive arguments. Artificial Intelligence, 128(1–2), 203–235.CrossRefGoogle Scholar
  6. Bex, F., Lawrence, J., Snaith, M., & Reed, C. (2013). Implementing the argument web. Communications of the ACM, 56(10), 66–73.CrossRefGoogle Scholar
  7. Bex, F., Snaith, M., Lawrence, J., & Reed, C. (2014). ArguBlogging: an application for the argument web. Web Semantics: Science, Services and Agents on the World Wide Web, 25, 9–15.CrossRefGoogle Scholar
  8. Boudry, M., Pigliucci, M., & Paglieri, F. (2015). The fake, the flimsy, and the fallacious: demarcating arguments in real life. Argumentation, 29(4), 431–456.CrossRefGoogle Scholar
  9. Buckingham Shum, S. (2008). Cohere: towards web 2.0 argumentation. In P. Besnard, S. Doutre, & A. Hunter (Eds.), Computational models of argument: proceedings of COMMA 2008 (pp. 97–108). Amsterdam: IOS Press.Google Scholar
  10. Buckingham Shum, S., Selvin, A., Sierhuis, M., Conklin, J., Haley, C., & Nuseibeh, B. (2006). Hypermedia support for argumentation-based rationale. In A. Dutoit, R. McCall, I. Mistrík, & B. Paech (Eds.), Rationale management in software engineering (pp. 111–132). Berlin: Springer.CrossRefGoogle Scholar
  11. Butterworth, J., & Thwaites, G. (2013). Thinking skills: critical thinking and problem solving (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
  12. Cabrio, E., & Villata, S. (2013). A natural language bipolar argumentation approach to support users in online debate interactions. Argument & Computation, 4(3), 209–230.CrossRefGoogle Scholar
  13. Caminada, M., & Amgoud, L. (2007). On the evaluation of argumentation formalisms. Artificial Intelligence, 171(5–6), 286–310.CrossRefGoogle Scholar
  14. Carbogim, D., Robertson, D., & Lee, J. (2000). Argument-based applications to knowledge engineering. The Knowledge Engineering Review, 15(2), 119–149.CrossRefGoogle Scholar
  15. Chang, C. F., Miller, A., & Ghose, A. (2010). Mixed-initiative argumentation: group decision support in medicine. In P. Kostkova (Ed.), Electronic healthcare: proceedings of eHealth 2009 (pp. 43–50). Berlin: Springer.CrossRefGoogle Scholar
  16. Chesnevar, C., McGinnis, J., Modgil, S., Rahwan, I., Reed, C., Simari, G., South, M., Vreeswijk, G., & Willmott, S. (2006). Towards an argument interchange format. Knowledge Engineering Review, 21(4), 293–316.CrossRefGoogle Scholar
  17. Collins, P., Hahn, U., von Gerber, Y., & Olsson, E. (2015). The bi-directional relationship between source characteristics and message content. In D. Noelle, R. Dale, A. Warlaumont, J. Yoshimi, T. Matlock, C. Jennings & P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (pp. 423–428). Austin, TX: Cognitive Science Society.Google Scholar
  18. Conklin, J., Selvin, A., Buckingham Shum, S., & Sierhuis, M. (2001). Facilitated hypertext for collective sensemaking: 15 years on from gIBIS. In K. Grønbæk, H. Davis &Y. Douglas (Eds.), Hypertext’01: Proceedings of the 12th ACM Conference on Hypertext and Hypermedia (pp. 123–124). New York: ACM.Google Scholar
  19. Corner, A., & Hahn, U. (2012). Normative theories of argumentation: are some norms better than others? Synthese, 190(16), 3579–3610.CrossRefGoogle Scholar
  20. de Moor, A., & Aakhus, M. (2006). Argumentation support: from technologies to tools. Communications of the ACM, 49(3), 93–98.CrossRefGoogle Scholar
  21. Duggan, M. (2014). Online harassment. Washington: Pew Research Internet Project.Google Scholar
  22. Dung, P. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming, and n-person games. Artificial Intelligence, 77, 321–357.CrossRefGoogle Scholar
  23. Dung, P., Kowalski, R., & Toni, F. (2006). Dialectic proof procedures for assumption-based, admissible argumentation. Artificial Intelligence, 170(2), 114–159.CrossRefGoogle Scholar
  24. Ellison, N., Steinfield, C., & Lampe, C. (2007). The benefits of facebook friends: social capital and college students’ use of online social network sites. Journal of Computer-Mediated Communication, 12, 114–1168.CrossRefGoogle Scholar
  25. Ennis, R. (1989). Critical thinking and subject specificity: clarification and needed research. Educational Researcher, 18(3), 4–10.CrossRefGoogle Scholar
  26. Ennis, R. (1993). Critical thinking assessment. Theory Into Practice, 32(3), 179–186.CrossRefGoogle Scholar
  27. Facione, P. (Ed.) (1990). Critical thinking: a statement of expert consensus for purposes of educational assessment and instruction. American Philosophical Association: ERIC document ED 315–423.Google Scholar
  28. Finocchiaro, M. (1981). Fallacies and the evaluation of reasoning. American Philosophical Quarterly, 18(1), 13–22.Google Scholar
  29. Fiske, S., & Taylor, S. (1984). Social cognition. Reading: Addison-Wesley.Google Scholar
  30. Floridi, L. (2009). Logical fallacies as informational shortcuts. Synthese, 167, 317–325.CrossRefGoogle Scholar
  31. Fogg, B. J. (2003). Persuasive technology: using computers to change what we think and do. San Francisco: Morgan Kaufmann.Google Scholar
  32. Frederick, S. (2005). Cognitive reflection and decision making. Journal of Economic Perspectives, 19(4), 25–42.CrossRefGoogle Scholar
  33. Gabbriellini, S., & Torroni, P. (2012). Large-scale agreements via microdebates. In S. Ossowski, G. Vouros & F. Toni (Eds.), AT 2012: Proceedings of the 1st International Conference on Agreement Technologies (pp. 366–377). Tilburg: Scholar
  34. Garcia, A., & Simari, G. (2014). Defeasible logic programming: DeLP-servers, contextual queries, and explanations for answers. Argument & Computation, 5(1), 63–88.CrossRefGoogle Scholar
  35. Garrison, D. R., Anderson, T., & Archer, W. (2001). Critical thinking, cognitive presence, and computer conferencing in distance education. American Journal of Distance Education, 15(1), 7–23.CrossRefGoogle Scholar
  36. Gigerenzer, G., & Selten, R. (Eds.). (2001). Bounded rationality: the adaptive toolbox. Cambridge: The MIT Press.Google Scholar
  37. Gigerenzer, G., Hertwig, R., & Pachur, T. (Eds.). (2011). Heuristics: the foundations of adaptive behavior. New York: Oxford University Press.Google Scholar
  38. Goodwin, J. (1998). Forms of authority and the real ad verecundiam. Argumentation, 12(2), 267–280.CrossRefGoogle Scholar
  39. Gordon, T. (2010). An overview of the Carneades argumentation support system. In C. Tindale & C. Reed (Eds.), Dialectics, dialogue and argumentation. An examination of Douglas Walton’s theories of reasoning (pp. 145–156). London: College Publications.Google Scholar
  40. Govier, T. (1987). Problems in argument analysis and evaluation. Dordrecht: Foris.Google Scholar
  41. Groarke, L. (2009). What’s wrong with the California critical thinking skills test? CT testing and accountability. In J. Sobocan & L. Groarke (Eds.), Critical thinking education and assessment: can higher order thinking be tested? (pp. 35–54). London: The Althouse Press.Google Scholar
  42. Habermas, J. (1984). The theory of communicative action. Boston: Beacon.Google Scholar
  43. Hahn, U., & Oaksford, M. (2007). The rationality of informal argumentation: a Bayesian approach to reasoning fallacies. Psychological Review, 114, 704–732.CrossRefGoogle Scholar
  44. Hahn, U., Harris, A. J. L., & Corner, A. (2009). Argument content and argument source: an exploration. Informal Logic, 29(4), 337–367.CrossRefGoogle Scholar
  45. Hahn, U., Oaksford, M., & Harris, A. J. L. (2012). Testimony and argument: a Bayesian perspective. In F. Zenker (Ed.), Bayesian argumentation (pp. 15–38). Dordrecht: Springer.Google Scholar
  46. Hahn, U., Oaksford, M., & Harris, A. J. L. (2013). Rational inference, rational argument. Argument & Computation, 4, 21–35.CrossRefGoogle Scholar
  47. Hamblin, C. (1970). Fallacies. London: Methuen.Google Scholar
  48. Harris, A. J. L., Hsu, A. S., & Madsen, J. K. (2012). Because Hitler did it! Quantitative tests of Bayesian argumentation using ad hominem. Thinking and Reasoning, 18(3), 311–343.CrossRefGoogle Scholar
  49. Hintikka, J. (1987). The fallacy of fallacies. Argumentation, 1(3), 211–238.CrossRefGoogle Scholar
  50. Hitchcock, D. (1995). Do the fallacies have a place in the teaching of reasoning skills or critical thinking? In H. V. Hansen & R. C. Pinto (Eds.), Fallacies: classical and contemporary readings (pp. 319–327). University Park: Penn State University Press.Google Scholar
  51. Hitchcock, D. (2006). Informal logic and the concept of argument. In D. Jacquette (Ed.), Philosophy of logic (Handbook of the philosophy of science, Vol. Volume 5, pp. 101–129). Amsterdam: Elsevier.Google Scholar
  52. Hitchcock, D. (2007). Why there is no argumentum ad hominem fallacy. In F. H. van Eemeren & B. Garssen (Eds.), Proceedings of the Sixth Conference of the International Society for the Study of Argumentation (Volume 1, pp. 615–620). Amsterdam: Sic Sat.Google Scholar
  53. Introne, J., & Iandoli, L. (2014). Improving decision-making performance through argumentation: an argument-based decision support system to compute with evidence. Decision Support Systems, 64, 79–89.CrossRefGoogle Scholar
  54. Janier, M., Lawrence, J., & Reed, C. (2014). OVA+: an argument analysis interface. In S. Parsons, N. Oren, C. Reed & F. Cerutti (Eds.), Computational Models of Argument: Proceedings of COMMA 2014 (pp. 463–464). Amsterdam: IOS PressGoogle Scholar
  55. Johnson, R., & Blair, A. (1977). Logical self-defense. Toronto: McGraw-Hill Ryerson.Google Scholar
  56. Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar, Straus and Giroux.Google Scholar
  57. Karacapilidis, N., & Papadias, D. (2001). Computer supported argumentation and collaborative decision making: the HERMES system. Information Systems, 26(4), 259–277.CrossRefGoogle Scholar
  58. Karunatillake, N., Jennings, N., Rahwan, I., & McBurney, P. (2009). Dialogue games that agents play within a society. Artificial Intelligence, 173(9–10), 935–981.CrossRefGoogle Scholar
  59. Kirschner, P. (2015). Facebook as learning platform: argumentation superhighway or dead-end street? Computers in Human Behavior, 53, 621–625.CrossRefGoogle Scholar
  60. Kirschner, P., Buckingham Shum, S., & Carr, C. (Eds.). (2003). Visualizing argumentation. Software tools for collaborative and educational sense-making. Berlin: Springer.Google Scholar
  61. Klein, M. (2012). Enabling large-scale deliberation using attention-mediation metrics. Journal of Computer-Supported Cooperative Work, 21(4), 449–473.CrossRefGoogle Scholar
  62. Klein, M., & Convertino, G. (2014). An embarrassment of riches. Communications of the ACM, 57(11), 40–42.CrossRefGoogle Scholar
  63. Kuhn, D. (1991). The skills of arguments. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  64. Kunda, Z. (1990). The case for motivated reasoning. Psychological Bulletin, 108, 480–498.Google Scholar
  65. Laughlin, P., & Ellis, A. (1986). Demonstrability and social combination processes on mathematical intellective tasks. Journal of Experimental Social Psychology, 22, 177–189.CrossRefGoogle Scholar
  66. Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral participation. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  67. Lawrence, J., Bex, F., & Reed, C. (2012). Dialogues on the argument web: mixed initiative argumentation with Arvina. In B. Verheij, S. Szeider & S. Woltran (Eds.), Computational Models of Argument: Proceedings of COMMA 2012 (pp. 513–514). Amsterdam: IOS Press.Google Scholar
  68. Lawrence, J., Reed, C., Allen, C., McAlister, S., Ravenscroft, A., & Bourget, D. (2014). Mining arguments from 19th century philosophical texts using topic based modelling. In N. Green, K. Ashley, D. Litman, C. Reed & V. Walke (Eds.), Proceedings of the First Workshop on Argumentation Mining (pp. 79–87). Stroudsburg, PA: ACLGoogle Scholar
  69. Levesque, H. J. (1986). Making believers out of computers. Artificial Intelligence, 30(1), 81–108.CrossRefGoogle Scholar
  70. Levi, D. S. (1999). The fallacy of treating the ad baculum as a fallacy. Informal Logic, 19(2–3), 145–159.Google Scholar
  71. Lindsay, B. (2009). Creating “the Wikipedia of pros and cons”. In D. Riehle & A. Bruckman (Eds.), WikiSym’09: Proceedings of the 5th International Symposium on Wikis and Open Collaboration (n. 36). New York: ACM.Google Scholar
  72. Mackenzie, P. T. (1980). Ad hominem and ad verecundiam. Informal Logic, 3(3), 9–11.Google Scholar
  73. Massey, G. (1981). The fallacy behind fallacies. Midwest Studies In Philosophy, 6(1), 489–500.CrossRefGoogle Scholar
  74. McPeck, J. (1990). Critical thinking and subject specificity: a reply to Ennis. Educational Researcher, 19(4), 10–12.CrossRefGoogle Scholar
  75. Mercier, H. (2010). The social origins of folk epistemology. Review of Philosophy and Psychology, 1(4), 499–514.CrossRefGoogle Scholar
  76. Mercier, H. (2013). Our pigheaded core: how we became smarter to be influenced by other people. In K. Sterelny, R. Joyce, B. Calcott, & B. Fraser (Eds.), Cooperation and its evolution (pp. 373–398). Cambridge: MIT Press.Google Scholar
  77. Mercier, H., & Sperber, D. (2009). Intuitive and reflective inferences. In J. S. B. T. Evans & K. Frankish (Eds.), In two minds: dual processes and beyond (pp. 149–170). New York: Oxford University Press.CrossRefGoogle Scholar
  78. Mercier, H., & Sperber, D. (2011). Why do humans reason? Arguments for an argumentative theory. Behavioral and Brain Sciences, 34(2), 57–74.CrossRefGoogle Scholar
  79. Mercier, H., Trouche, E., Yama, H., Heintz, C., & Girotto, V. (2015). Experts and laymen grossly underestimate the benefits of argumentation for reasoning. Thinking and Reasoning, 21(3), 341–355.CrossRefGoogle Scholar
  80. Mizrahi, M. (2010). Take my advice—I am not following it: ad hominem arguments as legitimate rebuttals to appeals to authority. Informal Logic, 30(4), 435–456.CrossRefGoogle Scholar
  81. Mochales Palau, R., & Moens, M.-F. (2009). Argumentation mining: the detection, classification and structure of arguments in text. In P. Casanovas & C. Hafner (Eds.), Proceedings of the 12th International Conference on Artificial intelligence and Law (pp. 98–107). New York: ACM.Google Scholar
  82. Mochales Palau, R., & Moens, M.-F. (2011). Argumentation mining. Artificial Intelligence and Law, 19(1), 1–22.CrossRefGoogle Scholar
  83. Modgil, S. (2009). Reasoning about preferences in argumentation frameworks. Artificial Intelligence, 173(9–10), 901–934.CrossRefGoogle Scholar
  84. Modgil, S., & Caminada, M. (2009). Proof theories and algorithms for abstract argumentation frameworks. In I. Rahwan & G. Simari (Eds.), Argumentation in artificial intelligence (pp. 105–129). Berlin: Springer.CrossRefGoogle Scholar
  85. Modgil, S., & Prakken, H. (2014). The ASPIC+ framework for structured argumentation: a tutorial. Argument and Computation, 5(1), 31–62.CrossRefGoogle Scholar
  86. Modgil, S., Toni, F., Bex, F., Bratko, I., Chesñevar, C., Dvorák, W., & Woltran, S. (2013). The added value of argumentation. In S. Ossowski (Ed.), Agreement technologies (pp. 357–403). Berlin: Springer.CrossRefGoogle Scholar
  87. Moens, M.-F., Boiy, E., Mochales Palau, R., & Reed, C. (2007). Automatic detection of arguments in legal texts. In A. Gardner & R. Winkels (Eds.), Proceedings of the 11th International Conference on Artificial intelligence and Law (pp. 225–230). New York: ACM.Google Scholar
  88. Morge, M. (2008). The hedgehog and the fox. An argumentation-based decision support system. In I. Rahwan, S. Parsons & C. Reed (Eds.), Argumentation in Multi-Agent Systems: Proceedings of ArgMAS 2007 (pp. 114–131). Berlin: Springer.Google Scholar
  89. Moshman, D., & Geil, M. (1998). Collaborative reasoning: evidence for collective rationality. Thinking and Reasoning, 4(3), 231–248.CrossRefGoogle Scholar
  90. Nickerson, R. (1998). Confirmation bias: a ubiquitous phenomena in many guises. Review of General Psychology, 2, 175–220.CrossRefGoogle Scholar
  91. O’Keefe, D. (1977). Two concepts of argument. Journal of the American Forensic Society, 13, 121–128.Google Scholar
  92. Ossowski, S. (Ed.). (2012). Agreement technologies. Berlin: Springer.Google Scholar
  93. Paglieri, F. (2016). Don’t worry, be gappy! On the unproblematic gappiness of fallacies. In F. Paglieri, L. Bonelli, & S. Felletti (Eds.), The psychology of argument: cognitive approaches to argumentation and persuasion (pp. 153–172). London: College Publications.Google Scholar
  94. Paglieri, F., & Castelfranchi, C. (2010). Why argue? Towards a cost–benefit analysis of argumentation. Argument and Computation, 1(1), 71–91.CrossRefGoogle Scholar
  95. Peldszus, A., & Stede, M. (2013a). From argument diagrams to argumentation mining in texts: a survey. International Journal of Cognitive Informatics and Natural Intelligence, 7(1), 1–31.CrossRefGoogle Scholar
  96. Peldszus, A., & Stede, M. (2013b). Ranking the annotators: An agreement study on argumentation structure. In S. Dipper, M. Liakata & A. Pareja-Lora (Eds.), Proceedings of the 7th Linguistic Annotation Workshop & Interoperability with Discourse (pp. 196–204). Stroudsburg, PA: ACL.Google Scholar
  97. Perkins, D., Farady, M., & Bushey, B. (1991). Everyday reasoning and the roots of intelligence. In J. Voss, D. Perkins, & J. Segal (Eds.), Informal reasoning and education (pp. 83–105). Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  98. Possin, K. (2008). A field guide to critical-thinking assessment. Teaching Philosophy, 31(3), 201–228.CrossRefGoogle Scholar
  99. Prakken, H. (2010). An abstract framework for argumentation with structured arguments. Argument and Computation, 1(2), 93–124.CrossRefGoogle Scholar
  100. Rahwan, I. (2008). Mass argumentation and the semantic web. Web Semantics: Science, Services and Agents on the World Wide Web, 6(1), 29–37.CrossRefGoogle Scholar
  101. Rahwan, I., & McBurney, P. (2007). Argumentation technology. IEEE Intelligent Systems, 22(6), 21–23.CrossRefGoogle Scholar
  102. Rahwan, I., & Simari, G. (Eds.). (2009). Argumentation in artificial intelligence. Berlin: Springer.Google Scholar
  103. Rahwan, I., Ramchurn, S., Jennings, N., McBurney, P., Parsons, S., & Sonenberg, L. (2004). Argumentation-based negotiation. The Knowledge Engineering Review, 18(4), 343–375.CrossRefGoogle Scholar
  104. Rahwan, I., Zablith, F., & Reed, C. (2007). Laying the foundations for a world wide argument web. Artificial Intelligence, 171(10–15), 897–921.CrossRefGoogle Scholar
  105. Rahwan, I., Banihashemi, B., Reed, C., Walton, D., & Abdallah, S. (2011). Representing and classifying arguments on the semantic web. The Knowledge Engineering Review, 26(4), 487–511.CrossRefGoogle Scholar
  106. Rahwan, I., Krasnoshtan, D., Shariff, A., & Bonnefon, J.-F. (2014). Analytical reasoning task reveals limits of social learning in networks. Journal of the Royal Society, Interface, 11(93), 20131211.CrossRefGoogle Scholar
  107. Rainie, L., Lenhart, A., & Smith, A. (2012). The tone of life on social networking sites. Washington: Pew Internet Research Center.Google Scholar
  108. Reed, C., & Norman, T. (Eds.). (2004). Argumentation machines. Berlin: Springer.Google Scholar
  109. Reed, C., & Rowe, G. (2004). Araucaria: software for argument analysis, diagramming and representation. International Journal on Artificial Intelligence Tools, 13(4), 961–980.CrossRefGoogle Scholar
  110. Reed, C., & Walton, D. (2003). Argumentation schemes in argument-as-process and argument-as-product. in J. A. Blair, D. Farr, H. Hansen, R. Johnson and C. Tindale (Eds.), Informal Logic @ 25: Proceedings of the 5th OSSA Conference. Windsor, Ontario: OSSA.Google Scholar
  111. Reed, C., Wells, S., Snaith, M., Budzynska, K., & Lawrence, J. (2011). Using an argument ontology to develop pedagogical tool suites. In P. Blackburn, H. van Ditmarsch, M. Manzano, & F. Soler-Toscano (Eds.), Tools for teaching logic: proceedings of TICTTL 2011 (pp. 207–214). Berlin: Springer.CrossRefGoogle Scholar
  112. Rowe, G., Macagno, F., Reed, C., & Walton, D. (2006). Araucaria as a tool for diagramming arguments in teaching and studying philosophy. Teaching Philosophy, 29(2), 111–124.CrossRefGoogle Scholar
  113. Sà, W., West, R., & Stanovich, K. (1999). The domain specificity and generality of belief bias: searching for a generalizable critical thinking skill. Journal of Educational Psychology, 91(3), 497–510.CrossRefGoogle Scholar
  114. Sabatini, F., & Sarracino, F. (2014). Online networks and subjective well-being. ArXiv, 1408, 3550.Google Scholar
  115. Scheuer, O., Loll, F., Pinkwart, N., & McLaren, B. (2010). Computer-supported argumentation: a review of the state of the art. International Journal of Computer-Supported Collaborative Learning, 5(1), 43–102.CrossRefGoogle Scholar
  116. Schneider, J. (2014). An informatics perspective on argumentation mining. In E. Cabrio, S. Villata, & A. Wyner (Eds.), Proceedings of the workshop on frontiers and connections between argumentation theory and natural language processing (pp. 1–4). Aachen: Scholar
  117. Schneider, J., Groza, T., & Passant, A. (2012a). A review of argumentation for the Social Semantic Web. Semantic Web-Interoperability, Usability, Applicability, 4(2), 159–218.Google Scholar
  118. Schneider, J., Passant, A., & Decker, S. (2012b). Deletion discussions in Wikipedia: decision factors and outcomes. In C. Lampe (Ed.), WikiSym2012: Proceedings of the 8th Annual International Symposium on Wikis and Open Collaboration (n. 17). New York: ACM.Google Scholar
  119. Schneider, J., Samp, K., Passant, A., & Decker, S. (2013). Arguments about deletion: how experience improves the acceptability of arguments in ad-hoc online task groups. In A. Bruckman, S. Counts, C. Lampe & L. Terveen (Eds.), CSCW2013: Proceedings of the 2013 Conference on Computer Supported Cooperative Work (pp. 1069–1080). New York: ACM.Google Scholar
  120. Scriven, M. (1987). Fallacies of statistical substitution. Argumentation, 1, 333–349.CrossRefGoogle Scholar
  121. Simon, H. A. (1956). Rational choice and the structure of the environment. Psychological Review, 63, 129–138.CrossRefGoogle Scholar
  122. Sperber, D., Clément, F., Heintz, C., Mascaro, O., Mercier, H., Origgi, G., & Wilson, D. (2010). Epistemic vigilance. Mind & Language, 25(4), 359–393.CrossRefGoogle Scholar
  123. Stanovich, K., & West, R. (2007). Natural myside bias is independent of cognitive ability. Thinking and Reasoning, 13(3), 225–247.CrossRefGoogle Scholar
  124. Steinfield, C., Ellison, N., & Lampe, C. (2008). Social capital, self-esteem, and use of online social network sites: a longitudinal analysis. Journal of Applied Developmental Psychology, 29, 434–445.CrossRefGoogle Scholar
  125. Stone, M. (2012). Denying the antecedent: its effective use in argumentation. Informal Logic, 32(3), 327–356.Google Scholar
  126. Surowiecki, J. (2004). The wisdom of crowds. New York: Doubleday.Google Scholar
  127. Toplak, M., West, R., & Stanovich, K. (2011). The cognitive reflection test as a predictor of performance on heuristics-and-biases tasks. Memory & Cognition, 39, 1275–1289.CrossRefGoogle Scholar
  128. Toulmin, S. (1958). The uses of argument. Cambridge: Cambridge University Press.Google Scholar
  129. Towne, W. B., & Herbsleb, J. (2012). Design considerations for online deliberation systems. Journal of Information Technology & Politics, 9(1), 97–115.CrossRefGoogle Scholar
  130. Trouche, E., Sander, E., & Mercier, H. (2014). Arguments, more than confidence, explain the good performance of reasoning groups. Journal of Experimental Psychology. General, 143(5), 1958–1971.CrossRefGoogle Scholar
  131. Trouche, E., Johansson, P., Hall, L., & Mercier, H. (in press). The selective laziness of reasoning. Cognitive Science, doi:  10.1111/cogs.12303
  132. Tsovaltzi, D., Greenhow, C., & Asterhan, C. (2015a). When friends argue: learning from and through social network site discussions. Computers in Human Behavior, 53, 567–569.CrossRefGoogle Scholar
  133. Tsovaltzi, D., Judele, R., Puhl, T., & Weinberger, A. (2015b). Scripts, individual preparation and group awareness support in the service of learning in Facebook: how does CSCL compare to social networking sites? Computers in Human Behavior, 53, 577–592.CrossRefGoogle Scholar
  134. Tversky, A., & Kahneman, D. (1971). Belief in the law of small numbers. Psychological Bulletin, 76(2), 105–110.CrossRefGoogle Scholar
  135. Tversky, A., & Kahneman, D. (1982). Evidential impact of base rates. In D. Kahneman, P. Slovic, & A. Tversky (Eds.), Judgment under uncertainty: heuristics and biases (pp. 153–160). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  136. Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: the conjunction fallacy in probability judgment. Psychological Review, 90(4), 293–315.CrossRefGoogle Scholar
  137. van Eemeren, F., & Grootendorst, R. (1992). Relevance reviewed: the case of argumentum ad hominem. Argumentation, 6(2), 14–159.Google Scholar
  138. van Eemeren, F., & Grootendorst, R. (1995). The pragma-dialectical approach to fallacies. In H. V. Hansen & R. C. Pinto (Eds.), Fallacies: classical and contemporary readings (pp. 130–144). University Park: Penn State University Press.Google Scholar
  139. Walton, D. (1992). Nonfallacious arguments from ignorance. American Philosophical Quarterly, 29(4), 381–387.Google Scholar
  140. Walton, D. (1996). Argumentation schemes for presumptive reasoning. Mahwah: Lawrence Erlbaum Associates.Google Scholar
  141. Walton, D. (1997). Appeal to expert opinion: arguments from authority. University Park: The Pennsylvania State University Press.Google Scholar
  142. Walton, D. (1998). Ad hominem arguments. Tuscaloosa: The University of Alabama Press.Google Scholar
  143. Walton, D. (1999). The appeal to ignorance, or argumentum ad ignorantiam. Argumentation, 13(4), 367–377.CrossRefGoogle Scholar
  144. Walton, D. (2000). Scare tactics: arguments that appeal to fear and threats. Dordrecht: Kluwer.CrossRefGoogle Scholar
  145. Walton, D., & Godden, D. M. (2007). Informal logic and the dialectical approach to argument. In H. Hansen & R. Pinto (Eds.), Reason reclaimed (pp. 3–17). Newport News: Vale Press.Google Scholar
  146. Walton, D., & Gordon, T. (2012). The Carneades model of argument invention. Pragmatics & Cognition, 20(1), 1–31.CrossRefGoogle Scholar
  147. Walton, D., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  148. Wason, P. C. (1966). Reasoning. In B. Foss (Ed.), New horizons in psychology: I (pp. 106–137). Harmandsworth: Penguin.Google Scholar
  149. Weinberger, A., Stegmann, K., Fischer, F., & Mandl, H. (2007). Scripting argumentative knowledge construction in computer-supported learning environments. In F. Fischer, I. Kollar, H. Mandl, & J. M. Haake (Eds.), Scripting computer-supported collaborative learning (pp. 191–211). Berlin: Springer.CrossRefGoogle Scholar
  150. Woods, J. (1998). Argumentum ad baculum. Argumentation, 12(4), 493–504.CrossRefGoogle Scholar
  151. Woods, J. (2013). Errors of reasoning. Naturalizing the logic of inference. London: College Publications.Google Scholar
  152. Woods, J., & Walton, D. (1974). Argumentum ad verecundiam. Philosophy and Rhetoric, 7(3), 135–153.Google Scholar
  153. Woods, J., & Walton, D. (1978). The fallacy of ‘ad ignorantiam’. Dialectica, 32(2), 87–99.CrossRefGoogle Scholar
  154. Yaglikci, N., & Torroni, P. (2014). Microdebates app for Android: a tool for participating in argumentative online debates using a handheld device. In A. Andreou & G. A. Papadopoulos (Eds.), Proceedings of ICTAI 2014: IEEE 26th International Conference on Tools with Artificial Intelligence (pp. 792–799). Los Alamitos, CA: IEEE.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Istituto di Scienze e Tecnologie della Cognizione, Consiglio Nazionale delle Ricerche (ISTC-CNR)Goal-Oriented Agents Lab (GOAL)RomeItaly

Personalised recommendations