Philosophy & Technology

, Volume 28, Issue 2, pp 167–188 | Cite as

Changing Philosophy Through Technology: Complexity and Computer-Supported Collaborative Argument Mapping

  • Michael H. G. HoffmannEmail author
Research Article


Technology is not only an object of philosophical reflection but also something that can change this reflection. This paper discusses the potential of computer-supported argument visualization tools for coping with the complexity of philosophical arguments. I will show, in particular, how the interactive and web-based argument mapping software “AGORA-net” can change the practice of philosophical reflection, communication, and collaboration. AGORA-net allows the graphical representation of complex argumentations in logical form and the synchronous and asynchronous collaboration on those “argument maps” on the internet. Web-based argument mapping can overcome limits of space, time, and access, and it can empower users from all over the world to clarify their reasoning and to participate in deliberation and debate. Collaborative and web-based argument mapping tools such as AGORA-net can change the practice of arguing in two dimensions. First, arguing on web-based argument maps in both collaborative and adversarial form can lead to a fundamental shift in the way arguments are produced and debated. It can provide an alternative to the traditional four-step process of writing, publishing, debating, and responding in new writing with its clear distinction between individual and social activities by a process in which these four steps happen virtually simultaneously, and individual and social activities become more closely intertwined. Second, by replacing the linear form of arguments through graphical representations of networks of inferential relations which can grow over time in an infinite space, these tools do not only allow a clear visualization of structures and relations, but also forms of collaboration in which, for example, participants work on different “construction zones” of larger argument maps, or debates are performed at specific points of disagreement on those maps. I introduce the term synergetic logosymphysis (defined as a process in which an argumentative structure grows in a collaborative effort) to describe a practice that combines these two dimensions of collaborative- and web-based argument mapping.


AGORA-net Argument mapping Complexity Internet Philosophical technologies 



This research and the development of the AGORA software described here is supported by a grant from the U.S. Department of Education (FIPSE Grant P116S100006). The AGORA project is part of a collaboration between the Georgia Institute of Technology and Bauman Moscow State Technical University. Many thanks to Bryan Norton, Nancy Nersessian, Justin Biddle, and two anonymous reviewers for feedback that helped to improve this paper.


  1. Allwein, G., & Barwise, J. (Eds.). (1996). Logical reasoning with diagrams (studies in logic and computation). New York: Oxford University Press.Google Scholar
  2. Barwise, J., & Etchemendy, J. (1994). Hyperproof (CSLI Lecture notes no. 42). Stanford, CA: Center for the Study of Language and Information.Google Scholar
  3. Bean, J. C. (2011). Engaging ideas: the professor's guide to integrating writing, critical thinking, and active learning in the classroom (2nd ed.). The Jossey-Bass higher and adult education series). San Francisco: Jossey-Bass.Google Scholar
  4. Bjork, R. A. (2013). Desirable difficulties perspective on learning. In H. E. Pashler (Ed.), Encyclopedia of the mind. Thousand Oaks: Sage.Google Scholar
  5. Bochenski, J. M. (1970 <1956>). Formale Logik (3. ed.). Freiburg i. Br.: Alber.Google Scholar
  6. Buckingham Shum, S. (2003). The roots of computer-supported argument visualization. In P. A. Kirschner, S. J. Buckingham Shum, & C. S. Carr (Eds.), Visualizing argumentation: software tools for collaborative and educational sense-making (pp. 3–24). London: Springer.CrossRefGoogle Scholar
  7. Cloy, M. (2010). Teaching the practical relevance of propositional logic. Teaching Philosophy, 33(3), 253–270.CrossRefGoogle Scholar
  8. Conklin, J. (2006). Dialogue mapping: building shared understanding of wicked problems. Chichester: Wiley.Google Scholar
  9. Cowan, N. (2001). The magical number 4 in short-term memory: a reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87–114.CrossRefGoogle Scholar
  10. De Liddo, A., Buckingham Shum, S., McAndrew, P., & Farrow, R. (2012). The open education evidence hub: a collective intelligence tool for evidence based policy. Presented at Cambridge 2012: Joint OER12 and OpenCourseWare Consortium Global 2012 Conference, 16–18 April 2012, Cambridge, UK.Google Scholar
  11. Dicker, G. (2008). Kant's refutation of idealism. Noûs, 42, 80–108.CrossRefGoogle Scholar
  12. Edmonds, B. (2009). Simulating social complexity. A handbook. Berlin: Springer.Google Scholar
  13. Engelbart, D. C. (1963). A conceptual framework for the augmentation of man's intellect. In D. W. Howerton & D. C. Weeks (Eds.), Vistas in information handling (Vol. I). Washington, D.C.: Spartan.Google Scholar
  14. Ericsson, K. A., & Kintsch, W. (1995). Long-term working memory. Psychological Review, 102(2), 211–245.CrossRefGoogle Scholar
  15. Euler, L. (1768). Lettres à une Princesse d'Allemagne. St. Petersburg: l'Academie Imperiale des Sciences.Google Scholar
  16. Gell-Mann, M. (1994). The quark and the jaguar: adventures in the simple and the complex. New York: W.H. Freeman.Google Scholar
  17. Hardwig, J. (1985). Epistemic dependence. Journal of Philosophy, 82, 335–349.CrossRefGoogle Scholar
  18. Hickey, L. P. (2005). The brain in a vat argument. Internet Encyclopedia of Philosophy. Retrieved from
  19. Hoffmann, P. (2002). On simplicity & complexity. Philosophy now, 38. Retrieved from
  20. Hoffmann, M. H. G. (2007). Logical argument mapping: a cognitive-change-based method for building common ground. ACM International Conference Proceeding Series; Vol. 280. Proceedings of the 2nd international conference on Pragmatic web. doi: 10.1145/1324237.1324242.
  21. Hoffmann, M. H. G. (2013). Why the presentation of arguments in logical form has advantages. Argument map. Retrieved from
  22. Hoffmann, M. H. G., & Borenstein, J. (2013). Understanding ill-structured engineering ethics problems through a collaborative learning and argument visualization approach. Science and Engineering Ethics, 1–16. doi: 10.1007/s11948-013-9430-y.
  23. Hooker, C. (Ed.). (2011). Philosophy of complex systems (Handbook of the philosophy of science; v. 10). Boston: Elsevier.Google Scholar
  24. Kirschner, P. A., Buckingham Shum, S. J., & Carr, C. S. (Eds.). (2003). Visualizing argumentation: software tools for collaborative and educational sense-making. London: Springer.Google Scholar
  25. McAllister, J. W. (2003). Effective complexity as a measure of information content. [Article]. Philosophy of Science, 70(2), 302–307.CrossRefGoogle Scholar
  26. Miller, G. A. (1956). The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychological Review, 93, 181–186.Google Scholar
  27. Moktefi, A., & Shin, S.-J. (2012). A history of logic diagrams. In D. M. Gabbay, F. J. Pelletier, & J. Woods (Eds.), Logic. A history of its central concepts (pp. 611–682). Amsterdam: North Holland.CrossRefGoogle Scholar
  28. Musgrave, A. (2012). Deductivism surpassed: or, foxing in its margins? Journal for General Philosophy of Science, 43(1), 125–132.CrossRefGoogle Scholar
  29. Okada, A., Buckingham Shum, S., & Sherborne, T. (Eds.). (2008). Knowledge cartography. London: Springer.Google Scholar
  30. Peirce, C. S. (1909). (Fragments on existential graphs): MS 514; transcription by Michael Balat, with commentary by John F. Sowa at
  31. Pereboom, D. (2009). Kant's transcendental arguments. Accessed Jan 15 2012.
  32. Pinto, R. C. (2001). Argument, inference and dialectic. Collected papers on informal logic (Argumentation Library, vol. 4). Dordrecht: KluwerGoogle Scholar
  33. Prakken, H., & Vreeswijk, G. (2001). Logics of defeasible argumentation. In D. M. Gabbay & F. Guenthner (Eds.), Handbook of philosophical logic (2nd ed., Vol. IV, pp. 219–318). Dordrecht: Kluwer.CrossRefGoogle Scholar
  34. Putnam, H. (1981). Reason, truth and history. Cambridge: Univ. Pr.CrossRefGoogle Scholar
  35. Rahwan, I., Zablith, F., & Reed, C. (2007). Laying the foundations for a World Wide Argument Web. Artificial Intelligence, 171(10–15), 897–921.CrossRefGoogle Scholar
  36. Raymond, E. S. (2001). The cathedral and the bazaar. Musings on Linux and Open Source by an accidental revolutionary (rev. ed., Beijing, Cambridge, MA: O'Reilly.
  37. Rittel, H. W. J., & Webber, M. M. (1973). Dilemmas in a general theory of planning. Policy Sciences, 4, 155–169.CrossRefGoogle Scholar
  38. Roberts, D. D. (1973). The existential graphs of Charles S. Peirce (Approaches to Semiotics 27). The Hague Mouton.Google Scholar
  39. Scheuer, O., Loll, F., Pinkwart, N., & McLaren, B. M. (2010). Computer-supported argumentation: a review of the state of the art. International Journal of Computer-Supported Collaborative Learning, 5(1), 43–102.CrossRefGoogle Scholar
  40. Shin, S.-J. (2002). The iconic logic of Peirce's graphs. Cambridge: MIT Bradford Books.Google Scholar
  41. Shin, S.-J., & Lemon, O. (2008). Diagrams. In E. N. Zalta (Ed.), The Stanford encyclopedia of philosophy. The Metaphysics Research Lab. Center for the Study of Language and Information. Stanford University.
  42. Smed, J., Kaukoranta, T., & Hakonen, H. (2002). Aspects of networking in multiplayer computer games. [Article]. Electronic Library, 20(2), 87–97. doi: 10.1108/02640470210424392.CrossRefGoogle Scholar
  43. Sowa, J. F. (2000). Knowledge representation: logical, philosophical, and computational foundations. Pacific Grove: Brooks Cole.Google Scholar
  44. Stern, R. (1999). Transcendental arguments: problems and prospects (Mind Association occasional series). Oxford: Oxford University Press.Google Scholar
  45. Sweller, J. (2010). Cognitive load theory: recent theoretical advances. In J. L. Plass, R. Moreno, & R. Brünken (Eds.), Cognitive load theory (pp. 29–47). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  46. Tetens, H. (2004). Philosophisches Argumentieren. Eine Einführung (Beck'sche Reihe 1607). München: Beck.Google Scholar
  47. Toulmin, S. (2003 <1958>). The Layout of arguments. In: The uses of argument (updated ed.). Cambridge, UK: Cambridge University Press. pp. 87–134Google Scholar
  48. van Bruggen, J. M., Kirschner, P. A., & Jochems, W. (2002). External representation of argumentation in CSCL and the management of cognitive load. Learning and Instruction, 12(1), 121–138.CrossRefGoogle Scholar
  49. van Bruggen, J. M., Boshuizen, H. P. A., & Kirschner, P. A. (2003). A cognitive framework for cooperative problem solving with argument visualization. In P. A. Kirschner, S. J. Buckingham Shum, & C. S. Carr (Eds.), Visualizing argumentation: software tools for collaborative and educational sense-making (pp. 25–47). London: Springer.CrossRefGoogle Scholar
  50. van Gelder, T. (2013). Argument mapping. In H. Pashler (Ed.), Encyclopedia of the mind (Vol. I, pp. 51–53). Thousand Oaks: Sage.Google Scholar
  51. Walker, R. C. S. (2005). Transcendental Arguments. In P. Guyer (Ed.), The Cambridge Companion to Kant and Modern Philosophy (pp. 238–268). Cambridge: Cambridge University Press.Google Scholar
  52. Walton, D. N., Reed, C., & Macagno, F. (2008). Argumentation schemes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Further reading

  1. Kant, I. (CPR). Critique of pure reason (P. Guyer, & A. W. Wood, Trans.). Cambridge 1998: Cambridge Univ. Pr. (quoted according to the first edition—A: 1781—or the second—B: 1787).Google Scholar
  2. Kant, I. (KrV). Kritik der reinen Vernunft (Nach der ersten (= A , 1781) und zweiten (= B, 1787) Originalausgabe hg. v. Jens Timmermann). Hamburg 1998: Meiner.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Philosophy Program, School of Public PolicyGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations