PEG-conjugated triacontanol micelles as docetaxel delivery systems for enhanced anti-cancer efficacy

  • Xiaoyu Lu
  • Min Fang
  • Yue Yang
  • Yu Dai
  • Jiaqiu Xu
  • Di Zhao
  • Yang Lu
  • Xijing Chen
  • Shan LuEmail author
  • Ning LiEmail author
Original Article


PEGylated triacontanol (mPEG2k-b-TRIA) was developed as a dual-functional polymer with remarkable biocompatibility. The polymer could self-assemble to micelles with critical micelle concentration (CMC) 17.62 μg mL−1. Docetaxel-loaded mPEG2k-b-TRIA micelles (DTX PMs) were fabricated to evaluate the feasibility of mPEG2k-b-TRIA as drug delivery system. DTX PMs achieved desirable particle size of 93.7 nm, drug loading of 6.66%, and drug encapsulation efficiency of 89.87%. The drug release was based on first-order kinetics model, thus enabling prolonged release. Meanwhile, pharmacokinetic study also revealed that DTX PMs could improve the exposure level of DTX and prolong its systemic circulation time. Furthermore, DTX PMs demonstrated significantly enhanced cytotoxicity and cellular uptake in vitro compared with DTX solution. The in vivo tumor inhibition study carried out on MCF-7 bearing BALB/c mice model also validated that DTX PMs exhibited stronger anti-tumor activity but low toxicity. Notably, mPEG2k-b-TRIA made some contribution to inhibit the growth of breast cancer cells in vitro and in vivo, indicating the potential as anti-tumor complementary agents. All the results suggested that mPEG2k-b-TRIA polymer as a vehicle in the formulation of anti-cancer drugs may provide an effective way to improve their therapeutic efficacy. Consequently, the mPEG2k-b-TRIA polymers would be another promising carrier for hydrophobic anti-cancer drugs delivery.


Micelles Docetaxel Biocompatible polymers Drug delivery Triacontanol 



Area under the curve


Clearance rate


Confocal laser scanning microscopy


Critical micelle concentration


2-Chloro-1-methylpyridinium iodide




Drug loading








Docetaxel-loaded polymeric micelles


Encapsulation efficiency


Enhanced permeability and retention


Fourier transform infrared


Gel permeation chromatography


Hank’s balanced salt solution


1H nuclear magnetic resonance


Half maximal inhibitory concentration


Inhibition rate


Mean residence time


Monomethoxy poly(ethylene glycol)-amine; methoxy poly(ethylene glycol 2000)-triacontanol (mPEG2k-b-TRIA)


Phosphate-buffered saline


Polydispersity index


Polyethylene glycol


Polymeric micelles


Physiological saline


Succinic anhydride


Elimination half-life


Transmission electron microscope





This work was supported by the National Natural Science Foundation of China (No. 81473272, No. 81503148).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Animal studies

All institutional and national guidelines for the care and use of laboratory animals were followed.

Supplementary material

13346_2019_667_Fig10_ESM.png (50 kb)
Supplementary Fig. 1

Fitting curve of in vitro release data from DTX PMs for first-order kinetics model (PNG 50 kb)

13346_2019_667_MOESM1_ESM.tif (7.7 mb)
High-resolution image (TIF 7888 kb)
13346_2019_667_MOESM2_ESM.docx (25 kb)
Supplementary Table 1 (DOCX 25 kb)


  1. 1.
    DeSantis CE, Fedewa SA, Goding Sauer A, Kramer JL, Smith RA, Jemal A. Breast cancer statistics, 2015: convergence of incidence rates between black and white women. CA Cancer J Clin. 2016;66(1):31–42. Scholar
  2. 2.
    Lu Y, Park K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int J Pharm. 2013;453(1):198–214. Scholar
  3. 3.
    Talelli M, Rijcken CJF, Hennink WE, Lammers T. Polymeric micelles for cancer therapy: 3 C’s to enhance efficacy. Curr Opin Solid State Mater Sci. 2012;16(6):302–9. Scholar
  4. 4.
    Zhang Y, Ren T, Gou J, Zhang L, Tao X, Tian B, et al. Strategies for improving the payload of small molecular drugs in polymeric micelles. J Control Release. 2017;261:352–66. Scholar
  5. 5.
    Yu J, Deng H, Xie F, Chen W, Zhu B, Xu Q. The potential of pH-responsive PEG-hyperbranched polyacylhydrazone micelles for cancer therapy. Biomaterials. 2014;35(9):3132–44. Scholar
  6. 6.
    Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. J Control Release. 2012;159(3):312–23. Scholar
  7. 7.
    Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85(3):427–43. Scholar
  8. 8.
    Omolo CA, Kalhapure RS, Jadhav M, Rambharose S, Mocktar C, Ndesendo VM, et al. PEGylated oleic acid: a promising amphiphilic polymer for nano-antibiotic delivery. Eur J Pharm Biopharm. 2016;112:96–108. Scholar
  9. 9.
    Zhang L, Chan JM, Gu FX, Rhee JW, Wang AZ, Radovicmoreno AF, et al. Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008;2(8):1696–702. Scholar
  10. 10.
    Teerawanichpan P, Robertson AJ, Qiu X. A fatty acyl-CoA reductase highly expressed in the head of honey bee (Apis mellifera) involves biosynthesis of a wide range of aliphatic fatty alcohols. Insect Biochem Mol Biol. 2010;40(9):641–9. Scholar
  11. 11.
    Du Z, Mao X, Tai X, Wang G, Liu X. Preparation and properties of microemulsion detergent with linear medium chain fatty alcohols as oil phase. J Mol Liq. 2016;223:805–10. Scholar
  12. 12.
    Eccleston GM, Behan-Martin MK, Jones GR, Towns-Andrews E. Synchrotron X-ray investigations into the lamellar gel phase formed in pharmaceutical creams prepared with cetrimide and fatty alcohols. Int J Pharm. 2000;203(1–2):127–39. Scholar
  13. 13.
    Tian L, Gandra N, Singamaneni S. Monitoring controlled release of payload from gold nanocages using surface enhanced Raman scattering. ACS Nano. 2013;7(5):4252–60. Scholar
  14. 14.
    Uner M, Gönüllü U, Yener G, Altinkurt T. A new approach for preparing a controlled release ketoprofen tablets by using beeswax. Farmaco. 2005;60(1):27–31. Scholar
  15. 15.
    Wong PC, Heng PW, Chan LW. Determination of solid state characteristics of spray-congealed ibuprofen solid lipid microparticles and their impact on sustaining drug release. Mol Pharm. 2015;12(5):1592–604. Scholar
  16. 16.
    Mi Y, Liu Y, Feng SS. Formulation of docetaxel by folic acid-conjugated-α-tocopheryl polyethylene glycol succinate 2000 (vitamin E TPGS) micelles for targeted and synergistic chemotherapy. Biomaterials. 2011;32(16):4058–66. Scholar
  17. 17.
    Irmak S, Dunford NT, Milligan J. Policosanol contents of beeswax, sugar cane and wheat extracts. Food Chem. 2006;95(2):312–8. Scholar
  18. 18.
    Jackson MA, Eller FJ. Isolation of long-chain aliphatic alcohols from beeswax using lipase-catalyzed methanolysis in supercritical carbon dioxide. J Supercrit Fluids. 2006;37(2):173–7. Scholar
  19. 19.
    Kim SM, Chung HJ, Lim ST. Effect of various heat treatments on rancidity and some bioactive compounds of rice bran. J Cereal Sci. 2014;60(1):243–8. Scholar
  20. 20.
    Naeem M, Khan MMA, Moinuddin SMH. Triacontanol stimulates nitrogen-fixation, enzyme activities, photosynthesis, crop productivity and quality of hyacinth bean (Lablab purpureus L.). Sci Hortic. 2009;121(4):389–96. Scholar
  21. 21.
    Evans DA, Hill SW. Dietary supplement composition for blood lipid health. US; 2011.Google Scholar
  22. 22.
    Gong J, Qin X, Yuan F, Hu M, Chen G, Fang K, et al. Efficacy and safety of sugarcane policosanol on dyslipidemia: a meta-analysis of randomized controlled trials. Mol Nutr Food Res. 2017;62:1700280. Scholar
  23. 23.
    Mcbride PT, Clark L, Krueger G. Evaluation of triacontanol-containing compounds as anti-inflammatory agents using guinea pig models. J Invest Dermatol. 1987;89(4):380–3. Scholar
  24. 24.
    Menéndez R, Más R, AMa A, Pérez Y, RMa G, Fernández J, et al. Antioxidant effects of D002 on the in vitro susceptibility of whole plasma in healthy volunteers. Arch Med Res. 2001;32(5):436–41. Scholar
  25. 25.
    Ravelo Y, Molina V, Carbajal D, Fernández L, Fernández JC, Arruzazabala ML, et al. Evaluation of anti-inflammatory and antinociceptive effects of D-002 (beeswax alcohols). J Nat Med. 2011;65(2):330–5. Scholar
  26. 26.
    Fan X, Zhang R, Cheng H. Use of triacontanol in preparation of medicaments for treatment of cancers. US; 2011.Google Scholar
  27. 27.
    Takada Y, Kageyama K, Yamada R, Onoyama Y, Nakajima T, Hosono M, et al. Correlation of DNA synthesis-inhibiting activity and the extent of transmembrane permeation into tumor cells by unsaturated or saturated fatty alcohols of graded chain-length upon hyperthermia. Oncol Rep. 2001;8(3):547–51. Scholar
  28. 28.
    Thippeswamy G, Sheela ML, Salimath BP. Octacosanol isolated from Tinospora cordifolia downregulates VEGF gene expression by inhibiting nuclear translocation of NF-<kappa>B and its DNA binding activity. Eur J Pharmacol. 2008;588(2–3):141–50. Scholar
  29. 29.
    Zhou Y, Li N, Qiu Z, Lu X, Fang M, Chen X, et al. Superior anti-neoplastic activities of triacontanol-PEG conjugate: synthesis, characterization and biological evaluations. Drug Deliv. 2018;25(1):1546–59. Scholar
  30. 30.
    Grudén S, Sandelin M, Rasanen V, Micke P, Hedeland M, Axén N, et al. Antitumoral effect and reduced systemic toxicity in mice after intra-tumoral injection of an in vivo solidifying calcium sulfate formulation with docetaxel. Eur J Pharm Biopharm. 2017;114:186–93. Scholar
  31. 31.
    Tang X, Zhou S, Tao X, Wang J, Wang F, Liang Y. Targeted delivery of docetaxel via Pi-Pi stacking stabilized dendritic polymeric micelles for enhanced therapy of liver cancer. Mater Sci Eng C. 2017;75:1042–8. Scholar
  32. 32.
    Zhang H, Wang K, Zhang P, He W, Song A, Luan Y. Redox-sensitive micelles assembled from amphiphilic mPEG-PCL-SS-DTX conjugates for the delivery of docetaxel. Colloids Surf B: Biointerfaces. 2016;142:89–97. Scholar
  33. 33.
    Wang Y, Chen L, Tan L, Zhao Q, Luo F, Wei Y, et al. PEG-PCL based micelle hydrogels as oral docetaxel delivery systems for breast cancer therapy. Biomaterials. 2014;35(25):6972–85. Scholar
  34. 34.
    Palominos MA, Vilches D, Bossel E, Soto-Arriaza MA. Interaction between amphipathic triblock copolymers and L-α-dipalmitoyl phosphatidylcholine large unilamellar vesicles. Colloids Surf B: Biointerfaces. 2016;148:30–40. Scholar
  35. 35.
    Wang Q, Jiang J, Chen W, Jiang H, Zhang Z, Sun X. Targeted delivery of low-dose dexamethasone using PCL-PEG micelles for effective treatment of rheumatoid arthritis. J Control Release. 2016;230:64–72. Scholar
  36. 36.
    Zhu Z, Li Y, Yang X, Pan W, Pan H. The reversion of anti-cancer drug antagonism of tamoxifen and docetaxel by the hyaluronic acid-decorated polymeric nanoparticles. Pharmacol Res. 2017;126:84–96. Scholar
  37. 37.
    Wang W, Zhang L, Le Y, Chen J-F, Wang J, Yun J. Synergistic effect of PEGylated resveratrol on delivery of anticancer drugs. Int J Pharm. 2016;498(1):134–41. Scholar
  38. 38.
    Jain A, Jain SK. In vitro release kinetics model fitting of liposomes: an insight. Chem Phys Lipids. 2016;201:28–40. Scholar
  39. 39.
    Kim Y-M, Park S-C, Jang M-K. Targeted gene delivery of polyethyleneimine-grafted chitosan with RGD dendrimer peptide in αvβ3 integrin-overexpressing tumor cells. Carbohydr Polym. 2017;174:1059–68. Scholar
  40. 40.
    Yang Y, Lu X, Liu Q, Dai Y, Zhu X, Wen Y, et al. Palmitoyl ascorbate and doxorubicin co-encapsulated liposome for synergistic anticancer therapy. Eur J Pharm Sci. 2017;105:219–29. Scholar
  41. 41.
    Yao H, Wang K, Wang Y, Wang S, Li J, Lou J, et al. Enhanced blood-brain barrier penetration and glioma therapy mediated by a new peptide modified gene delivery system. Biomaterials. 2015;37:345–52. Scholar
  42. 42.
    Rodallec A, Benzekry S, Lacarelle B, Ciccolini J, Fanciullino R. Pharmacokinetics variability: why nanoparticles are not just magic-bullets in oncology. Crit Rev Oncol Hematol. 2018;129:1–12. Scholar

Copyright information

© Controlled Release Society 2019

Authors and Affiliations

  • Xiaoyu Lu
    • 1
  • Min Fang
    • 1
  • Yue Yang
    • 1
  • Yu Dai
    • 1
  • Jiaqiu Xu
    • 1
  • Di Zhao
    • 1
  • Yang Lu
    • 1
  • Xijing Chen
    • 1
  • Shan Lu
    • 2
    Email author
  • Ning Li
    • 3
    Email author
  1. 1.Clinical Pharmacokinetics LaboratoryChina Pharmaceutical UniversityNanjingChina
  2. 2.College of PharmacyHubei University of Chinese MedicineWuhanChina
  3. 3.National Experimental Teaching Demonstration Center of PharmacyChina Pharmaceutical UniversityNanjingChina

Personalised recommendations