A collagen-based hydrogel containing tacrolimus for bone tissue engineering

  • Mir Hamed Nabavi
  • Majid SalehiEmail author
  • Arian Ehterami
  • Farshid Bastami
  • Hassan Semyari
  • Maryam Tehranchi
  • Mir Ahmad Nabavi
  • Hossein Semyari
Original Article


Bone tissue engineering aims to develop bone graft structure that can heal bone defects without using autografts or allografts. The current study was conducted to promote bone regeneration using a collagen type I hydrogel containing tacrolimus. For this purpose, different amounts of tacrolimus (10 μg/ml, 100 μg/ml, and 1000 μg/ml) were loaded into the hydrogel. The resulting drug-loaded hydrogels were characterized for their porosity, swelling capacity, weight loss, drug release, blood compatibility, and cell proliferation (MTT). For functional analysis, the developed hydrogel surrounded by a film made of gelatin and polycaprolactone (PCL) was administrated in the calvarias defect of Wistar rats. The results indicated that the hydrogel has a porosity of 89.2 ± 12.5% and an appropriate swelling, drug release, and blood compatibility behavior. The in vitro results indicated that the collagen hydrogel containing 1000 μg tacrolimus was adequate in terms of cell proliferation. Finally, in vivo studies provided some evidence of the potential of the developed hydrogel for bone healing.


Tacrolimus (FK-506) Collagen type I Hydrogel Osteogenesis Bone Tissue engineering 


Authors’ contributions

All the authors read and approved the final manuscript.

Compliance with ethical standards

Animal experiments were approved by the ethics committee of the Shahed University (ethical code: IR.Shahed.REC.1396.005) and were carried out in accordance with the university’s guidelines.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Availability of data and material

Not applicable.


  1. 1.
    Kurtz SM, Ong KL, Schmier J, Mowat F, Saleh K, Dybvik E, et al. Future clinical and economic impact of revision total hip and knee arthroplasty. JBJS. 2007;89:144–51.Google Scholar
  2. 2.
    Kim TG, Shin H, Lim DW. Biomimetic scaffolds for tissue engineering. Adv Funct Mater. 2012;22(12):2446–68.Google Scholar
  3. 3.
    Bush JR, Liang H, Dickinson M, Botchwey EA. Xylan hemicellulose improves chitosan hydrogel for bone tissue regeneration. Polym Adv Technol. 2016;27(8):1050–5.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog. 2009;25(6):1539–60.PubMedGoogle Scholar
  5. 5.
    Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA. Hydrogels in regenerative medicine. Adv Mater. 2009;21(32–33):3307–29.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Salehi M, Naseri-Nosar M, Ebrahimi-Barough S, Nourani M, Vaez A, Farzamfar S, et al. Regeneration of sciatic nerve crush injury by a hydroxyapatite nanoparticle-containing collagen type I hydrogel. J Physiol Sci. 2018;68(5):579–87.PubMedGoogle Scholar
  7. 7.
    Russo R, Malinconico M, Santagata G. Effect of cross-linking with calcium ions on the physical properties of alginate films. Biomacromolecules. 2007;8(10):3193–7.PubMedGoogle Scholar
  8. 8.
    Chenite A, Chaput C, Wang D, Combes C, Buschmann M, Hoemann C, et al. Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials. 2000;21(21):2155–61.PubMedGoogle Scholar
  9. 9.
    Ehterami A, Salehi M, Farzamfar S, Vaez A, Samadian H, Sahrapeyma H, et al. In vitro and in vivo study of PCL/collagen wound dressing loaded with insulin-chitosan nanoparticles on cutaneous wound healing in rats model. Int J Biol Macromol. 2018;117:601–9.PubMedGoogle Scholar
  10. 10.
    Kim HW, Li LH, Lee EJ, Lee SH, Kim HE. Fibrillar assembly and stability of collagen coating on titanium for improved osteoblast responses. JBMR Part A. 2005;75(3):629–38.Google Scholar
  11. 11.
    Gelse K, Pöschl E, Aigner T. Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev. 2003;55(12):1531–46.Google Scholar
  12. 12.
    Brodsky B, Eikenberry EF (1982) [5] Characterization of fibrous forms of collagen. In: Methods in enzymology, vol 82. Elsevier, pp 127-174.Google Scholar
  13. 13.
    Stenzel KH, Miyata T, Rubin AL. Collagen as a biomaterial. Annu Rev Biophys Bioeng. 1974;3(1):231–53.PubMedGoogle Scholar
  14. 14.
    Farzamfar S, Naseri-Nosar M, Sahrapeyma H, Ehterami A, Goodarzi A, Rahmati M, et al. Tetracycline hydrochloride-containing poly (ε-caprolactone)/poly lactic acid scaffold for bone tissue engineering application: in vitro and in vivo study. Int J Polym Mater Polym Biomater. 2019;68(8):472–9.Google Scholar
  15. 15.
    Semyari H, Salehi M, Taleghani F, Ehterami A, Bastami F, Jalayer T, et al. Fabrication and characterization of collagen–hydroxyapatite-based composite scaffolds containing doxycycline via freeze-casting method for bone tissue engineering. J Biomater Appl. 2018;33(4):501–13.PubMedGoogle Scholar
  16. 16.
    Shahrezaee M, Salehi M, Keshtkari S, Oryan A, Kamali A, Shekarchi B. In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects. Nanomedicine. 2018;14(7):2061–73.PubMedGoogle Scholar
  17. 17.
    Kino T, Hatanaka H, Miyata S, Inamura N, NISHIYAMA M, YAJIMA T, et al. FK-506, a novel immunosuppressant isolated from a streptomyces. The Journal of Antibiotics. 1987;40(9):1256–65.PubMedGoogle Scholar
  18. 18.
    Singh N, Von Visger J, Zachariah M. Extended release once a day tacrolimus. Current Opinion in Organ Transplantation. 2015;20(6):657–62.PubMedGoogle Scholar
  19. 19.
    Tang L, Ebara S, Kawasaki S, Wakabayashi S, Nikaido T, Takaoka K. FK506 enhanced osteoblastic differentiation in mesenchymal cells. Cell Biol Int. 2002;26(1):75–84.PubMedGoogle Scholar
  20. 20.
    Kugimiya F, Yano F, Ohba S, Igawa K, Nakamura K, Kawaguchi H, et al. Mechanism of osteogenic induction by FK506 via BMP/Smad pathways. Biochem Biophys Res Commun. 2005;338(2):872–9.PubMedGoogle Scholar
  21. 21.
    Nakamura T, Shinohara Y, Momozaki S, Yoshimoto T, Noguchi K. Co-stimulation with bone morphogenetic protein-9 and FK506 induces remarkable osteoblastic differentiation in rat dedifferentiated fat cells. Biochem Biophys Res Commun. 2013;440(2):289–94.PubMedGoogle Scholar
  22. 22.
    Ha DH, Yong CS, Kim JO, Jeong JH, Park JB. Effects of tacrolimus on morphology, proliferation and differentiation of mesenchymal stem cells derived from gingiva tissue. Mol Med Rep. 2016;14(1):69–76.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Chong E, Phan T, Lim I, Zhang Y, Bay B, Ramakrishna S, et al. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta Biomater. 2007;3(3):321–30.PubMedGoogle Scholar
  24. 24.
    Shahin-Shamsabadi A, Hashemi A, Tahriri M, Bastami F, Salehi M, Abbas FM. Mechanical, material, and biological study of a PCL/bioactive glass bone scaffold: importance of viscoelasticity. Mater Sci Eng C. 2018;90:280–8.Google Scholar
  25. 25.
    Farzamfar S, Naseri-Nosar M, Vaez A, Esmaeilpour F, Ehterami A, Sahrapeyma H, et al. Neural tissue regeneration by a gabapentin-loaded cellulose acetate/gelatin wet-electrospun scaffold. Cellulose. 2018;25(2):1229–38.Google Scholar
  26. 26.
    Naseri-Nosar M, Farzamfar S, Sahrapeyma H, Ghorbani S, Bastami F, Vaez A, et al. Cerium oxide nanoparticle-containing poly (ε-caprolactone)/gelatin electrospun film as a potential wound dressing material: in vitro and in vivo evaluation. Mater Sci Eng C. 2017;81:366–72.Google Scholar
  27. 27.
    Hollinger JO. An introduction to biomaterials: CRC press; 2011.Google Scholar
  28. 28.
    Liu X, Rahaman MN, Fu Q. Bone regeneration in strong porous bioactive glass (13-93) scaffolds with an oriented microstructure implanted in rat calvarial defects. Acta Biomater. 2013;9(1):4889–98.PubMedGoogle Scholar
  29. 29.
    Faraj KA, Brouwer KM, Geutjes PJ, Versteeg EM, Wismans RG, Deprest JA, et al. The effect of ethylene oxide sterilisation, beta irradiation and gamma irradiation on collagen fibril-based scaffolds. Tissue Eng Regen Med. 2011;8(5):460–70.Google Scholar
  30. 30.
    Park S-N, Park J-C, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials. 2002;23(4):1205–12.PubMedGoogle Scholar
  31. 31.
    Farzamfar S, Naseri-Nosar M, Sahrapeyma H, Ehterami A, Goodarzi A, Rahmati M, Ahmadi Lakalayeh G, Ghorbani S, Vaez A, Salehi M (2018) Tetracycline hydrochloride-containing poly (ε-caprolactone)/poly lactic acid scaffold for bone tissue engineering application: in vitro and in vivo study. Int J Polym Mater Polym Biomater:1–8.Google Scholar
  32. 32.
    Müller L, Müller FA. Preparation of SBF with different HCO3-content and its influence on the composition of biomimetic apatites. Acta Biomater. 2006;2(2):181–9.PubMedGoogle Scholar
  33. 33.
    Aulakh JK, Lobana TS, Sood H, Arora DS, Kaur R, Singh J, et al. Silver derivatives of multi-donor heterocyclic thioamides as antimicrobial/anticancer agents: unusual bio-activity against methicillin resistant S. aureus, S. epidermidis, and E. faecalis and human bone cancer MG63 cell line. RSC Adv. 2019;9(27):15470–87.Google Scholar
  34. 34.
    Yang S, Leong K-F, Du Z, Chua C-K. The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng. 2001;7(6):679–89.PubMedGoogle Scholar
  35. 35.
    Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, et al. Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials. 2007;28(10):1830–7.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Liu M, Zeng X, Ma C, Yi H, Ali Z, Mou X, et al. Injectable hydrogels for cartilage and bone tissue engineering. Bone Research. 2017;5:17014.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Pourjavadi A, Kurdtabar M. Collagen-based highly porous hydrogel without any porogen: synthesis and characteristics. Eur Polym J. 2007;43(3):877–89.Google Scholar
  38. 38.
    Ferreira AM, Gentile P, Chiono V, Ciardelli G. Collagen for bone tissue regeneration. Acta Biomater. 2012;8(9):3191–200.PubMedGoogle Scholar
  39. 39.
    Ai A, Behforouz A, Ehterami A, Sadeghvaziri N, Jalali S, Farzamfar S, Yousefbeigi A, Ai A, Goodarzi A, Salehi M (2018) Sciatic nerve regeneration with collagen type I hydrogel containing chitosan nanoparticle loaded by insulin. Int J Polym Mater Polym Biomater:1–10.Google Scholar
  40. 40.
    Li F, Ba Q, Niu S, Guo Y, Duan Y, Zhao P, et al. In-situ forming biodegradable glycol chitosan-based hydrogels: synthesis, characterization, and chondrocyte culture. Mater Sci Eng C. 2012;32(7):2017–25.Google Scholar
  41. 41.
    Lind M, Larsen A, Clausen C, Osther K, Everland H. Cartilage repair with chondrocytes in fibrin hydrogel and MPEG polylactide scaffold: an in vivo study in goats. Knee Surg Sports Traumatol Arthrosc. 2008;16(7):690–8.PubMedGoogle Scholar
  42. 42.
    Gao M, Gao W, Papadimitriou J, Zhang C, Gao J, Zheng M. Exosomes—the enigmatic regulators of bone homeostasis. Bone Research. 2018;6(1):36.PubMedPubMedCentralGoogle Scholar
  43. 43.
    McCoy MG, Seo BR, Choi S, Fischbach C. Collagen I hydrogel microstructure and composition conjointly regulate vascular network formation. Acta Biomater. 2016;44:200–8.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Schmid J, Wallkamm B, Hämmerle CH, Gogolewski S, Lang NP. The significance of angiogenesis in guided bone regeneration. A case report of a rabbit experiment. Clin Oral Implants Res. 1997;8(3):244–8.PubMedGoogle Scholar
  45. 45.
    Twardowski T, Fertala A, Orgel J, San Antonio J. Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Curr Pharm Des. 2007;13(35):3608–21.PubMedGoogle Scholar
  46. 46.
    Ingber D, Folkman J. Inhibition of angiogenesis through modulation of collagen metabolism. Journal of Technical Methods and Pathology. 1988;59(1):44–51.Google Scholar
  47. 47.
    Hesse E, Hefferan TE, Tarara JE, Haasper C, Meller R, Krettek C, et al. Collagen type I hydrogel allows migration, proliferation, and osteogenic differentiation of rat bone marrow stromal cells. J Biomed Mater Res A. 2010;94(2):442–9.PubMedPubMedCentralGoogle Scholar
  48. 48.
    Byun Y-K, Kim K-H, Kim S-H, Kim Y-S, Koo K-T, Kim T-I, et al. Effects of immunosuppressants, FK506 and cyclosporin A, on the osteogenic differentiation of rat mesenchymal stem cells. Journal of Periodontal & Implant Science. 2012;42(3):73–80.Google Scholar
  49. 49.
    Zheng X, Mo A, Wang Y, Guo Y, Wu Y, Yuan Q. Effect of FK-506 (tacrolimus) therapy on bone healing of titanium implants: a histometric and biomechanical study in mice. Eur J Oral Sci. 2017;125(1):28–33.PubMedGoogle Scholar
  50. 50.
    Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K, et al. NFAT and Osterix cooperatively regulate bone formation. Nat Med. 2005;11(8):880–5.PubMedGoogle Scholar
  51. 51.
    Inoue T, Kawamura I, Matsuo M, Aketa M, Mabuchi M, Seki J, et al. Lesser reduction in bone mineral density by the immunosuppressant, FK506, compared with cyclosporine in rats. Transplantation. 2000;70(5):774–9.PubMedGoogle Scholar
  52. 52.
    Rubert M, Montero M, Guede D, Caeiro J-R, Martín-Fernández M, Díaz-Curiel M, et al. Sirolimus and tacrolimus rather than cyclosporine A cause bone loss in healthy adult male rats. Bone Reports. 2015;2:74–81.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Kirino S, Fukunaga J, Ikegami S, Tsuboi H, Kimata M, Nakata N, et al. Regulation of bone metabolism in immunosuppressant (FK506)-treated rats. J Bone Miner Metab. 2004;22(6):554–60.PubMedGoogle Scholar
  54. 54.
    Fukunaga J, Yamaai T, Yamachika E, Ishiwari Y, Tsujigiwa H, Sawaki K, et al. Expression of osteoclast differentiation factor and osteoclastogenesis inhibitory factor in rat osteoporosis induced by immunosuppressant FK506. Bone. 2004;34(3):425–31.PubMedGoogle Scholar
  55. 55.
    Abdelhadi M, Ericzon B-G, Hultenby K, Sjöden G, Reinholt FP, Nordenström J. Structural skeletal impairment induced by immunosuppressive therapy in rats: cyclosporine A vs tacrolimus. Transpl Int. 2002;15(4):180–7.PubMedGoogle Scholar
  56. 56.
    Folwarczna J, Kaczmarczyk-Sedlak I, Pytlik M, Nowińska B, Cegieła U, Sliwiński L, et al. Effect of low-dose tacrolimus coadministered with raloxifene on the skeletal system in male rats. Acta Pol Pharm. 2009;66(2):207–12.PubMedGoogle Scholar
  57. 57.
    Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81(5):672–6.PubMedGoogle Scholar
  58. 58.
    Bergsma EJ, Rozema FR, Bos RR, De Bruijn WC. Foreign body reactions to resorbable poly (L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Oral Maxillofac Surg. 1993;51(6):666–70.PubMedGoogle Scholar
  59. 59.
    Schmitz JP, Lemke RR, Zardeneta G, Hollinger JO, Milam SB. Isolation of particulate degradation debris 1 year after implantation of a Guidor membrane for guided bone regeneration: case report. J Oral Maxillofac Surg. 2000;58(8):888–93.PubMedGoogle Scholar
  60. 60.
    Dupoirieux L, Pourquier D, Picot M, Neves M. Comparative study of three different membranes for guided bone regeneration of rat cranial defects. Int J Oral Maxillofac Surg. 2001;30(1):58–62.PubMedGoogle Scholar
  61. 61.
    Schliephake H, Dard M, Planck H, Hierlemann H, Jakob A. Guided bone regeneration around endosseous implants using a resorbable membrane vs a PTFE membrane. Clin Oral Implants Res. 2000;11(3):230–41.PubMedGoogle Scholar

Copyright information

© Controlled Release Society 2019

Authors and Affiliations

  1. 1.Faculty of DentistryShahed University of Medical SciencesTehranIran
  2. 2.Department of Tissue Engineering, School of MedicineShahroud University of Medical SciencesShahroudIran
  3. 3.Tissue Engineering and Stem Cells Research CenterShahroud University of Medical SciencesShahroudIran
  4. 4.Department of Mechanical and Aerospace Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  5. 5.Dental Research Center, Research Institute of Dental Sciences, School of DentistryShahid Beheshti University of Medical SciencesTehranIran
  6. 6.Oral and Maxillofacial Surgery Department, School of DentistryShahid Beheshti University of Medical SciencesTehranIran

Personalised recommendations