Skip to main content

Advertisement

Log in

Recent advances in cyclosporine drug delivery: challenges and opportunities

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Cyclosporine has been established as a gold standard for its immunosuppressant action. Apart from this, the molecule is boon in treating broad spectrum of diseases like rheumatoid arthritis, psoriasis, and dry eye syndrome. The broad spectrum of cyclosporine demands efficient delivery systems by several routes. Neoral® and Sandimmune® are currently available formulations for oral route, whereas Restasis® is used for ocular delivery of cyclosporine. The available formulations serve the purpose only to a limited extent due to constraints like high molecular weight, low solubility, low permeability, bitter taste, and narrow therapeutic index of cyclosporine. Therefore, several novel formulations like microemulsion, self-emulsifying systems, nanoparticles, and microspheres were developed to overcome these constraints, exploring different routes like oral, ocular, and topical for cyclosporine. Additionally, iontophoresis and ultrasound-mediated delivery has also been studied to improve its poor permeability in topical delivery, whereas biodegradable implants were reported to increase the retention time in cornea and prolonged the release of cyclosporine by ocular route. Although these recent advances in cyclosporine delivery look promising, its clinical translation require in depth studies to deliver safe, efficacious, and stable formulation of cyclosporine. This review focuses on challenges of cyclosporine delivery and the recent advancements for overcoming the constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kjer J, Debbab A, Aly AH, Proksch P. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nat Protoc. 2010;5(3):479–90. https://doi.org/10.1038/nprot.2009.233.

    Article  CAS  PubMed  Google Scholar 

  2. Wu X, Stockdill JL, Wang P, Danishefsky SJ. Total synthesis of cyclosporine: access to N-methylated peptides via lsonitrile coupling reactions. J Am Chem Soc. 2010;132(12):4098–100. https://doi.org/10.1021/ja100517v.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wenger RM. Synthesis of cyclosporine. Total syntheses of ‘cyclosporin A’ and ‘cyclosporin H’, two fungal metabolites isolated from the species Tolypocladium inflatum GAMS. Helv Chim Acta. 1984;67(2):502–25. https://doi.org/10.1002/hlca.19840670220.

  4. Bockus AT, Lexa KW, Pye CR, Kalgutkar AS, Gardner JW, Hund KCR, et al. Probing the physicochemical boundaries of cell permeability and oral bioavailability in lipophilic macrocycles inspired by natural products. J Med Chem. 2015;58(11):4581–9. https://doi.org/10.1021/acs.jmedchem.5b00128.

    Article  CAS  Google Scholar 

  5. Chatterjee J, Gilon C, Hoffman A, Kessler H. N-methylation of peptides: a new perspective in medicinal chemistry. Acc Chem Res. 2008;41(10):1331–42. https://doi.org/10.1021/ar8000603.

    Article  CAS  PubMed  Google Scholar 

  6. Wenger RM. Synthesis of cyclosporine and analogues: structural requirements for immunosuppressive activity. Angew Chem Int Ed Engl. 1985;24(2):77–85. https://doi.org/10.1002/anie.198500773.

    Article  Google Scholar 

  7. Eid R. Therapeutic review. J Exot Pet Med. 2018;27(1):46–51. https://doi.org/10.1053/j.jepm.2017.10.016.

    Article  Google Scholar 

  8. Hernández GL, Volpert OV, Íñiguez MA, Lorenzo E, Martínez-Martínez S, Grau R, et al. Selective inhibition of vascular endothelial growth factor–mediated angiogenesis by cyclosporin a. J Exp Med. 2001;193(5):607–20. https://doi.org/10.1084/jem.193.5.607.

    Article  Google Scholar 

  9. Wells GA, Haguenauer D, Shea B, Suarez-Almazor ME, Welch V, Tugwell P, et al. Cyclosporine for treating rheumatoid arthritis. Cochrane Database Syst Rev. 1998;(2). https://doi.org/10.1002/14651858.CD001083.

  10. Roekevisch E, Spuls PI, Kuester D, Limpens J, Schmitt J. Efficacy and safety of systemic treatments for moderate-to-severe atopic dermatitis: a systematic review. J Allergy Clin Immunol. 2014;133(2):429–38. https://doi.org/10.1016/j.jaci.2013.07.049.

    Article  CAS  PubMed  Google Scholar 

  11. Garrod R. Pulmonary rehabilitation in older people. CJ Geriatr Med. 2006;8(1):18–21. https://doi.org/10.3238/arztebl.2015.0071.

    Article  Google Scholar 

  12. Czogalla A. Oral cyclosporine A - the current picture of its liposomal and other delivery systems. Cell Mol Biol Lett. 2009;14(1):139–52. https://doi.org/10.2478/s11658-008-0041-6.

    Article  CAS  PubMed  Google Scholar 

  13. Guada M, Lasa-Saracíbar B, Lana H, Del Carmen Dios-Viéitez M, Blanco-Prieto MJ. Lipid nanoparticles enhance the absorption of cyclosporine A through the gastrointestinal barrier: in vitro and in vivo studies. Int J Pharm. 2016;500(1–2):154–61. https://doi.org/10.1016/j.ijpharm.2016.01.037.

    Article  CAS  PubMed  Google Scholar 

  14. Borel JF, Feurer C, Magnée C, Stähelin H. Effects of the new anti-lymphocytic peptide cyclosporin A in animals. Immunology. 1977;32(6):1017–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Gauchat J, Khandjian EW, Weil R. Cyclosporin A prevents induction of the interleukin 2 receptor gene in cultured murine thymocytes. Proc Natl Acad Sci U S A. 1986;83(September):6430–4.

    Article  CAS  Google Scholar 

  16. Colombani PM, Robb A, Hess AD. Cyclosporin a binding to calmodulin: a possible site of action on T lymphocytes. Science. 1985;228(4697):337–9. https://doi.org/10.1126/science.3885394.

    Article  CAS  Google Scholar 

  17. Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology. 2000;47(2–3):119–25. https://doi.org/10.1016/S0162-3109(00)00192-2.

    Article  CAS  PubMed  Google Scholar 

  18. Krönke M, Leonard WJ, Depper JM, Arya SK, Wong-Staal F, Gallo RC, et al. Cyclosporin A inhibits T-cell growth factor gene expression at the level of mRNA transcription. Proc Natl Acad Sci U S A. 1984;81(16):5214–8. https://doi.org/10.1073/pnas.81.16.5214.

    Article  CAS  Google Scholar 

  19. Schmid FX. Protein folding: prolyl isomerases join the fold. Curr Biol. 1995;5(9):993–4. https://doi.org/10.1016/S0960-9822(95)00197-7.

    Article  CAS  PubMed  Google Scholar 

  20. Sigal NH. Is cyclophilin involved in the immunosuppressive and nephrotoxic mechanism of action of cyclosporin A? J Exp Med. 1991;173(3):619–28. https://doi.org/10.1084/jem.173.3.619.

    Article  CAS  Google Scholar 

  21. Kiefer F, Tibbles LA, Anafi M, Janssen A, Zanke BW, Lassam N, et al. HPK1, a hematopoietic protein kinase activating the SAPK/JNK pathway. EMBO J. 1996;15(24):7013–25.

    Article  CAS  Google Scholar 

  22. Klahr S, Ishidoya S, Morrissey J. Role of angiotensin II in the tubulointerstitial fibrosis of obstructive nephropathy. Am J Kidney Dis. 1995;26(1):141–6.

    Article  CAS  Google Scholar 

  23. Matsuda S, Moriguchi T, Koyasu S, Nishida E. T lymphocyte activation signals for interleukin-2 production involve activation of MKK6-p38 and MKK7-SAPK/JNK signaling pathways sensitive to cyclosporin A. J Biol Chem. 1998;273(20):12378–82. https://doi.org/10.1074/jbc.273.20.12378.

    Article  CAS  PubMed  Google Scholar 

  24. Granelli-Piperno A. In situ hybridization for interleukin 2 and interleukin 2 receptor mRNA in T cells activated in the presence or absence of cyclosporin A. J Exp Med. 1988;168(5):1649–58. https://doi.org/10.1084/jem.168.5.1649.

    Article  CAS  PubMed  Google Scholar 

  25. Robinson MJ, Cobb MH. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol. 1997;9(2):180–6. https://doi.org/10.1016/S0955-0674(97)80061-0.

    Article  CAS  PubMed  Google Scholar 

  26. Miskin JE, Charles CA, Lynnette CG, Dixon LA. Viral mechanism for inhibition of the cellular phosphatase calcineurin. Science. 1998;281(July):562–5.

    Article  CAS  Google Scholar 

  27. Molkentin JD, Lu JR, Antos CL, Markham B, Richardson J, Robbins J, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93(2):215–28. https://doi.org/10.1016/S0092-8674(00)81573-1.

    Article  CAS  Google Scholar 

  28. Timmerman LA, Clipstone NA, Ho SN, Northrop JP, Crabtree GR. Rapid shuttling of NF-AT in discrimination of Ca2+signals and immunosuppression. Nature. 1996;383:837–40. https://doi.org/10.1038/383837a0.

    Article  CAS  PubMed  Google Scholar 

  29. Su B, Jacinto E, Hibi M, Kallunki T, Karin M, Ben-Neriah Y. JNK is involved in signal integration during costimulation of T lymphocytes. Cell. 1994;77(5):727–36. https://doi.org/10.1016/0092-8674(94)90056-6.

    Article  PubMed  Google Scholar 

  30. Su B, Karint M. Mitogen-activated protein kinase cascades and regulation of gene expression. Curr Opin Immunol. 1996;8(3):402–11. https://doi.org/10.1016/S0952-7915(96)80131-2.

    Article  CAS  PubMed  Google Scholar 

  31. Yang SG. Biowaiver extension potential and IVIVC for BCS class II drugs by formulation design: case study for cyclosporine self-microemulsifying formulation. Arch Pharm Res. 2010;33(11):1835–42. https://doi.org/10.1007/s12272-010-1116-2.

    Article  CAS  PubMed  Google Scholar 

  32. Charman WN, Porter CJH, Mithani S, Dressman JB. Physicochemical and physiological mechanisms for the effects of food on drug absorption: the role of lipids and pH. J Pharm Sci. 1997;86(3):269–82. https://doi.org/10.1021/js960085v.

    Article  CAS  PubMed  Google Scholar 

  33. Fahr A. Cyclosporin clinical pharmacokinetics. Clin Pharmacokinet. 1993;24(6):472–95. https://doi.org/10.2165/00003088-199324060-00004.

    Article  CAS  PubMed  Google Scholar 

  34. Higgins C, Barnard A, Nixon R. Nanotechnology and contact dermatitis: applications and implications. Contact Dermatitis. 2016;75(3):77–8.

    Google Scholar 

  35. Müller RH, Runge S, Ravelli V, Mehnert W, Thünemann AF, Souto EB. Oral bioavailability of cyclosporine: solid lipid nanoparticles (SLN®) versus drug nanocrystals. Int J Pharm. 2006;317(1):82–9. https://doi.org/10.1016/j.ijpharm.2006.02.045.

    Article  CAS  PubMed  Google Scholar 

  36. Powles AV, Hardman CM, Porter WM, Cook T, Hulme B, Fry L. Renal function after 10 years treatment with cyclosporin for psoriasis. Br J Dermatol. 1998;138(3):443–9. https://doi.org/10.1046/j.1365-2133.1998.02122.x.

    Article  CAS  PubMed  Google Scholar 

  37. Thaçi D, Bräutigam M, Kaufmann R, Weidinger G, Paul C, Christophers E. Body-weight-independent dosing of cyclosporine micro-emulsion and three times weekly maintenance regimen in severe psoriasis. A randomised study. Dermatology. 2002;205(4):383–8. https://doi.org/10.1159/000066425.

    Article  CAS  PubMed  Google Scholar 

  38. Czech W, Bräutigam M, Weidinger G, Schöpf E. A body-weight-independent dosing regimen of cyclosporine microemulsion is effective in severe atopic dermatitis and improves the quality of life. J Am Acad Dermatol. 2000;42(4):653–9. https://doi.org/10.1016/S0190-9622(00)90180-4.

    Article  CAS  PubMed  Google Scholar 

  39. Oates JA, Wood AJJ, Kahan BD. Cyclosporine. N Engl J Med. 1989;321(25):1725–38. https://doi.org/10.1056/NEJM198912213212507.

    Article  Google Scholar 

  40. Copeland KR, Yatscoff RW, McKenna R. Immunosuppressive activity of cyclosporine metabolites compared and characterized by mass spectroscopy and nuclear magnetic resonance. Clin Chem. 1990;36(2):225–9.

    CAS  PubMed  Google Scholar 

  41. Pickrell MD, Sawers R, Michael J. Pregnancy after renal transplantation: severe intrauterine growth retardation during treatment with cyclosporin A. Br Med J (Clin Res Ed). 1988;296(6625):825–6. https://doi.org/10.1136/bmj.296.6625.825-a.

    Article  CAS  Google Scholar 

  42. Rajfer J, Sikka SC, Lemmi C, Koyle MA. Cyclosporine inhibits testosterone biosynthesis in the rat testis. Endocrinology. 1987;121(2):586–9. https://doi.org/10.1210/endo-121-2-586.

    Article  CAS  PubMed  Google Scholar 

  43. Robson D. Review of the pharmacokinetics, interactions and adverse reactions of cyclosporine in people, dogs and cats. Vet Rec. 2003;152(24):739–48. https://doi.org/10.1136/vr.152.24.739.

    Article  CAS  Google Scholar 

  44. Vercauteren SB, Bosmans JL, Elseviers MM, Verpooten GA, De Broe ME. A meta-analysis and morphological review of cyclosporine-induced nephrotoxicity in auto-immune diseases. Kidney Int. 1998;54(2):536–45. https://doi.org/10.1046/j.1523-1755.1998.00017.x.

    Article  CAS  PubMed  Google Scholar 

  45. Mohammadpour N, Elyasi S, Vahdati N, Mohammadpour AH, Shamsara J. A review on therapeutic drug monitoring of immunosuppressant drugs. Iran J Basic Med Sci. 2011;14(6):485–98. https://doi.org/10.1046/j.1365-2125.1999.00911.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Aguirre TAS, Teijeiro-Osorio D, Rosa M, Coulter IS, Alonso MJ, Brayden DJ. Current status of selected oral peptide technologies in advanced preclinical development and in clinical trials. Adv Drug Deliv Rev. 2016;106:223–41. https://doi.org/10.1016/j.addr.2016.02.004.

    Article  CAS  PubMed  Google Scholar 

  47. Reichrath J, Bens G, Bonowitz A, Tilgen W. Treatment recommendations for pyoderma gangrenosum: an evidence-based review of the literature based on more than 350 patients. J Am Acad Dermatol. 2005;53(2):273–83. https://doi.org/10.1016/j.jaad.2004.10.006.

    Article  PubMed  Google Scholar 

  48. Wilson SE, Perry HD. Long-term resolution of chronic dry eye symptoms and signs after topical cyclosporine treatment. Ophthalmology. 2007;114(1):76–9. https://doi.org/10.1016/j.ophtha.2006.05.077.

    Article  Google Scholar 

  49. Hernández-García V. Contents of the digestive tract of a false killer whale (Pseudorca crassidens) stranded in Gran Canaria (Canary Islands, Central East Atlantic). Bull Mar Sci. 2002;71(1):367–9. https://doi.org/10.1002/bdd.

    Article  Google Scholar 

  50. Tao XR, Xia XY, Zhang J, Tong LY, Zhang W, Zhou X, et al. CYP3A4∗18B and CYP3A5∗3 polymorphisms contribute to pharmacokinetic variability of cyclosporine among healthy Chinese subjects. Eur J Pharm Sci. 2015;76:238–44. https://doi.org/10.1016/j.ejps.2015.05.011.

    Article  CAS  Google Scholar 

  51. Muheem A, Shakeel F, Jahangir MA, Anwar M, Mallick N, Jain GK, et al. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm J. 2016;24(4):413–28. https://doi.org/10.1016/j.jsps.2014.06.004.

    Article  Google Scholar 

  52. Vasconcelos T, Marques S, Sarmento B. Measuring the emulsification dynamics and stability of self-emulsifying drug delivery systems. Eur J Pharm Biopharm. 2018;123:1–8. https://doi.org/10.1016/j.ejpb.2017.11.003.

    Article  CAS  PubMed  Google Scholar 

  53. Yu JY, Chong PHJ. A survey of clustering schemes for mobile ad hoc networks. IEEE Commun Surv Tutorials. 2005;7(1):32–47. https://doi.org/10.1080/17425247.2016.1218462.

    Article  CAS  Google Scholar 

  54. Zhang X, Yi Y, Qi J, Lu Y, Tian Z, Xie Y, et al. Controlled release of cyclosporine A self-nanoemulsifying systems from osmotic pump tablets: near zero-order release and pharmacokinetics in dogs. Int J Pharm. 2013;452(1–2):233–40. https://doi.org/10.1016/j.ijpharm.2013.05.014.

    Article  CAS  Google Scholar 

  55. Zhao X, Zhou YQ, Potharaju S, Lou H, Sun HM, Brunson E, et al. Development of a self micro-emulsifying tablet of cyclosporine A by the liquisolid compact technique. Int J Pharm Sci Res. 2011;2(9):2299–308.

    CAS  Google Scholar 

  56. Zidan AS, Aljaeid BM, Mokhtar M, Shehata TM. Taste-masked orodispersible tablets of cyclosporine self-nanoemulsion lyophilized with dry silica. Pharm Dev Technol. 2015;20(6):652–61. https://doi.org/10.3109/10837450.2014.908307.

    Article  CAS  PubMed  Google Scholar 

  57. Mukund JY, Kantilal BR, Sudhakar RN. Floating microspheres: a review. Braz J Pharm Sci. 2012;48(1):17–30. https://doi.org/10.1590/S1984-82502012000100003.

    Article  CAS  Google Scholar 

  58. Lee J, Park TG, Choi H. Development of oral drug delivery system using floating microspheres. J Microencapsul. 1999;16:715–29. https://doi.org/10.1080/026520499288663.

  59. Kaurav H, Hari Kumar SL, Kaur A. Mucoadhesive microspheres as carriers in drug delivery: a review. Int J Drug Dev Res. 2012;4(2):21–34. https://doi.org/10.1002/rnc.

    Article  CAS  Google Scholar 

  60. Malaekeh-Nikouei B, Sajadi Tabassi SA, Jaafari MR. Preparation, characterization, and mucoadhesive properties of chitosan-coated microspheres encapsulated with cyclosporine A. Drug Dev Ind Pharm. 2008;34(5):492–8. https://doi.org/10.1080/03639040701744004.

    Article  CAS  PubMed  Google Scholar 

  61. Labbé A, Baudouin C, Ismail D, Amrane M, Garrigue JS, Leonardi A, et al. Utilisation de la cyclosporine A topique : une étude pan-européenne. J Fr Ophtalmol. 2017;40(3):187–95. https://doi.org/10.1016/j.jfo.2016.12.004.

    Article  Google Scholar 

  62. Agarwal P, Rupenthal ID. Modern approaches to the ocular delivery of cyclosporine A. Drug Discov Today. 2016;21(6):977–88. https://doi.org/10.1016/j.drudis.2016.04.002.

    Article  CAS  PubMed  Google Scholar 

  63. Lallemand F, Schmitt M, Bourges JL, Gurny R, Benita S, Garrigue JS. Cyclosporine A delivery to the eye: a comprehensive review of academic and industrial efforts. Eur J Pharm Biopharm. 2017;117:14–28. https://doi.org/10.1016/j.ejpb.2017.03.006.

    Article  CAS  PubMed  Google Scholar 

  64. Dahan A, Zimmermann EM, Ben-Shabat S. Modern prodrug design for targeted oral drug delivery. Molecules. 2014;19(10):16489–505. https://doi.org/10.3390/molecules191016489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hamel AR, Hubler F, Mutter M. Water-soluble prodrugs of cyclosporine A with tailored conversion rates. J Pept Res. 2005;65(3):364–74. https://doi.org/10.1111/j.1399-3011.2005.00234.x.

    Article  CAS  PubMed  Google Scholar 

  66. Rodriguez-Aller M, Guillarme D, El Sanharawi M, Behar-Cohen F, Veuthey JL, Gurny R. In vivo distribution and ex vivo permeation of cyclosporine A prodrug aqueous formulations for ocular application. J Control Release. 2013;170(1):153–9. https://doi.org/10.1016/j.jconrel.2013.04.019.

    Article  CAS  PubMed  Google Scholar 

  67. Battaglia L, Gallarate M, Serpe L, Foglietta F, Muntoni E, del Pozo Rodriguez A, et al. Chapter 7. In: Ocular delivery of solid lipid nanoparticles: Elsevier Inc; 2018. https://doi.org/10.1016/B978-0-12-813687-4.00007-4.

    Chapter  Google Scholar 

  68. Gökçe EH, Sandri G, Eǧrilmez S, Bonferoni MC, Güneri T, Caramella C. Cyclosporine a-loaded solid lipid nanoparticles: ocular tolerance and in vivo drug release in rabbit eyes. Curr Eye Res. 2009;34(11):996–1003. https://doi.org/10.3109/02713680903261405.

    Article  Google Scholar 

  69. Lallemand F, Felt-Baeyens O, Besseghir K, Behar-Cohen F, Gurny R. Cyclosporine A delivery to the eye: a pharmaceutical challenge. Eur J Pharm Biopharm. 2003;56(3):307–18. https://doi.org/10.1016/S0939-6411(03)00138-3.

    Article  CAS  PubMed  Google Scholar 

  70. Başaran E, Demirel M, Sirmagül B, Yazan Y. Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul. 2010;27(1):37–47. https://doi.org/10.3109/02652040902846883.

    Article  CAS  PubMed  Google Scholar 

  71. Mitragotri S, Burke PA, Langer R. Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies. Nat Rev Drug Discov. 2014;13(9):655–72. https://doi.org/10.1038/nrd4363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Alghadyan AA, Peyman GA, Khoobehi B, Milner S, Liu K. Liposome-bound cyclosporine : clearance after intravitreal injection. Int Ophthalmol. 1988;12(2):109–12. https://doi.org/10.1007/BF0013713.

    Article  CAS  PubMed  Google Scholar 

  73. He Y, Wang J-C, Liu Y-L, Ma Z-Z, Zhu X-A, Zhang Q. Therapeutic and toxicological evaluations of cyclosporine a microspheres as a treatment vehicle for uveitis in rabbits. J Ocul Pharmacol Ther. 2006;22(2):121–31. https://doi.org/10.1089/jop.2006.22.121.

    Article  Google Scholar 

  74. Cao Y, Zhang C, Shen W, Cheng Z, Yu L, Ping Q. Poly(N-isopropylacrylamide)-chitosan as thermosensitive in situ gel-forming system for ocular drug delivery. J Control Release. 2007;120(3):186–94. https://doi.org/10.1016/j.jconrel.2007.05.009.

    Article  CAS  Google Scholar 

  75. Wu Y, Yao J, Zhou J, Dahmani FZ. Enhanced and sustained topical ocular delivery of cyclosporine a in thermosensitive hyaluronic acid-based in situ forming microgels. Int J Nanomedicine. 2013;8:3587–601. https://doi.org/10.2147/IJN.S47665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kapoor Y, Chauhan A. Ophthalmic delivery of Cyclosporine A from Brij-97 microemulsion and surfactant-laden p-HEMA hydrogels. Int J Pharm. 2008;361(1–2):222–9. https://doi.org/10.1016/j.ijpharm.2008.05.028.

    Article  CAS  PubMed  Google Scholar 

  77. Lee D. Intraocular implants for the treatment of autoimmune uveitis. J Funct Biomater. 2015;6(3):650–66. https://doi.org/10.3390/jfb6030650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Apel A, Oh C, Chiu R, Saville B, Cheng YL, Rootman D. A subconjunctival degradable implant for cyclosporine delivery in corneal transplant therapy. Curr Eye Res. 1995;14(8):659–67. https://doi.org/10.3109/02713689508998493.

    Article  CAS  PubMed  Google Scholar 

  79. Musa SH, Basri M, Masoumi HRF, Shamsudin N, Salim N. Enhancement of physicochemical properties of nanocolloidal carrier loaded with cyclosporine for topical treatment of psoriasis: in vitro diffusion and in vivo hydrating action. Int J Nanomedicine. 2017;12:2427–41. https://doi.org/10.2147/IJN.S125302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Katare O, Raza K, Singh B, Dogra S. Novel drug delivery systems in topical treatment of psoriasis: rigors and vigors. Indian J Dermatol Venereol Leprol. 2010;76(6):612. https://doi.org/10.4103/0378-6323.72451.

    Article  PubMed  Google Scholar 

  81. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2012;64(SUPPL):175–93. https://doi.org/10.1016/j.addr.2012.09.018.

    Article  Google Scholar 

  82. Liu H, Li S, Wang Y, Han F, Dong Y. Bicontinuous water-AOT/Tween85-isopropyl myristate microemulsion: a new vehicle for transdermal delivery of cyclosporin A. Drug Dev Ind Pharm. 2006;32(5):549–57. https://doi.org/10.1080/03639040500529168.

    Article  CAS  PubMed  Google Scholar 

  83. Marwah H, Garg T, Goyal AK, Rath G. Permeation enhancer strategies in transdermal drug delivery. Drug Deliv. 2016;23(2):564–78. https://doi.org/10.3109/10717544.2014.935532.

    Article  CAS  PubMed  Google Scholar 

  84. Lopes LB, Collett JH, Bentley MVLB. Topical delivery of cyclosporin A: an in vitro study using monoolein as a penetration enhancer. Eur J Pharm Biopharm. 2005;60(1):25–30. https://doi.org/10.1016/j.ejpb.2004.12.003.

    Article  CAS  PubMed  Google Scholar 

  85. Lauterbach A, Müller-Goymann CC. Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur J Pharm Biopharm. 2015;97(July):152–63. https://doi.org/10.1016/j.ejpb.2015.06.020.

    Article  CAS  PubMed  Google Scholar 

  86. Sawant K, Varia J, Dodiya S. Cyclosporine a loaded solid lipid nanoparticles: optimization of formulation, process variable and characterization. Curr Drug Deliv. 2008;5(1):64–9. https://doi.org/10.2174/156720108783331069.

    Article  PubMed  Google Scholar 

  87. Kim ST, Jang DJ, Kim JH, Park JY, Lim JS, Lee SY, et al. Topical administration of cyclosporin A in a solid lipid nanoparticle formulation. Pharmazie. 2009;64(8):510–4. https://doi.org/10.1691/ph.2009.8373.

  88. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2017. https://doi.org/10.1016/j.arabjc.2017.05.011.

    Article  CAS  Google Scholar 

  89. Kotsuchibashi Y, Nakagawa Y, Ebara M. Nanoparticles. Biomater Nanoarchitectonics. 2016;5(June):7–23. https://doi.org/10.1016/B978-0-323-37127-8.00002-9.

    Article  Google Scholar 

  90. Frušić-Zlotkin M, Soroka Y, Tivony R, Larush L, Verkhovsky L, Brégégère FM, et al. Penetration and biological effects of topically applied cyclosporin A nanoparticles in a human skin organ culture inflammatory model. Exp Dermatol. 2012;21(12):938–43. https://doi.org/10.1111/exd.12051.

    Article  Google Scholar 

  91. Alkilani AZ, McCrudden MTC, Donnelly RF. Transdermal drug delivery: innovative pharmaceutical developments based on disruption of the barrier properties of the stratum corneum. Pharmaceutics. 2015;7(4):438–70. https://doi.org/10.3390/pharmaceutics7040438.

    Article  CAS  Google Scholar 

  92. Boinpally RR, Zhou SL, Devraj G, Anne PK, Poondru S, Jasti BR. Iontophoresis of lecithin vesicles of cyclosporin A. Int J Pharm. 2004;274(1–2):185–90. https://doi.org/10.1016/j.ijpharm.2004.01.016.

    Article  CAS  Google Scholar 

  93. Guo J, Ping Q, Sun G, Jiao C. Lecithin vesicular carriers for transdermal delivery of cyclosporin A. Int J Pharm. 2000;194(2):201–7. https://doi.org/10.1016/S0378-5173(99)00361-0.

    Article  CAS  PubMed  Google Scholar 

  94. Park D, Park H, Seo J, Lee S. Sonophoresis in transdermal drug deliverys. Ultrasonics. 2014;54(1):56–65. https://doi.org/10.1016/j.ultras.2013.07.007.

    Article  CAS  PubMed  Google Scholar 

  95. Liu H, Li S, Pan W, Wang Y, Han F, Yao H. Investigation into the potential of low-frequency ultrasound facilitated topical delivery of cyclosporin A. Int J Pharm. 2006;326(1–2):32–8. https://doi.org/10.1016/j.ijpharm.2006.07.022.

    Article  CAS  PubMed  Google Scholar 

  96. Koppelstaetter C, Kern G, Leierer G, Mair SM, Mayer G, Leierer J. Effect of cyclosporine, tacrolimus and sirolimus on cellular senescence in renal epithelial cells. Toxicol in Vitro. 2018;48(September 2017):86–92. https://doi.org/10.1016/j.tiv.2018.01.004.

    Article  CAS  PubMed  Google Scholar 

  97. Kvien TK, Scherer HU, Burmester GR. Rheumatoid Arthritis. EULAR Compend Rheum Dis. 2009;333(3):61–80. https://doi.org/10.1038/nrrheum.2009.31.

    Article  CAS  Google Scholar 

  98. Stevenson D, Tauber J, Reis BL. Efficacy and safety of cyclosporin A ophthalmic emulsion in the treatment of moderate-to-servere dry eye disease: a dose-ranging, randomized trial. Ophthalmology. 2000;107(5):967–74. https://doi.org/10.1016/S0161-6420(00)00035-X.

    Article  CAS  PubMed  Google Scholar 

  99. Donnenfeld E, Pflugfelder SC. Topical ophthalmic cyclosporine: pharmacology and clinical uses. Surv Ophthalmol. 2009;54(3):321–38. https://doi.org/10.1016/j.survophthal.2009.02.002.

    Article  Google Scholar 

  100. Biren TA, Barr RJ. Dermatologic applications of cyclosporine. Arch Dermatol. 1986;122(9):1028–32. https://doi.org/10.1001/archderm.1986.01660210078022.

    Article  CAS  PubMed  Google Scholar 

  101. Lebwohl M, Ellis C, Gottlieb A, Koo J, Krueger G, Linden K, et al. Cyclosporine consensus conference: with emphasis on the treatment of psoriasis. J Am Acad Dermatol. 1998;39(3):464–75. https://doi.org/10.1016/S0190-9622(98)70325-1.

    Article  CAS  Google Scholar 

  102. Dorinda Shelley E, Shelley WB. Cyclosporine therapy for pyoderma gangrenosum associated with sclerosing cholangitis and ulcerative colitis. J Am Acad Dermatol. 1988;18:1084–8. https://doi.org/10.1016/S0190-9622(88)70111-5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarika Wairkar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, D., Wairkar, S. Recent advances in cyclosporine drug delivery: challenges and opportunities. Drug Deliv. and Transl. Res. 9, 1067–1081 (2019). https://doi.org/10.1007/s13346-019-00650-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00650-1

Keywords

Navigation