Advertisement

Drug Delivery and Translational Research

, Volume 8, Issue 5, pp 1545–1563 | Cite as

Transferrin receptors-targeting nanocarriers for efficient targeted delivery and transcytosis of drugs into the brain tumors: a review of recent advancements and emerging trends

  • Hira ChoudhuryEmail author
  • Manisha Pandey
  • Pei Xin Chin
  • Yee Lin Phang
  • Jeng Yuen Cheah
  • Shu Chien Ooi
  • Kit-Kay Mak
  • Mallikarjuna Rao Pichika
  • Prashant Kesharwani
  • Zahid Hussain
  • Bapi Gorain
Review Article

Abstract

Treatment of glioblastoma multiforme (GBM) is a predominant challenge in chemotherapy due to the existence of blood–brain barrier (BBB) which restricts delivery of chemotherapeutic agents to the brain together with the problem of drug penetration through hard parenchyma of the GBM. With the structural and mechanistic elucidation of the BBB under both physiological and pathological conditions, it is now viable to target central nervous system (CNS) disorders utilizing the presence of transferrin (Tf) receptors (TfRs). However, overexpression of these TfRs on the GBM cell surface can also help to avoid restrictions of GBM cells to deliver chemotherapeutic agents within the tumor. Therefore, targeting of TfR-mediated delivery could counteract drug delivery issues in GBM and create a delivery system that could cross the BBB effectively to utilize ligand-conjugated drug complexes through receptor-mediated transcytosis. Hence, approach towards successful delivery of antitumor agents to the gliomas has been making possible through targeting these overexpressed TfRs within the CNS and glioma cells. This review article presents a thorough analysis of current understanding on Tf-conjugated nanocarriers as efficient drug delivery system.

Keywords

Cancer Glioblastoma Transferrin receptor Targeted delivery Blood–brain barrier Nanotechnology Brain tumor chemotherapy Theranostic application 

Notes

Acknowledgements

The authors would like to acknowledge the School of Pharmacy, International Medical University for providing resources and support in completing this work.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interest.

References

  1. 1.
    Cui Y, Xu Q, Chow PKH, Wang D, Wang CH. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials. Elsevier Ltd. 2013;34:8511–20.CrossRefPubMedGoogle Scholar
  2. 2.
    Wei X, Chen X, Ying M, Lu W. Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B. Elsevier. 2014;4:193–201.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127:2893–917.CrossRefPubMedGoogle Scholar
  4. 4.
    Wei L, Guo XY, Yang T, Yu MZ, Chen DW, Wang JC. Brain tumor-targeted therapy by systemic delivery of siRNA with transferrin receptor-mediated core-shell nanoparticles. Int J Pharm. Elsevier B.V. 2016;510:394–405.CrossRefPubMedGoogle Scholar
  5. 5.
    Sonali, Agrawal P, Singh RP, Rajesh C V, Singh S, Vijayakumar MR et al. Transferrin receptor-targeted vitamin E TPGS micelles for brain cancer therapy: preparation, characterization and brain distribution in rats. Drug Deliv [Internet]. 2016 [cited 2017 Dec 2];23:1788–98. Available from: http://www.tandfonline.com/doi/full/10.3109/10717544.2015.1094681.
  6. 6.
    Porru M, Zappavigna S, Salzano G, Luce A, Stoppacciaro A, Balestrieri ML, et al. Medical treatment of orthotopic glioblastoma with transferrin-conjugated nanoparticles encapsulating zoledronic acid. Oncotarget. 2014;5:10446–59.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Chang J, Paillard A, Passirani C, Morille M, Benoit JP, Betbeder D, et al. Transferrin adsorption onto PLGA nanoparticles governs their interaction with biological systems from blood circulation to brain cancer cells. Pharm Res. 2012;29:1495–505.CrossRefPubMedGoogle Scholar
  8. 8.
    Stupp R, Mason WP, Van Den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;35210:987–96.CrossRefGoogle Scholar
  9. 9.
    Ding H, Inoue S, Ljubimov AV, Patil R, Portilla-Arias J, Hu J, et al. Inhibition of brain tumor growth by intravenous poly (β-L-malic acid) nanobioconjugate with pH-dependent drug release [corrected]. Proc Natl Acad Sci U S A. 2010;107:18143–8.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Li J, Guo Y, Kuang Y, An S, Ma H, Jiang C. Choline transporter-targeting and co-delivery system for glioma therapy. Biomaterials. Elsevier Ltd. 2013;34:9142–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Garanti T, Stasik A, Burrow AJ, Alhnan MA, Wan KW. Anti-glioma activity and the mechanism of cellular uptake of asiatic acid-loaded solid lipid nanoparticles. Int J Pharm. Elsevier B.V. 2016;500:305–15.CrossRefPubMedGoogle Scholar
  12. 12.
    Alam MI, Beg S, Samad A, Baboota S, Kohli K, Ali J, et al. Strategy for effective brain drug delivery. Eur J Pharm Sci. Elsevier B.V. 2010;40:385–403.CrossRefPubMedGoogle Scholar
  13. 13.
    Muthu MS, Feng S-S. Pharmaceutical stability aspects of nanomedicines. Nanomedicine (Lond). 2009;4:857–60.CrossRefGoogle Scholar
  14. 14.
    Choudhury H, Gorain B, Chatterjee B, Mandal UK, Sengupta P, Tekade RK. Pharmacokinetic and pharmacodynamic features of nanoemulsion following oral, intravenous, topical and nasal route. Curr Pharm Des [Internet]. 2017 [cited 2017 Oct 14];23:2504–31. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27908273.
  15. 15.
    Choudhury H, Gorain B, Karmakar S, Biswas E, Dey G, Barik R et al. Improvement of cellular uptake, in vitro antitumor activity and sustained release profile with increased bioavailability from a nanoemulsion platform. Int J Pharm [Internet]. 2014 [cited 2016 Nov 8];460:131–43. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378517313009861.
  16. 16.
    Choudhury H, Gorain B, Pandey M, Kumbhar SA, Tekade RK, Iyer AK et al. Recent advances in TPGS-based nanoparticles of docetaxel for improved chemotherapy. Int J Pharm [Internet]. 2017 [cited 2017 Jul 29];529:506–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28711640.
  17. 17.
    Gorain B, Tekade M, Kesharwani P, Iyer AK, Kalia K, Tekade RK. The use of nanoscaffolds and dendrimers in tissue engineering. Drug Discov Today [Internet]. 2017 [cited 2017 Mar 8]; Available from: http://linkinghub.elsevier.com/retrieve/pii/S1359644616304895.
  18. 18.
    Gorain B, Choudhury H, Tekade RK, Karan S, Jaisankar P, Pal TK. Comparative biodistribution and safety profiling of olmesartan medoxomil oil-in-water oral nanoemulsion. Regul Toxicol Pharmacol. 2016;82:20–31.CrossRefPubMedGoogle Scholar
  19. 19.
    Gorain B, Choudhury H, Pandey M, Mohd Amin MCI, Singh B, Gupta U, et al. Dendrimers as effective carriers for the treatment of brain tumor. Nanotechnology-Based Target Drug Deliv Syst Brain Tumors [Internet]. Elsevier; 2018 [cited 2018 May 6]. p. 267–305. Available from: http://linkinghub.elsevier.com/retrieve/pii/B9780128122181000105.
  20. 20.
    Pandey M, Choudhury H, Gunasegaran TAP, Nathan SS, Md S, Gorain B et al. Hyaluronic acid-modified betamethasone encapsulated polymeric nanoparticles: fabrication, characterisation, in vitro release kinetics, and dermal targeting. Drug Deliv Transl Res [Internet]. 2018 [cited 2018 May 6]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/29488170.
  21. 21.
    Jain A, Jain A, Garg NK, Tyagi RK, Singh B, Katare OP et al. Surface engineered polymeric nanocarriers mediate the delivery of transferrin–methotrexate conjugates for an improved understanding of brain cancer. Acta Biomater [Internet]. 2015 [cited 2017 Apr 1];24:140–51. Available from: http://www.sciencedirect.com/science/article/pii/S1742706115002962.
  22. 22.
    Mei L, Zhang Q, Yang Y, He Q, Gao H. Angiopep-2 and activatable cell penetrating peptide dual modified nanoparticles for enhanced tumor targeting and penetrating. Int J Pharm. Elsevier B.V. 2014;474:95–102.CrossRefPubMedGoogle Scholar
  23. 23.
    Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55:329–47.CrossRefPubMedGoogle Scholar
  24. 24.
    Gorain B, Choudhury H, Kundu A, Sarkar L, Karmakar S, Jaisankar P, et al. Nanoemulsion strategy for olmesartan medoxomil improves oral absorption and extended antihypertensive activity in hypertensive rats. Colloids Surfaces B Biointerfaces. 2014;115:286–94.CrossRefPubMedGoogle Scholar
  25. 25.
    Garcion E, Lamprecht A, Heurtault B, Paillard A, Aubert-Pouessel A, Denizot B, et al. A new generation of anticancer, drug-loaded, colloidal vectors reverses multidrug resistance in glioma and reduces tumor progression in rats. Mol Cancer Ther. 2006;5:1710–22.CrossRefPubMedGoogle Scholar
  26. 26.
    Roger E, Lagarce F, Garcion E, Benoit JP. Lipid nanocarriers improve paclitaxel transport throughout human intestinal epithelial cells by using vesicle-mediated transcytosis. J Control Release. Elsevier B.V. 2009;140:174–81.CrossRefPubMedGoogle Scholar
  27. 27.
    Lemarchand C, Gref R, Passirani C, Garcion E, Petri B, Müller R, et al. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials. 2006;27:108–18.CrossRefPubMedGoogle Scholar
  28. 28.
    Choudhury H, Gorain B, Pandey M, Chatterjee L, Sengupta P, Das A et al. Recent update on nanoemulgel as topical drug delivery system. J Pharm Sci [Internet]. Elsevier; 2017 [cited 2017 Apr 15]; Available from: http://www.ncbi.nlm.nih.gov/pubmed/6060585.
  29. 29.
    Choudhury H, Gorain B, Tekade RK, Pandey M, Karmakar S, Pal TK. Safety against nephrotoxicity in paclitaxel treatment: oral nanocarrier as an effective tool in preclinical evaluation with marked in vivo antitumor activity. Regul Toxicol Pharmacol [Internet]. 2017 [cited 2017 Dec 2];91:179–89. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0273230017303380.
  30. 30.
    Praetorius NP, Mandal TK. Engineered nanoparticles in cancer therapy. Recent Pat Drug Deliv Formul. 2007;1:37–51.CrossRefPubMedGoogle Scholar
  31. 31.
    Costantino L, Gandolfi F, Tosi G, Rivasi F, Vandelli MA, Forni F. Peptide-derivatized biodegradable nanoparticles able to cross the blood-brain barrier. J Control Release. 2005;108:84–96.CrossRefPubMedGoogle Scholar
  32. 32.
    Shubhra QTH, Tóth J, Gyenis J, Feczkó T. Surface modification of HSA containing magnetic PLGA nanoparticles by poloxamer to decrease plasma protein adsorption. Colloids Surfaces B Biointerfaces. Elsevier B.V. 2014;122:529–36.CrossRefPubMedGoogle Scholar
  33. 33.
    Hadjipanayis CG, Ph D, Machaidze R, Kaluzova M, Wang L, Schuette AJ, et al. NIH Public. Access. 2011;70:6303–12.Google Scholar
  34. 34.
    Huang J, Xie J, Chen K, Bu L, Lee S, Cheng Z, et al. HSA coated MnO nanoparticles with prominent MRI contrast for tumor imaging. Chem Commun (Camb). 2010;46:6684–6.CrossRefGoogle Scholar
  35. 35.
    Thorpe PE. Vascular targeting agents as cancer therapeutics vascular targeting agents as cancer therapeutics. Clin Cancer Res. 2004;10:415–27.CrossRefPubMedGoogle Scholar
  36. 36.
    Hervé F, Ghinea N, Scherrmann J-M. CNS delivery via adsorptive transcytosis. AAPS J. 2008;10:455–72.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Monsky WL, Fukumura D, Gohongi T, Yuan F, Jain RK. Augmentation of Transvascular Transport of Macromolecules and Nanoparticles in Tumors Using Vascular Endothelial Growth Factor 1. 1999;4129–35.Google Scholar
  38. 38.
    Westedt U, Barbu-Tudoran L, Schaper AK, Kalinowski M, Alfke H, Kissel T. Deposition of nanoparticles in the arterial vessel by porous balloon catheters: localization by confocal laser scanning microscopy and transmission electron microscopy. AAPS PharmSci. 2002;4:E41.CrossRefPubMedGoogle Scholar
  39. 39.
    Chandramohan V, Sampson JH, Pastan I, Bigner DD. Toxin-based targeted therapy for malignant brain tumors. Clin Dev Immunol. 2012;2012:1–15.CrossRefGoogle Scholar
  40. 40.
    Lowe KA, Chia VM, Taylor A, O’Malley C, Kelsh M, Mohamed M et al. An international assessment of ovarian cancer incidence and mortality. Gynecol Oncol [Internet]. BioMed Central; 2013 [cited 2017 Jan 22];130:107–14. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0090825813001819.
  41. 41.
    Jones AR, Shusta E V. Blood–brain barrier transport of therapeutics via receptor-mediation. Pharm Res [Internet]. 2007 [cited 2018 May 26];24:1759–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17619996.
  42. 42.
    Sonali, Singh RP, Singh N, Sharma G, Vijayakumar MR, Koch B et al. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics. Drug Deliv [Internet]. 2016 [cited 2017 Dec 22];23:1261–71. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26961144.
  43. 43.
    Gao K, Jiang X. Influence of particle size on transport of methotrexate across blood brain barrier by polysorbate 80-coated polybutylcyanoacrylate nanoparticles. Int J Pharm. 2006;310:213–9.CrossRefPubMedGoogle Scholar
  44. 44.
    Yoshikawa T, Sakaeda (nee Kakutani) T, Sugawara T, Hirano K, Stella VJ. A novel chemical delivery system for brain targeting. Adv Drug Deliv Rev. 1999;36:255–75.CrossRefPubMedGoogle Scholar
  45. 45.
    Ying X, Wen H, Lu W-L, Du J, Guo J, Tian W, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Release. 2010;141:183–92.CrossRefPubMedGoogle Scholar
  46. 46.
    Abbott NJ, Patabendige AAK, Dolman DEM, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis [Internet]. Academic Press; 2010 [cited 2018 May 30];37:13–25. Available from: https://www.sciencedirect.com/science/article/pii/S0969996109002083.
  47. 47.
    Sharma G, Lakkadwala S, Modgil A, Singh J. The role of cell-penetrating peptide and transferrin on enhanced delivery of drug to brain. Int J Mol Sci. 2016;17Google Scholar
  48. 48.
    Pulicherla KK, Verma MK. Targeting therapeutics across the blood brain barrier (BBB), prerequisite towards thrombolytic therapy for cerebrovascular disorders—an overview and advancements. AAPS PharmSciTech. 2015;16:223–33.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Liu Y, He Q. Chapter 2—the route of nanomaterials entering brain. Neurotox Nanomater Nanomed. 2017:33–57.Google Scholar
  50. 50.
    Bhagavan NV, Ha C-E, Bhagavan NV, Ha C-E. Chapter 27—metabolism of iron and heme. Essentials Med Biochem. 2015:511–29.Google Scholar
  51. 51.
    Yeagle PL, Yeagle PL. Chapter 15—membrane receptors. Membr Cells 2016. p. 401–25.Google Scholar
  52. 52.
    Leitner DF, Connor JR. Functional roles of transferrin in the brain. Biochim Biophys Acta - Gen Subj. Elsevier B.V. 2012;1820:393–402.CrossRefGoogle Scholar
  53. 53.
    Roelcke U, Leenders KL, von Ammon K, Radü EW, Vontobel P, Günther I, et al. Brain tumor iron uptake measured with positron emission tomography and 52Fe-citrate. J Neuro-Oncol. 1996;29:157–65.CrossRefGoogle Scholar
  54. 54.
    Huebers HA, Finch CA. The physiology of transferrin and transferrin receptors. Physiol Rev. 1987;67:520–82.CrossRefPubMedGoogle Scholar
  55. 55.
    Li H, Qian ZM. Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev. 2002;22:225–50.CrossRefPubMedGoogle Scholar
  56. 56.
    Lynch SR. ANEMIA (ANAEMIA)|Iron-deficiency Anemia. Encycl Food Sci Nutr. 2003:215–20.Google Scholar
  57. 57.
    Winterbourn CC. Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicol Lett. 1995;82–83:969–74.CrossRefPubMedGoogle Scholar
  58. 58.
    Gutteridge JMC. Iron promoters of the Fenton reaction and lipid peroxidation can be released from haemoglobin by peroxides. FEBS Lett. 1986;201:291–5.CrossRefPubMedGoogle Scholar
  59. 59.
    Huang Z, Wu H, Chuai S, Xu F, Yan F, Englund N, et al. NSD2 is recruited through its PHD domain to oncogenic gene loci to drive multiple myeloma. Cancer Res. 2013;73:6277–88.CrossRefPubMedGoogle Scholar
  60. 60.
    Ryoko Tsukamoto HY. Quantum dots conjugated with transferrin for brain tumor cell imaging. J Cell Sci Ther. 2013;4Google Scholar
  61. 61.
    Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, et al. The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta. Elsevier B.V. 2012;1820:291–317.CrossRefPubMedGoogle Scholar
  62. 62.
    Yue J, Liu S, Wang R, Hu X, Xie Z, Huang Y, et al. Transferrin-conjugated micelles: enhanced accumulation and antitumor effect for transferrin-receptor-overexpressing cancer models. Mol Pharm. 2012;9:1919–31.CrossRefPubMedGoogle Scholar
  63. 63.
    Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol. 1999;31:1111–37.CrossRefPubMedGoogle Scholar
  64. 64.
    Danhier F, Feron O, Préat V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Control Release. Elsevier B.V. 2010;148:135–46.CrossRefPubMedGoogle Scholar
  65. 65.
    Gomme PT, McCann KB. Transferrin: structure, function and potential therapeutic actions. Drug Discov Today. 2005;10:267–73.CrossRefPubMedGoogle Scholar
  66. 66.
    Qian ZM, Li H, Sun H, Ho K. Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. 2002;54:561–587.Google Scholar
  67. 67.
    Heath JL, Weiss JM, Lavau CP, Wechsler DS. Iron deprivation in cancer—potential therapeutic implications. Nutrients 2013;2836–59, 5.Google Scholar
  68. 68.
    Jiang W, Xie H, Ghoorah D, Shang Y, Shi H, Liu F, et al. Conjugation of functionalized SPIONs with transferrin for targeting and imaging brain glial tumors in rat model. Brechbiel MW, editor. PLoS One. Public Library of Science; 2012;7:e37376.Google Scholar
  69. 69.
    Kuang Y, An S, Guo Y, Huang S, Shao K, Liu Y, et al. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int J Pharm. 2013;454:11–20.CrossRefPubMedGoogle Scholar
  70. 70.
    Hadinoto K, Sundaresan A, Cheow WS. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85:427–43.CrossRefPubMedGoogle Scholar
  71. 71.
    Sadava D, Phillips T, Lin C, Kane SE. Transferrin overcomes drug resistance to artemisinin in human small-cell lung carcinoma cells. Cancer Lett. 2002;179:151–6.Google Scholar
  72. 72.
    Vostrejs M, Moran PL, Seligman PA. Transferrin synthesis by small cell lung cancer cells acts as an autocrine regulator of cellular proliferation. J Clin Invest. 1988;82:331–9.Google Scholar
  73. 73.
    Kasibhatla S, Jessen KA, Maliartchouk S, Wang JY, English NM, Drewe J, et al. A role for transferrin receptor in triggering apoptosis when targeted with gambogic acid. Proc Natl Acad Sci U S A. 2005;102:12095–100.Google Scholar
  74. 74.
    Yamada T, Watanabe A, Yamada Y, Shino Y, Tanase M, Yamashita J, et al. Trans ferrin receptor expression in nonsmall cell lung cancer. CA Cancer J Clin. 2001;78:875–6.Google Scholar
  75. 75.
    Tonik SE, Shindelman JE, Sussman HH. Transferrin receptor is inversely correlated with estrogen receptor in breast cancer. Breast Cancer Res Treat. 1986;7:71–6.Google Scholar
  76. 76.
    Fulk WP, Hsi BL, Stevens PJ. Transferrin and transferrin receptors in carcinoma of breast. Lancet. 1980;316:390–2.Google Scholar
  77. 77.
    Walker RA, Day SJ. Transferrin receptor expression in non-malignant and malignant human breast tissue. J Pathol. 2005;148:217–24.Google Scholar
  78. 78.
    Shinohara H, Fan D, Ozawa S, Yano S, Van Arsdell M, Viner J, et al. Site-specific expression of transferrin receptor by human colon cancer cells directly correlates with eradication by antitransferrin recombinant immunotoxin. Int J Oncol. 2000;17:643–94.Google Scholar
  79. 79.
    Prutki M, Poljak-blazi M, Jakopovic M, Tomas D. Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer. Cancer Lett. 2006;238:188–96.Google Scholar
  80. 80.
    Gackowski D, Kruszewski M, Banaszkiewicz Z, Jawien A, Olinski R. Saturation and ferritin levels in colon cancer patients. Physiology. 2002;49:269–73.Google Scholar
  81. 81.
    Li S, Amat D, Peng Z, Vanni S, Raskin S, De Angulo G, et al. Transferrin conjugated nontoxic carbon dots for doxorubicin delivery to target pediatric brain tumor cells. Nanoscale R Soc Chem. 2016;30:147–54.Google Scholar
  82. 82.
    Yukawa H, Tsukamoto R, Kano A, Okamoto Y, Tokeshi M, Ishikawa T, et al. Quantum dots conjugated with transferrin for brain tumor cell imaging. J Cell Sci Ther. 2013;2013.Google Scholar
  83. 83.
    Hänninen MM, Haapasalo J, Haapasalo H, Fleming RE, Britton RS, Bacon BR, et al. Expression of iron-related genes in human brain and brain tumors. BMC Neurosci. 2009;10:36.Google Scholar
  84. 84.
    Calzolari A, Larocca LM, Deaglio S, Finisguerra V, Boe A, Raggi C, et al. Transferrin receptor 2 is frequently and highly expressed in glioblastomas. Transl Oncol. 2010;3:123–34.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol. 2006;121:159–76.CrossRefPubMedGoogle Scholar
  86. 86.
    Ponka P. Cellular iron metabolism. Kidney Int Suppl. 1999;69:S2–S11.CrossRefPubMedGoogle Scholar
  87. 87.
    Cheng Y, Zak O, Aisen P, Harrison SC, Walz T, York N. Structure of the human transferrin receptor-transferrin complex Albert Einstein College of Medicine. Cell. 2004;116:565–76.CrossRefPubMedGoogle Scholar
  88. 88.
    Gammella E, Buratti P, Cairo G, Recalcati S. The transferrin receptor: the cellular iron gate. Metallomics [Internet]. The Royal Society of Chemistry; 2017 [cited 2018 Feb 16];9:1367–75. Available from: http://xlink.rsc.org/?DOI=C7MT00143F.
  89. 89.
    Miquel G, Nekaa T, Kahn PH, Hémadi M, J-MEH C. Mechanism of formation of the complex between transferrin and bismuth, and interaction with transferrin receptor 1. Biochemistry. 2004;43:14722–31.CrossRefPubMedGoogle Scholar
  90. 90.
    Wang Y, Xia Y. Bottom-up and top-down approaches to the synthesis of monodispersed spherical colloids of low melting-point metals. Nano Lett [Internet]. American Chemical Society; 2004 [cited 2018 May 28];4:2047–50. Available from: https://pubs.acs.org/doi/abs/10.1021/nl048689j.
  91. 91.
    Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem [Internet]. Elsevier; 2017 [cited 2018 May 28]; Available from: https://www.sciencedirect.com/science/article/pii/S1878535217300990#b0670.
  92. 92.
    Li Z, Jiang H, Xu C, Gu L. A review: using nanoparticles to enhance absorption and bioavailability of phenolic phytochemicals. Food Hydrocoll [Internet]. Elsevier; 2015 [cited 2018 May 28];43:153–64. Available from: https://www.sciencedirect.com/science/article/pii/S0268005X14001933.
  93. 93.
    Tadros T, Izquierdo P, Esquena J, Solans C. Formation and stability of nano-emulsions. Adv Colloid Interf Sci. 2004;108:303–18.CrossRefGoogle Scholar
  94. 94.
    Guo Y, Wang L, Lv P, Zhang P. Transferrin-conjugated doxorubicin-loaded lipid-coated nanoparticles for the targeting and therapy of lung cancer. Oncol Lett [Internet]. Spandidos Publications; 2015 [cited 2018 May 30];9:1065–72. Available from: https://www.spandidos-publications.com/10.3892/ol.2014.2840.
  95. 95.
    Pooja D, Tunki L, Kulhari H, Reddy BB, Sistla R. Optimization of solid lipid nanoparticles prepared by a single emulsification-solvent evaporation method. Data Br [Internet]. Elsevier; 2016 [cited 2018 May 30];6:15–9. Available from: https://www.sciencedirect.com/science/article/pii/S2352340915003339#f0005.
  96. 96.
    Fornaguera C, Dols-Perez A, Calderó G, García-Celma MJ, Camarasa J, Solans C. PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood–brain barrier. J Control Release [Internet]. Elsevier; 2015 [cited 2018 May 28];211:134–43. Available from: https://www.sciencedirect.com/science/article/pii/S0168365915005994.
  97. 97.
    Iravani S. Green synthesis of metal nanoparticles using plants. Green Chem [Internet]. The Royal Society of Chemistry; 2011 [cited 2018 May 28];13:2638. Available from: http://xlink.rsc.org/?DOI=c1gc15386b.
  98. 98.
    C. J. Coester, K. Langer, H. Von Br CJ, Langer K, van Briesen H, Kreuter J. Gelatin nanoparticles by two step desolvation a new preparation method, surface modifications and cell uptake. J Microencapsul [Internet]. 2000 [cited 2018 May 28];17:187–93. Available from: http://www.ncbi.nlm.nih.gov/pubmed/10738694.
  99. 99.
    Yang W, Kenny JM, Puglia D. Structure and properties of biodegradable wheat gluten bionanocomposites containing lignin nanoparticles. Ind Crops Prod [Internet]. Elsevier; 2015 [cited 2018 May 28];74:348–56. Available from: https://www.sciencedirect.com/science/article/pii/S0926669015301138.
  100. 100.
    Wang K, Zhang Y, Wang J, Yuan A, Sun M, Wu J, et al. Self-assembled IR780-loaded transferrin nanoparticles as an imaging, targeting and PDT/PTT agent for cancer therapy. Sci Rep [Internet]. Nature Publishing Group; 2016 [cited 2018 May 30];6:27421. Available from: http://www.nature.com/articles/srep27421.
  101. 101.
    Dixit S, Novak T, Miller K, Zhu Y, Kenney ME, Broome A-M. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale [Internet]. NIH Public Access; 2015 [cited 2017 Dec 2];7:1782–90. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25519743.
  102. 102.
    Nag M, Gajbhiye V, Kesharwani P, Jain NK. Transferrin functionalized chitosan-PEG nanoparticles for targeted delivery of paclitaxel to cancer cells. Colloids Surfaces B Biointerfaces. 2016;148:363–70.CrossRefPubMedGoogle Scholar
  103. 103.
    Ciechanover A, Schwartz AL, Lodish HF. Sorting and recycling of cell surface receptors and endocytosed ligands: the asialoglycoprotein and transferrin receptors. J Cell Biochem. 1983;23:107–30.CrossRefPubMedGoogle Scholar
  104. 104.
    Li H, Sun H, Qian ZM. The role of the transferrin-transferrin-receptor system in drug delivery and targeting. Trends Pharmacol Sci. 2002;23:206–9.CrossRefPubMedGoogle Scholar
  105. 105.
    Yu B, Heng CT, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol. 2013;6:575–83.Google Scholar
  106. 106.
    Luria-Pérez R, Helguera G, Rodríguez JA. Antibody-mediated targeting of the transferrin receptor in cancer cells. Bol Med Hosp Infant Mex [Internet]. 2016 [cited 2018 May 26];73:372–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/29421281.
  107. 107.
    Callens C, Moura IC, Lepelletier Y, Coulon S, Renand a DM, et al. Recent advances in adult T-cell leukemia therapy: focus on a new anti-transferrin receptor monoclonal antibody. Leuk Off J Leuk Soc Am Leuk Res Fund UK. 2008;22:42–8.Google Scholar
  108. 108.
    Paterson J, Webster CI. Exploiting transferrin receptor for delivering drugs across the blood-brain barrier. Drug Discov Today Technol. Elsevier Ltd. 2016;20:49–52.CrossRefPubMedGoogle Scholar
  109. 109.
    Krishna ADS, Mandraju RK, Kishore G, Kondapi AK. An efficient targeted drug delivery through apotransferrin loaded nanoparticles. PLoS One. 2009;4:e7240.CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Ataman-Önal Y, Munier S, Ganée A, Terrat C, Durand P-Y, Battail N, et al. Surfactant-free anionic PLA nanoparticles coated with HIV-1 p24 protein induced enhanced cellular and humoral immune responses in various animal models. J Control Release. 2006;112:175–85.CrossRefPubMedGoogle Scholar
  111. 111.
    Matveev S, van der Westhuyzen DR, Smart EJ. Co-expression of scavenger receptor-BI and caveolin-1 is associated with enhanced selective cholesteryl ester uptake in THP-1 macrophages. J Lipid Res. 1999;40:1647–54.PubMedGoogle Scholar
  112. 112.
    Liu AP, Aguet F, Danuser G, Schmid SL. Local clustering of transferrin receptors promotes clathrin-coated pit initiation. J Cell Biol. 2010;191:1381–93.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Salzano G, Marra M, Porru M, Zappavigna S, Abbruzzese A, La Rotonda MI, et al. Self-assembly nanoparticles for the delivery of bisphosphonates into tumors. Int J Pharm. 2011;403:292–7.CrossRefPubMedGoogle Scholar
  114. 114.
    Skarlatos S, Yoshikawa T, Pardridge WM. Transport of [125I]transferrin through the rat blood-brain barrier. Brain Res. 1995;683:164–71.CrossRefPubMedGoogle Scholar
  115. 115.
    Schieber C, Bestetti A, Lim JP, Ryan AD, Nguyen T-L, Eldridge R, et al. Conjugation of transferrin to azide-modified CdSe/ZnS core-shell quantum dots using cyclooctyne click chemistry. Angew Chemie Int Ed. WILEY-VCH Verlag. 2012;51:10523–7.CrossRefGoogle Scholar
  116. 116.
    Camp ER, Wang C, Little EC, Watson PM, Pirollo KF, Rait A, et al. Transferrin receptor targeting nanomedicine delivering wild-type p53 gene sensitizes pancreatic cancer to gemcitabine therapy. Cancer Gene Ther. Nature Publishing Group. 2013;20:222–8.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Yan F, Wang Y, He S, Ku S, Gu W, Ye L. Transferrin-conjugated, fluorescein-loaded magnetic nanoparticles for targeted delivery across the blood-brain barrier. J Mater Sci Mater Med. 2013;24:2371–9.CrossRefPubMedGoogle Scholar
  118. 118.
    Visser CC, Stevanović S, Heleen Voorwinden L, Gaillard PJ, Crommelin DJA, Danhof M, et al. Validation of the transferrin receptor for drug targeting to brain capillary endothelial cells In Vitro. J Drug Target. 2004;12:145–50.CrossRefPubMedGoogle Scholar
  119. 119.
    Béduneau A, Saulnier P, Benoit J-P. Active targeting of brain tumors using nanocarriers. Biomaterials. 2007;28:4947–67.CrossRefPubMedGoogle Scholar
  120. 120.
    Zhang P, Hu L, Yin Q, Feng L, Li Y. Transferrin-modified c[RGDfK]-paclitaxel loaded hybrid micelle for sequential blood-brain barrier penetration and glioma targeting therapy. Mol Pharm. 2012;9:1590–8.CrossRefPubMedGoogle Scholar
  121. 121.
    Ding H, Sagar V, Agudelo M, Pilakka-Kanthikeel S, Atluri VSR, Raymond A, et al. Enhanced blood–brain barrier transmigration using a novel transferrin embedded fluorescent magneto-liposome nanoformulation. Nanotechnology. 2014;25:55101.CrossRefGoogle Scholar
  122. 122.
    Wiley DT, Webster P, Gale A, Davis ME. Transcytosis and brain uptake of transferrin-containing nanoparticles by tuning avidity to transferrin receptor. Proc Natl Acad Sci U S A. 2013;110:8662–7.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Jiang W, Kim BYS, Rutka JT, Chan WCW. Nanoparticle-mediated cellular response is size-dependent. Nat Nanotechnol [Internet]. 2008 [cited 2017 Dec 2];3:145–50. Available from: http://www.nature.com/doifinder/10.1038/nnano.2008.30.
  124. 124.
    Xiao K, Li Y, Luo J, Lee JS, Xiao W, Gonik AM, Agarwal RG, Lam KS The effect of surface charge on in vivo biodistribution of PEG-oligocholic acid based micellar nanoparticles. Biomaterials [Internet]. 2011 [cited 2017 Dec 2];32:3435–46. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0142961211000342.
  125. 125.
    Gagliano N, Aldini G, Colombo G, Rossi R, Colombo R, Gioia M, et al. The potential of resveratrol against human gliomas. Anticancer Drugs [Internet]. 2010 [cited 2017 Dec 2];21:140–50. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20010425.
  126. 126.
    Saenz del Burgo L, Hernández RM, Orive G, Pedraz JL. Nanotherapeutic approaches for brain cancer management. Nanomedicine [Internet]. 2014 [cited 2017 Dec 2];10:905–19. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1549963413005558.
  127. 127.
    Gao JQ, Lv Q, Li LM, Tang XJ, Li FZ, Hu YL, et al. Glioma targeting and blood-brain barrier penetration bydual-targeting doxorubincin liposomes. Biomaterials. Elsevier Ltd. 2013;34:5628–39.CrossRefPubMedGoogle Scholar
  128. 128.
    Lu W, Zhang Y, Tan Y-Z, Hu K-L, Jiang X-G, Fu S-K. Cationic albumin-conjugated pegylated nanoparticles as novel drug carrier for brain delivery. J Control Release. 2005;107:428–48.CrossRefPubMedGoogle Scholar
  129. 129.
    Chamberlain MC. Temozolomide: therapeutic limitations in the treatment of adult high-grade gliomas. Expert Rev Neurother [Internet]. 2010 [cited 2017 Dec 2];10:1537–44. Available from: http://www.ncbi.nlm.nih.gov/pubmed/20925470.
  130. 130.
    Sharma G, Modgil A, Layek B, Arora K, Sun C, Law B, et al. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: biodistribution and transfection. J Control Release. Elsevier B.V. 2013;167:1–10.CrossRefPubMedGoogle Scholar
  131. 131.
    Qin L, Wang CZ, Fan HJ, Zhang CJ, Zhang HW, Lv MH, et al. A dual-targeting liposome conjugated with transferrin and arginine-glycine-aspartic acid peptide for glioma-targeting therapy. Oncol Lett. 2014;8:2000–6.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Tzeng SY, Green JJ. Therapeutic nanomedicine for brain cancer. Ther Deliv [Internet]. 2013 [cited 2017 Dec 3];4:687–704. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23738667.
  133. 133.
    Kalaria RN, Homayoun P, Whitehouse PJ. Nicotinic cholinergic receptors associated with mammalian cerebral vessels. J Auton Nerv Syst. 1994;49 Suppl:S3–7.CrossRefPubMedGoogle Scholar
  134. 134.
    Macklin KD, Maus AD, Pereira EF, Albuquerque EX, Conti-Fine BM. Human vascular endothelial cells express functional nicotinic acetylcholine receptors. J Pharmacol Exp Ther. 1998;287:435–9.PubMedGoogle Scholar
  135. 135.
    Fishman JB, Rubin JB, Handrahan JV, Connor JR, Fine RE. Receptor-mediated transcytosis of transferrin across the blood-brain barrier. J Neurosci Res. 1987;18:299–304.CrossRefPubMedGoogle Scholar
  136. 136.
    Bello L, Francolini M, Marthyn P, Zhang J, Carroll RS, Nikas DC, et al. Alpha(v)beta3 and alpha(v)beta5 integrin expression in glioma periphery. Neurosurgery 2001;49:380–389; discussion 390.Google Scholar
  137. 137.
    Pasqualini R, Koivunen E, Kain R, Lahdenranta J, Sakamoto M, Stryhn A, et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000;60:722–7.PubMedPubMedCentralGoogle Scholar
  138. 138.
    Cheng Y, Morshed R, Auffinger B, Tobias AL, Lesniak MS. Multifunctional nanoparticles for brain tumor diagnosis and therapy. Adv Drug Deliv Rev. 2014;0:42–57.CrossRefGoogle Scholar
  139. 139.
    Li Y, He H, Jia X, Lu W-L, Lou J, Wei Y. A dual-targeting nanocarrier based on poly(amidoamine) dendrimers conjugated with transferrin and tamoxifen for treating brain gliomas. Biomaterials. 2012;33:3899–908.CrossRefPubMedGoogle Scholar
  140. 140.
    He H, Li Y, Jia X-R, Du J, Ying X, Lu W-L, et al. PEGylated poly(amidoamine) dendrimer-based dual-targeting carrier for treating brain tumors. Biomaterials. 2011;32:478–87.CrossRefPubMedGoogle Scholar
  141. 141.
    Jain A, Singhai P, Gurnany E, Updhayay S, Mody N. Transferrin-tailored solid lipid nanoparticles as vectors for site-specific delivery of temozolomide to brain. J Nanoparticle Res. Springer Netherlands. 2013;15:1518.CrossRefGoogle Scholar
  142. 142.
    Liu G, Mao J, Jiang Z, Sun T, Hu Y, Jiang Z, et al. Transferrin-modified Doxorubicin-loaded biodegradable nanoparticles exhibit enhanced efficacy in treating brain glioma-bearing rats. Cancer Biother Radiopharm. 2013;28:691–6.Google Scholar
  143. 143.
    Liu S, Guo Y, Huang R, Li J, Huang S, Kuang Y, et al. Gene and doxorubicin co-delivery system for targeting therapy of glioma. Biomaterials. 2012;33:4907–16.Google Scholar
  144. 144.
    Kang T, Jiang M, Jiang D, Feng X, Yao J, Song Q, et al. Enhancing glioblastoma-specific penetration by functionalization of nanoparticles with an iron-mimic peptide targeting transferrin/transferrin receptor complex. Mol Pharm. 2015;12:2947–61.Google Scholar
  145. 145.
    Guo W, Li A, Jia Z, Yuan Y, Dai H, Li H. Transferrin modified PEG-PLA-resveratrol conjugates: In vitro and in vivo studies for glioma. Eur J Pharmacol. 2013;718:41–7.Google Scholar
  146. 146.
    Ghadiri M, Vasheghani-Farahani E, Atyabi F, Kobarfard F, Mohamadyar-Toupkanlou F, Hosseinkhani H. Transferrin-conjugated magnetic dextran-spermine nanoparticles for targeted drug transport across blood-brain barrier. J Biomed Mater Res Part A. 2017;105:2851–64.CrossRefGoogle Scholar
  147. 147.
    He H, David A, Chertok B, Cole A, Lee K, Zhang J, Wang J., Huang Y., Yang V.C. Magnetic nanoparticles for tumor imaging and therapy: a so-called theranostic system. Pharm Res [Internet]. 2013 [cited 2017 Dec 22];30:2445–58. Available from: http://www.ncbi.nlm.nih.gov/pubmed/23344909.
  148. 148.
    Koukaras EN, Papadimitriou SA, Bikiaris DN, Froudakis GE. Insight on the formation of chitosan nanoparticles through ionotropic gelation with tripolyphosphate. Mol Pharm Am Chem Soc. 2012;9:2856–62.CrossRefGoogle Scholar
  149. 149.
    Muthu MS, Kulkarni SA, Raju A, Feng S-S. Theranostic liposomes of TPGS coating for targeted co-delivery of docetaxel and quantum dots. Biomaterials. 2012;33:3494–501.CrossRefPubMedGoogle Scholar
  150. 150.
    Yallapu MM, Jaggi M, Chauhan SC. Curcumin nanoformulations: a future nanomedicine for cancer. Drug Discov Today [Internet]. 2012 [cited 2017 Dec 22];17:71–80. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21959306.
  151. 151.
    Gamage NH, Jing L, Worsham MJ, Ali MM. Targeted theranostic approach for glioma using dendrimer-based curcumin nanoparticle. J Nanomed Nanotechnol [Internet]. NIH Public Access; 2016 [cited 2017 Dec 22];7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27699139.
  152. 152.
    Sun L, Joh DY, Al-Zaki A, Stangl M, Murty S, Davis JJ, et al. Theranostic application of mixed gold and superparamagnetic iron oxide nanoparticle micelles in glioblastoma multiforme. J Biomed Nanotechnol. 12:347–56.Google Scholar

Copyright information

© Controlled Release Society 2018

Authors and Affiliations

  • Hira Choudhury
    • 1
    Email author return OK on get
  • Manisha Pandey
    • 1
  • Pei Xin Chin
    • 2
  • Yee Lin Phang
    • 2
  • Jeng Yuen Cheah
    • 2
  • Shu Chien Ooi
    • 2
  • Kit-Kay Mak
    • 3
  • Mallikarjuna Rao Pichika
    • 4
    • 5
  • Prashant Kesharwani
    • 6
  • Zahid Hussain
    • 7
  • Bapi Gorain
    • 8
  1. 1.Department of Pharmaceutical Technology, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
  2. 2.School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
  3. 3.School of Postgraduate Studies and ResearchInternational Medical UniversityKuala LumpurMalaysia
  4. 4.Department of Pharmaceutical Chemistry, School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
  5. 5.Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and InnovationInternational Medical UniversityKuala LumpurMalaysia
  6. 6.Pharmaceutics DivisionCSIR-Central Drug Research InstituteLucknowIndia
  7. 7.Department of Pharmaceutics, Faculty of PharmacyUniversiti Teknologi MARA SelangorPuncak AlamMalaysia
  8. 8.Faculty of PharmacyLincoln University CollegeKuala LumpurMalaysia

Personalised recommendations