Skip to main content
Log in

Extended release delivery system of metoprolol succinate using hot-melt extrusion: effect of release modifier on methacrylic acid copolymer

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The current study reports on the manufacturing of extended release dosage forms of metoprolol succinate via hot-melt extrusion (HME) technology. Either Eudragit®S100 and Eudragit®L100 alone or in combination with release modifying agent Polyox™ WSR 303 and Eudragit®L100-55 were processed to obtain complete and faster release. Metoprolol succinate with similar solubility parameters to polymer was dispersed in polymer matrix and was characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Stability of drug after extrusion was confirmed by thermogravimetric analysis and high-performance liquid chromatography. Physical characterization method exhibited that the drug was homogeneously dispersed in non-crystalline state in Eudragit®L100-55-based formulations whereas in semi-crystalline state in Polyox™ WSR 303. The drug release percentage was below 3 and 40% in 0.1 N HCL with Eudragit®L100-55- and Polyox™ WSR 303-containing formulations, respectively, and exhibited pH-dependent dissolution properties. The drug-release mechanism was anomalous with Polyox™ WSR 303 formulations whereas diffusion through pore formation was obtained with Eudragit®L100-55. Both Eudragit®L100-55 and Polyox™ WSR 303 changed the release mechanism and kinetics of drug release from thermally processed dosage forms. The optimized stable formulation is similar to the marketed formulation with F2 value of 72.36. Thus, it can be concluded that HME was exploited as an effective process for the preparation of controlled release matrix system based on pH-dependent polymer matrices Eudragit®S100 and Eudragit®L100.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

HME:

Hot-melt extrusion

MSN:

Metoprolol succinate

S100:

Eudragit®S100

L100:

Eudragit®L100

PEO303:

Polyox™ WSR 303

L100-55:

Eudragit®L100-55

References

  1. Repka MA, Thumma S, Upadhye SB, Battu SK, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm. 2007;33:909–26.

    Article  Google Scholar 

  2. Vynckier AK, Dierickx L, Saerens L, Voorspoels J, Gonnissen Y, De Beer T, et al. Hot-melt co-extrusion for the production of fixed-dose combination products with a controlled release ethylcellulose matrix core. Int J Pharm. 2014;464(1–2):65–74.

    Article  CAS  Google Scholar 

  3. Almeida A, Possemiers S, Boone MN, De Beer T, Quinten T, Hoorebeke VL, et al. Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion. Eur J Pharm Biopharm. 2011;77(2):297–305.

    Article  CAS  Google Scholar 

  4. Loreti G, Maroni A, Del Curto MD, Melocchi A, Gazzaniga A, Zema L, et al. Evaluation of hot-melt extrusion technique in the preparation of HPC matrices for prolonged release. Eur J Pharm Sci. 2014;52:77–85.

    Article  CAS  Google Scholar 

  5. Ozguney I, Shuwisitkul D, Bodmeier R, et al. Development and characterization of extended release Kollidon® SR mini-matrices prepared by hot-melt extrusion. Eur J Pharm Biopharm. 2009;73(1):140–5.

    Article  Google Scholar 

  6. Repka MA, Battu SK, Upadhye SB, Thumma S, Crowley MM, Zhang F, et al. Pharmaceutical applications of hot-melt extrusion: part II. Drug Dev Ind Pharm. 2007;33(10):1043–57.

    Article  CAS  Google Scholar 

  7. Repka MA, Majumdar S, Battu SK, Srirangam R, Upadhye SB, et al. Applications of hot-melt extrusion for drug delivery. Expert Opin Drug Deliv. 2008;5(12):1357–76.

    Article  CAS  Google Scholar 

  8. Verhoeven E, De Beer TRM, Van den Mooter G, Remon JP, Vervaet C, et al. Influence of formulation and process parameters on the release characteristics of ethylcellulose sustained-release mini-matrices produced by hot-melt extrusion. Eur J Pharm Biopharm. 2008;69(1):312–9.

    Article  CAS  Google Scholar 

  9. Vynckier AK, Dierickx L, Saerens L, Voorspoels J, Gonnissen Y, De Beer T, et al. Hot-melt co-extrusion for the production of fixed-dose combination products with a controlled release ethyl cellulose matrix core. Int J Pharm. 2014;464(1–2):65–74.

    Article  CAS  Google Scholar 

  10. Eirin ER, Rodriguez BS, Amoza JLG, Pacheco RM, et al. Evaluation of the hyperbranched polymer Hybrane H1500 for production of matricial controlled-release particles by hot-melt extrusion. Int J Pharm. 2014;461(1–2):469–77.

    Article  Google Scholar 

  11. Zhang F, McGinity JW, et al. Properties of sustained release tablets prepared by hot-melt extrusion. Pharm Dev Technol. 1999;4(2):241–50.

    Article  CAS  Google Scholar 

  12. Christopher RY, Caroline D, Matteo C, Thomas F, Kurt AF, Ali Rajabi S, et al. Physicochemical characterization and mechanisms of release of theophylline from melt-extruded dosage forms based on a methacrylic acid copolymer. Int J Pharm. 2005;301(1–2):112–20.

    Google Scholar 

  13. Raimar L, Seung KJ, Gordon LA, et al. Pharmacokinetics of an immediate release a controlled release and a two pulse dosage form in dogs. Eur J Pharm Biopharm. 2000;60:17–23.

    Google Scholar 

  14. Jobin G, Cortot A, Godbillon J, Duval M, Schoeller JP, Hirtz J, et al. Investigation of drug absorption from the gastrointestinal tract of man. I. Metoprolol in the stomach, duodenum and jejunum. Br J Clin Pharmacol. 1985;19:97S–105S.

    Article  CAS  Google Scholar 

  15. Godbillon J, Evard D, Vidon N, Duval M, Schoeller JP, Bernier JJ, et al. Investigation of drug absorption from the gastrointestinal tract of man. III. Metoprolol in the colon. Br J Clin Pharmacol. 1985;19:113S–8S.

    Article  CAS  Google Scholar 

  16. Vidon N, Evard D, Godbillon J, Rongier M, Duval M, Schoeller JP, et al. Investigation of drug absorption from the gastrointestinal tract of man:II. Metoprolol in jejenum and ileum. Br J Clin Pharmacol. 1985;19:107–12.

    Article  Google Scholar 

  17. Hoftyzer PJ, Krevelen DWV. Properties of polymers. Amsterdam: Elsevier; 1976.

    Google Scholar 

  18. Foster A, Hempenstall J, Tucker I, Rades T. Selection of excipients formelt extrusion with two poorlywater-soluble drugs by solubility parameter calculationand thermal analysis. Int J Pharm. 2001;226(1–2):147–61.

    Article  Google Scholar 

  19. Sarode AL, Sandhu H, Shah N, Malick W, Zia H. Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug–polymer interactions on supersaturation. Eur J Pharm Sci. 2013;48:371–84.

    Article  CAS  Google Scholar 

  20. Crowley MM, Schroeder AB, Kucera S, SuneelaProdduturi MAR, McGinity JW. The influence of guaifenesin and ketoprofen on the properties of hot-melt extruded polyethylene oxide films. Eur J Pharm Sci. 2004;22:409–18.

    Article  CAS  Google Scholar 

  21. Teja K, Aleksandra D, Odon P, Rok S, Stanko S. Determination of solubility parameters of ibuprofen and ibuprofen lysinate. Molecules. 2015;20:21549–68.

    Article  Google Scholar 

  22. Kalisetty S. Ultra performance liquid chromatographic method development and validation for the quantification of impurities and degradation products in the metoprolol succinate ER tablets. Int J Pharm Bio Sci. 2012;2(4):247–55.

    CAS  Google Scholar 

  23. Patel VM, et al. Mucoadhesive bilayer tablets of propranolol hydrochloride, AAPS. Pharm. SciTech. 2007;8(3):77.

    CAS  Google Scholar 

  24. Malviya R. Swelling and erosion based formulations for the treatment of chronic seizures using (3)2Factorial design. Middle-East J Sci Res. 2012;11(1):77–84.

    CAS  Google Scholar 

  25. Carelli V, Colo GD, Nannipieri E, Poli B, Serafini MS, et al. Polyoxyethylene-poly(methacrylic acid-co-methyl methacrylate) compounds for site-specific peroral delivery. Int J Pharm. 2000;202:103–12.

    Article  CAS  Google Scholar 

  26. Colo GD, Burgalassi S, Chetoni P, Fiaschi MP, Zambito Y, Saettone MF, et al. Gel-forming erodible inserts for ocular controlled delivery ofofloxacin. Int J Pharm. 2001;215:101–11.

    Article  Google Scholar 

  27. Colo GD, Falchi S, Zambito Y, et al. In vitro evaluation of a system for pH-controlled peroraldelivery of metformin. J Control Release. 2002;80:119–28.

    Article  Google Scholar 

  28. Gallardo D, Skalsky B, Kleinebudde P, et al. Controlled release solid dosage forms using combinations. Pharm Dev Technol. 2008;13:413–23.

    Article  CAS  Google Scholar 

  29. Mehta KA, Kislalioglu MS, Phuapradit W, Malick AW, Shah NH, et al. Release performance of a poorly soluble drug from a novel, Eudragit®-based multi-unit erosion matrix. Int J Pharm. 2001;213:7–12.

    Article  CAS  Google Scholar 

  30. Ceballos A, Cirri M, Maestrelli F, Corti G, Mura P, et al. Influence of formulation and process variables on in vitro release of theophylline from directly-compressed Eudragit matrix tablets. Farmaco. 2005;60:913–8.

    Article  CAS  Google Scholar 

  31. Quinten T, Andrews GP, de Beer T, Saerens L, Bouquet W, Jones DS, et al. Preparation and evaluation of sustained release matrix tablets based on metoprolol and an acrylic carrier using injection molding. AAPS PharmSciTech. 2012;13(4):1197–211.

    Article  CAS  Google Scholar 

  32. Parikh T, Gupta Simerdeep S, Meena A, Serajuddin Abu TM. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion—III. Polymethacrylates and polymethacrylic acid based polymers. J Excipients Food Chem. 2014;5(1):56–64.

    Google Scholar 

  33. Foster A, Hempenstall J, Tucker I, Rades T. Selection of excipients formelt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm. 2001;226(1–2):147–61.

    Article  Google Scholar 

  34. Benetti C, Colombo P, Wong TW, et al. Cellulose, ethylene oxide, and acrylic based polymers in assembled module technology (dome matrix). Handbook of polymers for pharmaceutical technologies, biodegradable. Polymer. 2015;3:236.

    Google Scholar 

  35. Verhoeven E, De Beer TR, Schacht E, Van den Mooter G, Remon JP, Vervaet C. Influence of polyethylene glycol/polyethylene oxide on the release characteristics of sustained-release ethyl cellulose mini-matrices produced by hot-melt extrusion: in vitro and in vivo evaluations. Eur J Pharm Biopharm. 2009;72(2):463–70.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author is thankful to UGC (SAP) for providing the research fellowship and Institute of Chemical Technology, ELITE status (Mumbai, India) for providing all facilities and guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiran P. Sawant.

Ethics declarations

Declaration

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawant, K.P., Fule, R., Maniruzzaman, M. et al. Extended release delivery system of metoprolol succinate using hot-melt extrusion: effect of release modifier on methacrylic acid copolymer. Drug Deliv. and Transl. Res. 8, 1679–1693 (2018). https://doi.org/10.1007/s13346-018-0545-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-0545-1

Keywords

Navigation