Skip to main content

Advertisement

Log in

An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

As treatments for myocardial infarction (MI) continue to improve, the population of people suffering from heart failure (HF) is rising significantly. Novel treatment strategies aimed at achieving long-term functional stabilisation and improvement in heart function post MI include the delivery of biomaterial hydrogels and myocardial matrix-based therapies to the left ventricle wall. Individually alginate hydrogels and myocardial matrix-based therapies are at the most advanced stages of commercial/clinical development for this potential treatment option. However, despite these individual successes, the potential synergistic effect gained by combining the two therapies remains unexplored. This study serves as a translational step in evaluating the minimally invasive delivery of dual acting alginate-based hydrogels to the heart. We have successfully developed new production methods for hybrid alginate/extracellular matrix (ECM) hydrogels. We have identified that the high G block alginate/ECM hybrid hydrogel has appropriate rheological and mechanical properties (1.6 KPa storage modulus, 29 KPa compressive modulus and 14 KPa dynamic modulus at day 1) and can be delivered using a minimally invasive delivery device. Furthermore, we have determined that these novel hydrogels are not cytotoxic and are capable of enhancing the metabolic activity of dermal fibroblasts in vitro (p < 0.01). Overall these results suggest that an effective minimally invasive HF treatment option could be achieved by combining alginate and ECM particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. National Heart. Lung, and blood institute (NHLBI) fact book. Fiscal Year. 2012;2012:39–44.

    Google Scholar 

  2. Brunner-La Rocca H-P, et al. Challenges in personalised management of chronic diseases-heart failure as prominent example to advance the care process. EPMA J. 2015;7:1–9.

    Article  Google Scholar 

  3. Braunschweig F, Cowie MR, Auricchio A. What are the costs of heart failure? Europace. 2011;13(sup 2):ii13–7.

    PubMed  Google Scholar 

  4. Roger VL, et al. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292:344–50.

    Article  CAS  PubMed  Google Scholar 

  5. Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81:1161–72.

    Article  CAS  PubMed  Google Scholar 

  6. Mehra MR, et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates-2006. J Heart Lung Transplant. 2006;25:1024–42.

    Article  Google Scholar 

  7. Rizzieri AG, Verheijde JL, Rady MY, McGregor JL. Ethical challenges with the left ventricular assist device as a destination therapy. Philos Ethics Humanit Med. 2008;3:1–15.

    Article  Google Scholar 

  8. Alraies MC, Eckman P. Adult heart transplant: indications and outcomes. J Thorac Dis. 2014;6:1120–8.

    PubMed  PubMed Central  Google Scholar 

  9. Ruvinov E, Sapir Y, Cohen S. Cardiac tissue engineering: principles, materials, and applications. Synth Lect Tissue Eng. 2012;4:1–200.

    Article  Google Scholar 

  10. Ruvinov E, Dvir T, Leor J, Cohen S. Myocardial repair: from salvage to tissue reconstruction. Expert Rev Cardiovasc Ther. 2008;6:669–86.

    Article  CAS  PubMed  Google Scholar 

  11. Roche ET, Hastings CL, Lewin SA, Shvartsman DE, Brudno Y, Vasilyev NV, et al. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials. 2014;35:6850–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Neill HS, et al. Biomaterial-enhanced cell and drug delivery: lessons learned in the cardiac field and future perspectives. Adv Mater. 2016;28:5648–61.

    Article  CAS  PubMed  Google Scholar 

  13. Hastings CL, Roche ET, Ruiz-Hernandez E, Schenke-Layland K, Walsh CJ, Duffy GP. Drug and cell delivery for cardiac regeneration. Adv Drug Deliv Rev. 2015;84:85–106.

    Article  CAS  PubMed  Google Scholar 

  14. Curley CJ et al. An in vitro investigation to assess procedure parameters for injecting therapeutic hydrogels into the myocardium. J Biomed Mater Res Part B Appl Biomater. 2016.

  15. Gaetani, R., Ungerleider, J. & Christman, K.L. In Perin EC, Miller LW, Taylor DA, Willerson JT, editors. Stem cell and gene therapy for cardiovascular disease. Elsevier; 2015. p. 332–348.

  16. Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev. 2016;96:54–76.

    Article  CAS  PubMed  Google Scholar 

  17. Mann DL, et al. One-year follow-up results from AUGMENT-HF: a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure. Eur J Heart Fail. 2015;18:314–25.

    Article  CAS  PubMed  Google Scholar 

  18. Nelson DM, Ma Z, Fujimoto KL, Hashizume R, Wagner WR. Intra-myocardial biomaterial injection therapy in the treatment of heart failure: materials, outcomes and challenges. Acta Biomater. 2011;7:1–15.

    Article  CAS  PubMed  Google Scholar 

  19. Seif-Naraghi SB, et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci Transl Med. 2013;5:173ra25.

    Article  CAS  PubMed  Google Scholar 

  20. Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol. 2012;59:751–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Christman K, Singelyn J, DeQuach J. Compositions and methods for tissue repair with extracellular matrices. 2011.

  22. Christman K, Singelyn J, DeQuach J, Kinsey A. Compositions and methods for cardiac therapy. 2012.

  23. Johnson TD, Lin SY, Christman KL. Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel. Nanotechnology. 2011;22:1–11.

    Article  CAS  Google Scholar 

  24. Wassenaar JW, Gaetani R, Garcia JJ, Braden RL, Luo CG, Huang D, et al. Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-MI treatment. J Am Coll Cardiol. 2016;67:1074–86.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Leor J, Tuvia S, Guetta V, Manczur F, Castel D, Willenz U, et al. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J Am Coll Cardiol. 2009;54:1014–23.

    Article  PubMed  Google Scholar 

  26. Wall ST, Walker JC, Healy KE, Ratcliffe MB, Guccione JM. Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation. 2006;114:2627–35.

    Article  PubMed  Google Scholar 

  27. Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, et al. Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci. 2010;107:11507–12.

    Article  PubMed  Google Scholar 

  28. Singelyn JM, Christman KL. Modulation of material properties of a decellularized myocardial matrix scaffold. Macromol Biosci. 2011;11:731–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee LC, Wall ST, Klepach D, Ge L, Zhang Z, Lee RJ, et al. Algisyl-LVR™ with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol. 2013;168:2022–8.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Grover GN, Rao N, Christman KL. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering. Nanotechnology. 2014;25:14011-1-12.

    Article  CAS  Google Scholar 

  31. Huang-Lee LL, Cheung DT, Nimni ME. Biochemical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived crosslinks. J Biomed Mater Res. 1990;24:1185–201.

    Article  CAS  PubMed  Google Scholar 

  32. Johnson TD, Christman KL. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin Drug Deliv. 2013;10:59–72.

    Article  CAS  PubMed  Google Scholar 

  33. Martens TP, Godier AFG, Parks JJ, Wan LQ, Koeckert MS, Eng GM, et al. Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant. 2009;18:297–304.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Rodell CB, MacArthur JW Jr, Dorsey SM, Wade RJ, Wang LL, Woo YJ, et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv Funct Mater. 2015;25:636–44.

    Article  CAS  PubMed  Google Scholar 

  35. Rodell CB, Lee ME, Wang H, Takebayashi S, Takayama T, Kawamura T, Arkles JS, Dusaj NN, Dorsey SM, Witschey WRT, Pilla JJ, Gorman JH III, Wenk JF, Burdick JA, Gorman RC. Injectable shear-thinning hydrogels for minimally invasive delivery to infarcted myocardium to limit left ventricular remodeling. Circ Cardiovasc Interv. 2016;9.

  36. O’Cearbhaill ED, Ng KS, Karp JM. Emerging medical devices for minimally invasive cell therapy. Mayo Clin Proc. 2014;89:259–73.

    Article  PubMed  Google Scholar 

  37. Lee KY, Mooney DJA. Properties and biomedical applications. Prog Polym Sci. 2012;37:106–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114:1–14.

    Article  CAS  PubMed  Google Scholar 

  39. Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW, et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods. 2010;16:525–32.

    Article  CAS  PubMed  Google Scholar 

  40. Remlinger NT, Wearden PD, Gilbert TW. Procedure for decellularization of porcine heart by retrograde coronary perfusion. J Vis Exp. 2012;70:e50059. https://doi.org/10.3791/50059.

    Article  CAS  Google Scholar 

  41. Dolan EB, Gunning GM, Davis TA, Cooney G, Eufrasio T, Murphy BP. The development and mechanical characterisation of a novel reinforced venous conduit that mimics the mechanical properties of an arterial wall. J Mech Behav Biomed Mater. 2017;71:23–31.

    Article  PubMed  Google Scholar 

  42. Horvath MA, Varela CE, Dolan EB, Whyte W, Monahan DS, Payne CJ, et al. Towards alternative approaches for coupling of a soft robotic sleeve to the heart. Ann Biomed Eng. 2018;46:1534–47. https://doi.org/10.1007/s10439-018-2046-2.

    Article  PubMed  Google Scholar 

  43. Kafienah W, Sims TJ. Biochemical methods for the analysis of tissue-engineered cartilage. Methods Mol Biol. 2004;238:217–30.

    CAS  PubMed  Google Scholar 

  44. Ignat’eva NY, Danilov NA, Averkiev SV, Obrezkova MV, Lunin VV, Sobol’ EN. Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. J Anal Chem. 2007;62:51–7.

    Article  CAS  Google Scholar 

  45. Larsen BE, Bjørnstad J, Pettersen EO, Tønnesen HH, Melvik JE. Rheological characterization of an injectable alginate gel system. BMC Biotechnol. 2015;15:1–12.

    Article  CAS  Google Scholar 

  46. Melvik JE, Dornish M, Onsoyen E, Berge A, Svendsen T. Self-gelling alginate systems and uses thereof. 2013;1–28.

  47. Ur-Rehman T, Tavelin S, Gröbner G. Effect of DMSO on micellization, gelation and drug release profile of Poloxamer 407. Int J Pharm. 2010;394:92–8.

    Article  CAS  PubMed  Google Scholar 

  48. Payne C, Dolan EB, O’Sullivan J, Cryan S-A, Kelly HM. A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro. Drug Deliv Transl Res. 2016;1–15. https://doi.org/10.1007/s13346-016-0347-2LBPayne2016.

  49. Dolan EB, Kovarova L, O’Neill H, Prvada M, Sulakova R, Scigalkova I, et al. Advanced material catheter (AMCath), a minimally invasive endocardial catheter for the delivery of fast-gelling covalently cross-linked hyaluronic acid hydrogels. J Biomater Appl. In Publication (accepted 19/09/18). 2018;25:088532821880587.

    Google Scholar 

  50. Peebles L, Norris B. Filling ‘gaps’ in strength data for design. Appl Ergon. 2003;34:73–88.

    Article  PubMed  Google Scholar 

  51. Nilsen T, Hermann M, Eriksen CS, Dagfinrud H, Mowinckel P, Kjeken I. Grip force and pinch grip in an adult population: reference values and factors associated with grip force. Scand J Occup Ther. 2012;19:288–96.

    Article  PubMed  Google Scholar 

  52. Piccirillo G, Bochicchio B, Pepe A, Schenke-Layland K, Hinderer S. Electrospun poly-l-lactide scaffold for the controlled and targeted delivery of a synthetically obtained diclofenac prodrug to treat actinic keratosis. Acta Biomater. 2017;52:187–96.

    Article  CAS  PubMed  Google Scholar 

  53. Yu J, Gu Y, du KT, Mihardja S, Sievers RE, Lee RJ. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials. 2009;30:751–6.

    Article  CAS  PubMed  Google Scholar 

  54. Rane AA, et al. Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction. PLoS One. 2011;6:e21571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brafman DA, Shah KD, Fellner T, Chien S, Willert K. Defining long-term maintenance conditions of human embryonic stem cells with arrayed cellular microenvironment technology. Stem Cells Dev. 2009;18:1141–54.

    Article  PubMed  Google Scholar 

  56. Flaim CJ, Teng D, Chien S, Bhatia SN. Combinatorial signaling microenvironments for studying stem cell fate. Stem Cells Dev. 2008;17:29–39.

    Article  CAS  PubMed  Google Scholar 

  57. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.

    CAS  PubMed  Google Scholar 

Download references

Funding

AMCARE project funded by European Union’s ‘Seventh Framework’ Programme for research, technological development and demonstration under Grant Agreement no. NMP3-SME-2013-604531.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce P. Murphy.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1901 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Curley, C.J., Dolan, E.B., Otten, M. et al. An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure. Drug Deliv. and Transl. Res. 9, 1–13 (2019). https://doi.org/10.1007/s13346-018-00601-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-018-00601-2

Keywords

Navigation