Drug Delivery and Translational Research

, Volume 9, Issue 1, pp 1–13 | Cite as

An injectable alginate/extra cellular matrix (ECM) hydrogel towards acellular treatment of heart failure

  • Clive J. Curley
  • Eimear B. Dolan
  • Matthias Otten
  • Svenja Hinderer
  • Garry P. Duffy
  • Bruce P. MurphyEmail author
Original Article


As treatments for myocardial infarction (MI) continue to improve, the population of people suffering from heart failure (HF) is rising significantly. Novel treatment strategies aimed at achieving long-term functional stabilisation and improvement in heart function post MI include the delivery of biomaterial hydrogels and myocardial matrix-based therapies to the left ventricle wall. Individually alginate hydrogels and myocardial matrix-based therapies are at the most advanced stages of commercial/clinical development for this potential treatment option. However, despite these individual successes, the potential synergistic effect gained by combining the two therapies remains unexplored. This study serves as a translational step in evaluating the minimally invasive delivery of dual acting alginate-based hydrogels to the heart. We have successfully developed new production methods for hybrid alginate/extracellular matrix (ECM) hydrogels. We have identified that the high G block alginate/ECM hybrid hydrogel has appropriate rheological and mechanical properties (1.6 KPa storage modulus, 29 KPa compressive modulus and 14 KPa dynamic modulus at day 1) and can be delivered using a minimally invasive delivery device. Furthermore, we have determined that these novel hydrogels are not cytotoxic and are capable of enhancing the metabolic activity of dermal fibroblasts in vitro (p < 0.01). Overall these results suggest that an effective minimally invasive HF treatment option could be achieved by combining alginate and ECM particles.


Heart failure Acellular hydrogel Minimally invasive delivery catheter Alginate Decellularized ECM 


Funding information

AMCARE project funded by European Union’s ‘Seventh Framework’ Programme for research, technological development and demonstration under Grant Agreement no. NMP3-SME-2013-604531.

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

13346_2018_601_MOESM1_ESM.docx (1.9 mb)
ESM 1 (DOCX 1901 kb)


  1. 1.
    National Heart. Lung, and blood institute (NHLBI) fact book. Fiscal Year. 2012;2012:39–44.Google Scholar
  2. 2.
    Brunner-La Rocca H-P, et al. Challenges in personalised management of chronic diseases-heart failure as prominent example to advance the care process. EPMA J. 2015;7:1–9.CrossRefGoogle Scholar
  3. 3.
    Braunschweig F, Cowie MR, Auricchio A. What are the costs of heart failure? Europace. 2011;13(sup 2):ii13–7.Google Scholar
  4. 4.
    Roger VL, et al. Trends in heart failure incidence and survival in a community-based population. JAMA. 2004;292:344–50.CrossRefGoogle Scholar
  5. 5.
    Pfeffer MA, Braunwald E. Ventricular remodeling after myocardial infarction. Experimental observations and clinical implications. Circulation. 1990;81:1161–72.CrossRefGoogle Scholar
  6. 6.
    Mehra MR, et al. Listing criteria for heart transplantation: International Society for Heart and Lung Transplantation guidelines for the care of cardiac transplant candidates-2006. J Heart Lung Transplant. 2006;25:1024–42.CrossRefGoogle Scholar
  7. 7.
    Rizzieri AG, Verheijde JL, Rady MY, McGregor JL. Ethical challenges with the left ventricular assist device as a destination therapy. Philos Ethics Humanit Med. 2008;3:1–15.CrossRefGoogle Scholar
  8. 8.
    Alraies MC, Eckman P. Adult heart transplant: indications and outcomes. J Thorac Dis. 2014;6:1120–8.Google Scholar
  9. 9.
    Ruvinov E, Sapir Y, Cohen S. Cardiac tissue engineering: principles, materials, and applications. Synth Lect Tissue Eng. 2012;4:1–200.CrossRefGoogle Scholar
  10. 10.
    Ruvinov E, Dvir T, Leor J, Cohen S. Myocardial repair: from salvage to tissue reconstruction. Expert Rev Cardiovasc Ther. 2008;6:669–86.CrossRefGoogle Scholar
  11. 11.
    Roche ET, Hastings CL, Lewin SA, Shvartsman DE, Brudno Y, Vasilyev NV, et al. Comparison of biomaterial delivery vehicles for improving acute retention of stem cells in the infarcted heart. Biomaterials. 2014;35:6850–8.CrossRefGoogle Scholar
  12. 12.
    O’Neill HS, et al. Biomaterial-enhanced cell and drug delivery: lessons learned in the cardiac field and future perspectives. Adv Mater. 2016;28:5648–61.CrossRefGoogle Scholar
  13. 13.
    Hastings CL, Roche ET, Ruiz-Hernandez E, Schenke-Layland K, Walsh CJ, Duffy GP. Drug and cell delivery for cardiac regeneration. Adv Drug Deliv Rev. 2015;84:85–106.CrossRefGoogle Scholar
  14. 14.
    Curley CJ et al. An in vitro investigation to assess procedure parameters for injecting therapeutic hydrogels into the myocardium. J Biomed Mater Res Part B Appl Biomater. 2016.Google Scholar
  15. 15.
    Gaetani, R., Ungerleider, J. & Christman, K.L. In Perin EC, Miller LW, Taylor DA, Willerson JT, editors. Stem cell and gene therapy for cardiovascular disease. Elsevier; 2015. p. 332–348.Google Scholar
  16. 16.
    Ruvinov E, Cohen S. Alginate biomaterial for the treatment of myocardial infarction: Progress, translational strategies, and clinical outlook: from ocean algae to patient bedside. Adv Drug Deliv Rev. 2016;96:54–76.CrossRefGoogle Scholar
  17. 17.
    Mann DL, et al. One-year follow-up results from AUGMENT-HF: a multicentre randomized controlled clinical trial of the efficacy of left ventricular augmentation with Algisyl in the treatment of heart failure. Eur J Heart Fail. 2015;18:314–25.CrossRefGoogle Scholar
  18. 18.
    Nelson DM, Ma Z, Fujimoto KL, Hashizume R, Wagner WR. Intra-myocardial biomaterial injection therapy in the treatment of heart failure: materials, outcomes and challenges. Acta Biomater. 2011;7:1–15.CrossRefGoogle Scholar
  19. 19.
    Seif-Naraghi SB, et al. Safety and efficacy of an injectable extracellular matrix hydrogel for treating myocardial infarction. Sci Transl Med. 2013;5:173ra25.CrossRefGoogle Scholar
  20. 20.
    Singelyn JM, Sundaramurthy P, Johnson TD, Schup-Magoffin PJ, Hu DP, Faulk DM, et al. Catheter-deliverable hydrogel derived from decellularized ventricular extracellular matrix increases endogenous cardiomyocytes and preserves cardiac function post-myocardial infarction. J Am Coll Cardiol. 2012;59:751–63.CrossRefGoogle Scholar
  21. 21.
    Christman K, Singelyn J, DeQuach J. Compositions and methods for tissue repair with extracellular matrices. 2011.Google Scholar
  22. 22.
    Christman K, Singelyn J, DeQuach J, Kinsey A. Compositions and methods for cardiac therapy. 2012.Google Scholar
  23. 23.
    Johnson TD, Lin SY, Christman KL. Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel. Nanotechnology. 2011;22:1–11.CrossRefGoogle Scholar
  24. 24.
    Wassenaar JW, Gaetani R, Garcia JJ, Braden RL, Luo CG, Huang D, et al. Evidence for mechanisms underlying the functional benefits of a myocardial matrix hydrogel for post-MI treatment. J Am Coll Cardiol. 2016;67:1074–86.CrossRefGoogle Scholar
  25. 25.
    Leor J, Tuvia S, Guetta V, Manczur F, Castel D, Willenz U, et al. Intracoronary injection of in situ forming alginate hydrogel reverses left ventricular remodeling after myocardial infarction in swine. J Am Coll Cardiol. 2009;54:1014–23.CrossRefGoogle Scholar
  26. 26.
    Wall ST, Walker JC, Healy KE, Ratcliffe MB, Guccione JM. Theoretical impact of the injection of material into the myocardium: a finite element model simulation. Circulation. 2006;114:2627–35.CrossRefGoogle Scholar
  27. 27.
    Ifkovits JL, Tous E, Minakawa M, Morita M, Robb JD, Koomalsingh KJ, et al. Injectable hydrogel properties influence infarct expansion and extent of postinfarction left ventricular remodeling in an ovine model. Proc Natl Acad Sci. 2010;107:11507–12.CrossRefGoogle Scholar
  28. 28.
    Singelyn JM, Christman KL. Modulation of material properties of a decellularized myocardial matrix scaffold. Macromol Biosci. 2011;11:731–8.CrossRefGoogle Scholar
  29. 29.
    Lee LC, Wall ST, Klepach D, Ge L, Zhang Z, Lee RJ, et al. Algisyl-LVR™ with coronary artery bypass grafting reduces left ventricular wall stress and improves function in the failing human heart. Int J Cardiol. 2013;168:2022–8.CrossRefGoogle Scholar
  30. 30.
    Grover GN, Rao N, Christman KL. Myocardial matrix-polyethylene glycol hybrid hydrogels for tissue engineering. Nanotechnology. 2014;25:14011-1-12.CrossRefGoogle Scholar
  31. 31.
    Huang-Lee LL, Cheung DT, Nimni ME. Biochemical changes and cytotoxicity associated with the degradation of polymeric glutaraldehyde derived crosslinks. J Biomed Mater Res. 1990;24:1185–201.CrossRefGoogle Scholar
  32. 32.
    Johnson TD, Christman KL. Injectable hydrogel therapies and their delivery strategies for treating myocardial infarction. Expert Opin Drug Deliv. 2013;10:59–72.CrossRefGoogle Scholar
  33. 33.
    Martens TP, Godier AFG, Parks JJ, Wan LQ, Koeckert MS, Eng GM, et al. Percutaneous cell delivery into the heart using hydrogels polymerizing in situ. Cell Transplant. 2009;18:297–304.CrossRefGoogle Scholar
  34. 34.
    Rodell CB, MacArthur JW Jr, Dorsey SM, Wade RJ, Wang LL, Woo YJ, et al. Shear-thinning supramolecular hydrogels with secondary autonomous covalent crosslinking to modulate viscoelastic properties in vivo. Adv Funct Mater. 2015;25:636–44.CrossRefGoogle Scholar
  35. 35.
    Rodell CB, Lee ME, Wang H, Takebayashi S, Takayama T, Kawamura T, Arkles JS, Dusaj NN, Dorsey SM, Witschey WRT, Pilla JJ, Gorman JH III, Wenk JF, Burdick JA, Gorman RC. Injectable shear-thinning hydrogels for minimally invasive delivery to infarcted myocardium to limit left ventricular remodeling. Circ Cardiovasc Interv. 2016;9.Google Scholar
  36. 36.
    O’Cearbhaill ED, Ng KS, Karp JM. Emerging medical devices for minimally invasive cell therapy. Mayo Clin Proc. 2014;89:259–73.CrossRefGoogle Scholar
  37. 37.
    Lee KY, Mooney DJA. Properties and biomedical applications. Prog Polym Sci. 2012;37:106–26.CrossRefGoogle Scholar
  38. 38.
    George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J Control Release. 2006;114:1–14.CrossRefGoogle Scholar
  39. 39.
    Wainwright JM, Czajka CA, Patel UB, Freytes DO, Tobita K, Gilbert TW, et al. Preparation of cardiac extracellular matrix from an intact porcine heart. Tissue Eng Part C Methods. 2010;16:525–32.CrossRefGoogle Scholar
  40. 40.
    Remlinger NT, Wearden PD, Gilbert TW. Procedure for decellularization of porcine heart by retrograde coronary perfusion. J Vis Exp. 2012;70:e50059. Scholar
  41. 41.
    Dolan EB, Gunning GM, Davis TA, Cooney G, Eufrasio T, Murphy BP. The development and mechanical characterisation of a novel reinforced venous conduit that mimics the mechanical properties of an arterial wall. J Mech Behav Biomed Mater. 2017;71:23–31.CrossRefGoogle Scholar
  42. 42.
    Horvath MA, Varela CE, Dolan EB, Whyte W, Monahan DS, Payne CJ, et al. Towards alternative approaches for coupling of a soft robotic sleeve to the heart. Ann Biomed Eng. 2018;46:1534–47. Scholar
  43. 43.
    Kafienah W, Sims TJ. Biochemical methods for the analysis of tissue-engineered cartilage. Methods Mol Biol. 2004;238:217–30.Google Scholar
  44. 44.
    Ignat’eva NY, Danilov NA, Averkiev SV, Obrezkova MV, Lunin VV, Sobol’ EN. Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. J Anal Chem. 2007;62:51–7.CrossRefGoogle Scholar
  45. 45.
    Larsen BE, Bjørnstad J, Pettersen EO, Tønnesen HH, Melvik JE. Rheological characterization of an injectable alginate gel system. BMC Biotechnol. 2015;15:1–12.CrossRefGoogle Scholar
  46. 46.
    Melvik JE, Dornish M, Onsoyen E, Berge A, Svendsen T. Self-gelling alginate systems and uses thereof. 2013;1–28.Google Scholar
  47. 47.
    Ur-Rehman T, Tavelin S, Gröbner G. Effect of DMSO on micellization, gelation and drug release profile of Poloxamer 407. Int J Pharm. 2010;394:92–8.CrossRefGoogle Scholar
  48. 48.
    Payne C, Dolan EB, O’Sullivan J, Cryan S-A, Kelly HM. A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro. Drug Deliv Transl Res. 2016;1–15.
  49. 49.
    Dolan EB, Kovarova L, O’Neill H, Prvada M, Sulakova R, Scigalkova I, et al. Advanced material catheter (AMCath), a minimally invasive endocardial catheter for the delivery of fast-gelling covalently cross-linked hyaluronic acid hydrogels. J Biomater Appl. In Publication (accepted 19/09/18). 2018;25:088532821880587.Google Scholar
  50. 50.
    Peebles L, Norris B. Filling ‘gaps’ in strength data for design. Appl Ergon. 2003;34:73–88.CrossRefGoogle Scholar
  51. 51.
    Nilsen T, Hermann M, Eriksen CS, Dagfinrud H, Mowinckel P, Kjeken I. Grip force and pinch grip in an adult population: reference values and factors associated with grip force. Scand J Occup Ther. 2012;19:288–96.CrossRefGoogle Scholar
  52. 52.
    Piccirillo G, Bochicchio B, Pepe A, Schenke-Layland K, Hinderer S. Electrospun poly-l-lactide scaffold for the controlled and targeted delivery of a synthetically obtained diclofenac prodrug to treat actinic keratosis. Acta Biomater. 2017;52:187–96.CrossRefGoogle Scholar
  53. 53.
    Yu J, Gu Y, du KT, Mihardja S, Sievers RE, Lee RJ. The effect of injected RGD modified alginate on angiogenesis and left ventricular function in a chronic rat infarct model. Biomaterials. 2009;30:751–6.CrossRefGoogle Scholar
  54. 54.
    Rane AA, et al. Increased infarct wall thickness by a bio-inert material is insufficient to prevent negative left ventricular remodeling after myocardial infarction. PLoS One. 2011;6:e21571.CrossRefGoogle Scholar
  55. 55.
    Brafman DA, Shah KD, Fellner T, Chien S, Willert K. Defining long-term maintenance conditions of human embryonic stem cells with arrayed cellular microenvironment technology. Stem Cells Dev. 2009;18:1141–54.CrossRefGoogle Scholar
  56. 56.
    Flaim CJ, Teng D, Chien S, Bhatia SN. Combinatorial signaling microenvironments for studying stem cell fate. Stem Cells Dev. 2008;17:29–39.CrossRefGoogle Scholar
  57. 57.
    Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006;27:3675–83.Google Scholar

Copyright information

© Controlled Release Society 2018

Authors and Affiliations

  • Clive J. Curley
    • 1
    • 2
    • 3
  • Eimear B. Dolan
    • 1
    • 2
    • 4
    • 5
  • Matthias Otten
    • 6
  • Svenja Hinderer
    • 6
    • 7
  • Garry P. Duffy
    • 1
    • 3
    • 4
    • 5
  • Bruce P. Murphy
    • 1
    • 2
    • 3
    Email author
  1. 1.Trinity Centre for Bioengineering, Trinity Biomedical Sciences InstituteTrinity College DublinDublin 2Ireland
  2. 2.Department of Mechanical and Manufacturing Engineering, School of EngineeringTrinity College DublinDublin 2Ireland
  3. 3.Advanced Materials and BioEngineering Research Centre (AMBER)Trinity College Dublin and Royal College of Surgeons IrelandDublinIreland
  4. 4.Tissue Engineering Research Group, Dept. of AnatomyRoyal College of Surgeons in IrelandDublin 2Ireland
  5. 5.Department of Anatomy, School of Medicine, College of Medicine Nursing and Health SciencesNational University of Ireland GalwayGalwayIreland
  6. 6.Department of Women’s Health, Research Institute for Women’s HealthEberhard-Karls UniversityTübingenGermany
  7. 7.Natural and Medical Sciences Institute (NMI)University of TübingenReutlingenGermany

Personalised recommendations