Drug Delivery and Translational Research

, Volume 9, Issue 1, pp 85–96 | Cite as

Novel metformin-containing resin promotes odontogenic differentiation and mineral synthesis of dental pulp stem cells

  • Suping Wang
  • Yang Xia
  • Tao Ma
  • Michael D. Weir
  • Ke Ren
  • Mark A. Reynolds
  • Yan Shu
  • Lei ChengEmail author
  • Abraham SchneiderEmail author
  • Hockin H. K. XuEmail author
Original Article


This represents the first report on the development of metformin-containing dental resins. The objectives were to use the resin as a carrier to deliver metformin locally to stimulate dental cells for dental tissue regeneration and to investigate the effects on odontogenic differentiation of dental pulp stem cells (DPSCs) and mineral synthesis. Metformin was incorporated into a resin at 20% by mass as a model system. DPSC proliferation attaching on resins was evaluated. Dentin sialophosphoprotein (DSPP), dentin matrix phosphoprotein 1 (DMP-1), alkaline phosphatase (ALP), and runt-related transcription factor 2 (Runx2) genes expressions were measured. ALP activity and alizarin red staining (ARS) of mineral synthesis by the DPSCs on resins were determined. DPSCs on metformin-containing resin proliferated well (mean ± SD; n = 6), and the number of cells increased by 4-fold from 1 to 14 days (p > 0.1). DSPP, ALP, and DMP-1 gene expressions of DPSCs on metformin resin were much higher than DPSCs on control resin without metformin (p < 0.05). ALP activity of metformin group was 70% higher than that without metformin at 14 days (p < 0.05). Mineral synthesis by DPSCs on metformin-containing resin at 21 days was 9-fold that without metformin (p < 0.05). A novel metformin-containing resin was developed, achieving substantial enhancement of odontoblastic differentiation of DPSCs and greater mineral synthesis. The metformin resin is promising for deep cavities and perforated cavities to stimulate DPSCs for tertiary dentin formation, for tooth root coatings with metformin release for periodontal regeneration, and for root canal fillings with apical lesions to stimulate bone regeneration.


Dental resin Metformin Odontoblastic differentiation Dental pulp stem cells Mineral synthesis Tissue regeneration 



We are grateful to Drs. Bing Song, Wei Qin, and Laurence C. Chow for discussions and experimental help.

Funding information

This work was supported by University of Maryland School of Dentistry Bridging Fund (HX) and University of Maryland Seed Grant (HX), National Institutes of Health/National Institute of Dental and Craniofacial Research Grant R01 DE023578 (AS), National Natural Science Foundation of China (81870759) and International Science and Technology Cooperation Program of Sichuan Province 2017HH0008 (LC).

Compliance with ethical standards

The procedure was approved by the Institutional Review Board of the University of Maryland Baltimore.

Conflict of interest

The authors declare that there is no conflict of interest.


  1. 1.
    Farges JC, Alliot-Licht B, Renard E, Ducret M, Gaudin A, Smith AJ, et al. Dental pulp defence and repair mechanisms in dental caries. Mediat Inflamm. 2015;2015:230251.CrossRefGoogle Scholar
  2. 2.
    Ferracane JL. Resin composite--state of the art. Dent Mater. 2011;27(1):29–38.CrossRefGoogle Scholar
  3. 3.
    Lynch CD, McConnell RJ, Wilson NH. Posterior composites: the future for restoring posterior teeth? Prim Dent J. 2014;3(2):49–53.CrossRefGoogle Scholar
  4. 4.
    Blum IR, Lynch CD, Wilson NH. Factors influencing repair of dental restorations with resin composite. Clin Cosmet Investig Dent. 2014;17(6):81–7.CrossRefGoogle Scholar
  5. 5.
    Imazato S. Antibacterial properties of resin composites and dentin bonding systems. Dent Mater. 2003;19(6):449–57.CrossRefGoogle Scholar
  6. 6.
    Maas MS, Alania Y, Natale LC, Rodrigues MC, Watts DC, Braga RR. Trends in restorative composites research: what is in the future? Braz Oral Res. 2017;31(suppl 1):e55.CrossRefGoogle Scholar
  7. 7.
    Hiraishi N, Yiu CK, King NM, Tay FR, Pashley DH. Chlorhexidine release and water sorption characteristics of chlorhexidine-incorporated hydrophobic/ hydrophilic resins. Dent Mater. 2008;24(10):1391–9.CrossRefGoogle Scholar
  8. 8.
    Mickenautsch S, Yengopal V, Banerjee A. Pulp response to resin-modified glass ionomer and calcium hydroxide cements in deep cavities: a quantitative systematic review. Dent Mater. 2010;26(8):61–70.CrossRefGoogle Scholar
  9. 9.
    Saghiri MA, Asatourian A, Garcia-Godoy F, Sheibani N. Effect of biomaterials on angiogenesis during vital pulp therapy. Dent Mater J. 2016;35(5):701–9.CrossRefGoogle Scholar
  10. 10.
    McComb D, Ericson D. Antimicrobial action of new, proprietary lining cements. J Dent Res. 1987;66(5):1025–8.CrossRefGoogle Scholar
  11. 11.
    Davis HB, Gwinner F, Mitchell JC, Ferracane JL. Ion release from, and fluoride recharge of a composite with a fluoride-containing bioactive glass. Dent Mater. 2014;30(10):1187–94.CrossRefGoogle Scholar
  12. 12.
    About I, Murray PE, Franquin JC, Remusat M, Smith AJ. The effect of cavity restoration variables on odontoblast cell numbers and dental repair. J Dent. 2001;29(2):109–17.CrossRefGoogle Scholar
  13. 13.
    Zhang W, Yelick PC. Vital pulp therapy-current progress of dental pulp regeneration and revascularization. Int J Dent. 2010;2010:856087.CrossRefGoogle Scholar
  14. 14.
    Kawashima N, Okiji T. Odontoblasts: specialized hard-tissue-forming cells in the dentin-pulp complex. Congenit Anom(Kyoto). 2016;56(4):144–53.CrossRefGoogle Scholar
  15. 15.
    Murray PE, About I, Lumley PJ, Franquin JC, Remusat M, Smith AJ. Human odontoblast cell numbers after dental injury. J Dent. 2000;28(4):277–85.CrossRefGoogle Scholar
  16. 16.
    Murray PE, About I, Lumley PJ, Franquin JC, Remusat M, Smith AJ. Cavity remaining dentin thickness and pulpal activity. Am J Dent. 2002;15(1):41–6.Google Scholar
  17. 17.
    Umemura N, Ohkoshi E, Tajima M, Kikuchi H, Katayama T, Sakagami H. Hyaluronan induces odontoblastic differentiation of dental pulp stem cells via CD44. Stem Cell Res. 2016;7(1):135.CrossRefGoogle Scholar
  18. 18.
    Tecles O, Laurent P, Zygouritsas S, Burger AS, Camps J, Dejou J, et al. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol. 2005;50(2):103–8.CrossRefGoogle Scholar
  19. 19.
    Viollet B, Guigas B, Garcia NS, Leclerc J, Foretz M, Andreelli F. Cellular and molecular mechanisms of metformin: an overview. Clin Sci (Lond). 2012;122(6):253–70.CrossRefGoogle Scholar
  20. 20.
    Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Manneras-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat Med. 2017;23(7):850–8.CrossRefGoogle Scholar
  21. 21.
    Jang WG, Kim EJ, Bae IH, Lee KN, Kim YD, Kim DK, et al. Metformin induces osteoblast differentiation via orphan nuclear receptor SHP-mediated transactivation of Runx2. Bone. 2011;48(4):885–93.CrossRefGoogle Scholar
  22. 22.
    Gao Y, Xue J, Li X, Jia Y, Hu J. Metformin regulates osteoblast and adipocyte differentiation of rat mesenchymal stem cells. J Pharm Pharmacol. 2008;60(12):1695–700.CrossRefGoogle Scholar
  23. 23.
    Cortizo AM, Sedlinsky C, McCarthy AD, Blanco A, Schurman L. Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol. 2006;536(1–2):38–46.CrossRefGoogle Scholar
  24. 24.
    Molinuevo MS, Schurman L, McCarthy AD, Cortizo AM, Tolosa MJ, Gangoiti MV, et al. Effect of metformin on bone marrow progenitor cell differentiation: in vivo and in vitro studies. J Bone Miner Res. 2010;25(2):211–21.CrossRefGoogle Scholar
  25. 25.
    Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T. Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun. 2008;375(3):414–9.CrossRefGoogle Scholar
  26. 26.
    Wang P, Ma T, Guo D, Hu K, Shu Y, Xu HH, et al. Metformin induces osteoblastic differentiation of human induced pluripotent stem cell-derived mesenchymal stem cells. J Tissue Eng Regen Med. 2017;12(2):437–46.CrossRefGoogle Scholar
  27. 27.
    Gronthos S, Mankani M, Brahim J, Robey PG, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A. 2000;97(25):13625–30.CrossRefGoogle Scholar
  28. 28.
    Yan M, Yu Y, Zhang G, Tang C, Yu J. A journey from dental pulp stem cells to a bio-tooth. Stem Cell Rev. 2011;7(1):161–71.CrossRefGoogle Scholar
  29. 29.
    Kolar MK, Itte VN, Kingham PJ. The neurotrophic effects of different human dental mesenchymal stem cells. Sci Rep. 2017;7(1):12605.CrossRefGoogle Scholar
  30. 30.
    Qin W, Gao X, Ma T, Weir MD, Zou J, Song B, et al. Metformin enhances the differentiation of dental pulp stem cells into odontoblasts in vitro by activating AMPK signaling. J Endodontics. 2017;44:576–84. Scholar
  31. 31.
    Zhang L, Weir MD, Hack G, Fouad AF, Xu HH. Rechargeable dental adhesive with calcium phosphate nanoparticles for long-term ion release. J Dent. 2015;43(12):1587–95.CrossRefGoogle Scholar
  32. 32.
    Zhang L, Weir MD, Chow LC, Antonucci JM, Chen J, Xu HH. Novel rechargeable calcium phosphate dental nanocomposite. Dent Mater. 2016;32(2):285–93.CrossRefGoogle Scholar
  33. 33.
    Venz S, Dickens B. Modified surface-active monomers for adhesive bonding to dentin. J Dent Res. 1993;72(3):582–6.CrossRefGoogle Scholar
  34. 34.
    Milward PJ, Adusei GO, Lynch CD. Improving some selected properties of dental polyacid-modified composite resins. Dent Mater. 2011;27:997–1002.CrossRefGoogle Scholar
  35. 35.
    Tauscher S, Angermann J, Catel Y, Moszner N. Evaluation of alternative monomers to HEMA for dental applications. Dent Mater. 2017;33(7):857–65.CrossRefGoogle Scholar
  36. 36.
    Imazato S, McCabe JF. Influence of incorporation of antibacterial monomer on curing behavior of a dental composite. J Dent Res. 1994;73:1641–5.CrossRefGoogle Scholar
  37. 37.
    Atai M, Ahmadi M, Babanzadeh S, Watts DC. Synthesis, characterization, shrinkage and curing kinetics of a new low-shrinkage urethane dimethacrylate monomer for dental applications. Dent Mater. 2007;23(8):1030–41.CrossRefGoogle Scholar
  38. 38.
    Braga RR, Ballester RY, Ferracane JL. Factors involved in the development of polymerization shrinkage stress in resin-composites: a systematic review. Dent Mater. 2005;21(10):962–70.CrossRefGoogle Scholar
  39. 39.
    Zhang X, Wang X, Vernikovskaya DI, Fokina VM, Nanovskaya TN, Hankins GDV, et al. Quantitative determination of metformin, glyburide and its metabolites in plasma and urine of pregnant patients by LC-MS/MS. Biomed Chromatogr. 2015;29(4):560–9.CrossRefGoogle Scholar
  40. 40.
    Wang L, Zhang C, Li C, Weir MD, Wang P, Reynolds MA, et al. Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair. Mater Sci Eng C Mater Biol Appl. 2016;69:1125–36.CrossRefGoogle Scholar
  41. 41.
    Niu LN, Watson D, Thames K, Primus CM, Bergeron BE, Jiao K, et al. Effects of a discoloration-resistant calcium aluminosilicate cement on the viability and proliferation of undifferentiated human dental pulp stem cells. Sci Rep. 2015;5:17177.CrossRefGoogle Scholar
  42. 42.
    Alongi DJ, Yamaza T, Song Y, Fouad AF, Romberg EE, Shi S, et al. Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med. 2010;5(4):617–31.CrossRefGoogle Scholar
  43. 43.
    Eid AA, Hussein KA, Niu LN, Li GH, Watanabe I, Mohamed Al-Shabrawey M, et al. Effects of tricalcium silicate cements on osteogenic differentiation of human bone marrow-derived mesenchymal stem cells in vitro. Acta Biomater. 2014;10(7):3327–34.CrossRefGoogle Scholar
  44. 44.
    Wang GQ, Wimpenny I, Dey RE, Zhong X, Youle PJ, Downes S, et al. The unique calcium chelation property of poly(vinyl phosphonic acid-co-acrylic acid) and effects on osteogenesis in vitro. J Biomed Mater Res A. 2018;106(1):168–79.CrossRefGoogle Scholar
  45. 45.
    Ayobian-Markazi N, Fourootan T, Kharazifar MJ. Comparison of cell viability and morphology of a human osteoblast-like cell line (SaOS-2) seeded on various bone substitute materials: an in vitro study. Dent Res J. 2012;9(1):86–92.CrossRefGoogle Scholar
  46. 46.
    Chen W, Zhou H, Weir MD, Bao C, Xu HH. Umbilical cord stem cells released from alginate-fibrin microbeads inside macroporous and biofunctionalized calcium phosphate cement for bone regeneration. Acta Biomater. 2012;8(6):2297–306.CrossRefGoogle Scholar
  47. 47.
    Yen AH, Yelick PC. Dental tissue regeneration—a mini review. Gerontology. 2011;57(1):85–94.CrossRefGoogle Scholar
  48. 48.
    Tatullo M, Marrelli M, Shakesheff KM, White LJ. Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med. 2015;9(11):1205–16.CrossRefGoogle Scholar
  49. 49.
    Yi Q, Liu O, Yan F, Lin X, Diao S, Wang L, et al. Analysis of senescence-related differentiation potentials and gene expression profiles in human dental pulp stem cells. Cells Tissues Organs. 2017;203(1):1–11.CrossRefGoogle Scholar
  50. 50.
    Rodriguez-Lozano FJ, Insausti CL, Iniesta F, Blanquer M, Ramirez MD, Meseguer L, et al. Mesenchymal dental stem cells in regenerative dentistry. Med Oral Patol Oral Cir Bucal. 2012;17(6):e1062–7.CrossRefGoogle Scholar
  51. 51.
    Mooney DJ, Powell C, Piana J, Rutherford B. Engineering dental pulp-like tissue in vitro. Biotechnol Prog. 1996;12(6):865–8.CrossRefGoogle Scholar
  52. 52.
    Volponi AA, Pang Y, Sharpe PT. Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 2010;20(12):715–22.CrossRefGoogle Scholar
  53. 53.
    Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, et al. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81(8):531–5.CrossRefGoogle Scholar
  54. 54.
    Weiner R. Liners and bases in general dentistry. Aust Dent J. 2011;56(Suppl 1):11–22.CrossRefGoogle Scholar
  55. 55.
    de Souza Costa CA, Teixeira HM, Lopes do Nascimento AB, Hebling J. Biocompatibility of resin-based dental materials applied as liners in deep cavities prepared in human teeth. J Biomed Mater Res B Appl Biomater. 2007;81(1):175–84.CrossRefGoogle Scholar
  56. 56.
    Imazato S, Chen JH, Ma S, Izutani N, Li F. Antibacterial resin monomers based on quaternary ammonium and their benefits in restorative dentistry. Jpn Dent Sci Rev. 2012;48(2):115–25.CrossRefGoogle Scholar
  57. 57.
    Duque C, Negrini Tde C, Sacono NT, Spolidorio DM, de Souza Costa CA, Hebling J. Clinical and microbiological performance of resin-modified glass-ionomer liners after incomplete dentine caries removal. Clin Oral Investig. 2009;13(4):465–71.CrossRefGoogle Scholar
  58. 58.
    Mitra SB. In vitro fluoride release from a light-cured glass-ionomer liner/base. J Dent Res. 1991;70(1):75–8.CrossRefGoogle Scholar
  59. 59.
    Dickens SH, Flaim GM, Takagi S. Mechanical properties and biochemical activity of remineralizing resin-based Ca-PO4 cements. Dent Mater. 2003;19(6):558–66.CrossRefGoogle Scholar
  60. 60.
    Park MS, Eanes ED, Antonucci JM, Skrtic D. Mechanical properties of bioactive amorphous calcium phosphate/methacrylate composites. Dent Mater. 1998;14(2):137–41.CrossRefGoogle Scholar
  61. 61.
    Costa CA, Ribeiro AP, Giro EM, Randall RC, Hebling J. Pulp response after application of two resin modified glass ionomer cements (RMGICs) in deep cavities of prepared human teeth. Dent Mater. 2011;27(7):e158–70.CrossRefGoogle Scholar
  62. 62.
    Hajjar J, Habra MA, Naing A. Metformin: an old drug with new potential. Expert Opin Investig Drugs. 2013;22(12):1511–7.CrossRefGoogle Scholar
  63. 63.
    Pradeep AR, Nagpal K, Karvekar S, Patnaik K, Naik SB, Guruprasad CN. Platelet-rich fibrin with 1% metformin for the treatment of intrabony defects in chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2015;86(6):729–37.CrossRefGoogle Scholar
  64. 64.
    Pradeep AR, Patnaik K, Nagpal K, Karvekar S, Guruprasad CN, Kumaraswamy KM. Efficacy of 1% metformin gel in patients with moderate and severe chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2017;88(10):1023–9.CrossRefGoogle Scholar
  65. 65.
    Pradeep AR, Patnaik K, Nagpal K, Karvekar S, Ramamurthy BL, Naik SB, et al. Efficacy of locally-delivered 1% metformin gel in the treatment of intrabony defects in patients with chronic periodontitis: a randomized, controlled clinical trial. J Investig Clin Dent. 2016;7(3):239–45.CrossRefGoogle Scholar
  66. 66.
    Ahn MJ, Cho GW. Metformin promotes neuronal differentiation and neurite outgrowth through AMPK activation in human bone marrow-mesenchymal stem cells. Biotechnol Appl Biochem. 2017;64(6):836–42.CrossRefGoogle Scholar
  67. 67.
    Phung S, Lee C, Hong C, Song M, Yi JK, Stevenson RG, et al. Effects of bioactive compounds on odontogenic differentiation and mineralization. J Dent Res. 2017;96(1):107–15.CrossRefGoogle Scholar
  68. 68.
    Zhang N, Ma J, Melo MA, Weir MD, Bai Y, Xu HH. Protein-repellent and antibacterial dental composite to inhibit biofilms and caries. J Dent. 2015;43(2):225–34.CrossRefGoogle Scholar
  69. 69.
    Cheng L, Zhang K, Zhang N, Melo MA, Weir MD, Zhou XD, et al. Developing a new generation of antimicrobial and bioactive dental resins. J Dent Res. 2017;96(8):855–63.CrossRefGoogle Scholar
  70. 70.
    Moreau JL, Weir MD, Giuseppetti AA, Chow LC, Antonucci JM, Xu HH. Long-term mechanical durability of dental nanocomposites containing amorphous calcium phosphate nanoparticles. J Biomed Mater Res B Appl Biomater. 2012;100(5):1264–73.CrossRefGoogle Scholar
  71. 71.
    Houshmand B, Tabibzadeh Z, Motamedian SR, Kouhestani F. Effect of metformin on dental pulp stem cells attachment, proliferation and differentiation cultured on biphasic bone substitutes. Arch Oral Biol. 2018;95:44–50.CrossRefGoogle Scholar
  72. 72.
    Rao NS, Pradeep AR, Kumari M, Naik SB. Locally delivered 1% metformin gel in the treatment of smokers with chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2013;84(8):1165–71.CrossRefGoogle Scholar
  73. 73.
    Pradeep AR, Rao NS, Naik SB, Kumari M. Efficacy of varying concentrations of subgingivally delivered metformin in the treatment of chronic periodontitis: a randomized controlled clinical trial. J Periodontol. 2015;84(2):212–20.CrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral, Diseases, Department of Cariology and Endodontics, West China Hospital of StomatologySichuan UniversityChengduChina
  2. 2.Department of Advanced Oral Sciences and TherapeuticsUniversity of Maryland School of DentistryBaltimoreUSA
  3. 3.Jiangsu Key Laboratory of Oral DiseasesNanjing Medical UniversityNanjingChina
  4. 4.Department of Oncology and Diagnostic SciencesUniversity of Maryland School of DentistryBaltimoreUSA
  5. 5.Department of Neural and Pain SciencesUniversity of Maryland School of DentistryBaltimoreUSA
  6. 6.Department of Pharmaceutical Sciences, School of PharmacyUniversity of MarylandBaltimoreUSA
  7. 7.Marlene and Stewart Greenebaum Comprehensive Cancer CenterUniversity of Maryland School of MedicineBaltimoreUSA
  8. 8.Center for Stem Cell Biology & Regenerative MedicineUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations