Drug Delivery and Translational Research

, Volume 8, Issue 3, pp 740–759 | Cite as

The environmental pollutant, polychlorinated biphenyls, and cardiovascular disease: a potential target for antioxidant nanotherapeutics

  • Prachi Gupta
  • Brendan L. Thompson
  • Banrida Wahlang
  • Carolyn T. Jordan
  • J. Zach Hilt
  • Bernhard Hennig
  • Thomas DziublaEmail author
Review Article


Despite production having stopped in the 1970s, polychlorinated biphenyls (PCBs) represent persistent organic pollutants that continue to pose a serious human health risk. Exposure to PCBs has been linked to chronic inflammatory diseases, such as cardiovascular disease, type 2 diabetes, obesity, as well as hepatic disorders, endocrine dysfunction, neurological deficits, and many others. This is further complicated by the PCB’s strong hydrophobicity, resulting in their ability to accumulate up the food chain and to be stored in fat deposits. This means that completely avoiding exposure is not possible, thus requiring the need to develop intervention strategies that can mitigate disease risks associated with exposure to PCBs. Currently, there is excitement in the use of nutritional compounds as a way of inhibiting the inflammation associated with PCBs, yet the suboptimal delivery and pharmacology of these compounds may not be sufficient in more acute exposures. In this review, we discuss the current state of knowledge of PCB toxicity and some of the antioxidant and anti-inflammatory nanocarrier systems that may be useful as an enhanced treatment modality for reducing PCB toxicity.


Antioxidant Nanocarriers PCBs Toxicity 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Grimm FA, et al. Metabolism and metabolites of polychlorinated biphenyls. Crit Rev Toxicol. 2015;45(3):245–72.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Diamond ML, et al. Estimation of PCB stocks, emissions, and urban fate: will our policies reduce concentrations and exposure? Environ Sci Technol. 2010;44(8):2777–83.PubMedCrossRefGoogle Scholar
  3. 3.
    Breivik K, et al. Towards a global historical emission inventory for selected PCB congeners—a mass balance approach. 2. Emissions. Sci Total Environ. 2002;290(1–3):199–224.PubMedCrossRefGoogle Scholar
  4. 4.
    Giesy JP, Kannan K. Dioxin-like and non-dioxin-like toxic effects of polychlorinated biphenyls (PCBs): implications for risk assessment. Crit Rev Toxicol. 1998;28(6):511–69.PubMedCrossRefGoogle Scholar
  5. 5.
    Salhotra AM. Human health risk assessment for contaminated properties. Prog Mol Biol Transl Sci. 2012;112:285–306.PubMedCrossRefGoogle Scholar
  6. 6.
    Vorkamp K. An overlooked environmental issue? A review of the inadvertent formation of PCB-11 and other PCB congeners and their occurrence in consumer products and in the environment. Sci Total Environ. 2016;541:1463–76.PubMedCrossRefGoogle Scholar
  7. 7.
    Barakat AO, Khairy M, Aukaily I. Persistent organochlorine pesticide and PCB residues in surface sediments of Lake Qarun, a protected area of Egypt. Chemosphere. 2013;90(9):2467–76.PubMedCrossRefGoogle Scholar
  8. 8.
    Covaci A, et al. The Belgian PCB/dioxin crisis—8 years later: an overview. Environ Toxicol Pharmacol. 2008;25(2):164–70.PubMedCrossRefGoogle Scholar
  9. 9.
    Jepson PD, et al. PCB pollution continues to impact populations of orcas and other dolphins in European waters. Sci Rep. 2016;6:18573.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Wimmerova S, et al. The spatial distribution of human exposure to PCBs around a former production site in Slovakia. Environ Sci Pollut Res Int. 2015;22(19):14405–15.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zani C, et al. Polychlorinated biphenyls and cancer: an epidemiological assessment. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2013;31(2):99–144.PubMedCrossRefGoogle Scholar
  12. 12.
    Uekusa Y, et al. Determination of polychlorinated biphenyls in marine fish obtained from tsunami-stricken areas of Japan. PLoS One. 2017;12(4):e0174961.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wahlang B, et al. Human receptor activation by aroclor 1260, a polychlorinated biphenyl mixture. Toxicol Sci. 2014;140(2):283–97.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    McFarland VA, Clarke JU. Environmental occurrence, abundance, and potential toxicity of polychlorinated biphenyl congeners: considerations for a congener-specific analysis. Environ Health Perspect. 1989;81:225–39.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Wahlang B, et al. Polychlorinated biphenyl-xenobiotic nuclear receptor interactions regulate energy metabolism, behavior, and inflammation in non-alcoholic-steatohepatitis. Toxicol Sci. 2016;149(2):396–410.PubMedCrossRefGoogle Scholar
  16. 16.
    Wahlang B, et al. Evaluation of Aroclor 1260 exposure in a mouse model of diet-induced obesity and non-alcoholic fatty liver disease. Toxicol Appl Pharmacol. 2014;279(3):380–90.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Batang ZB, et al. Congener-specific levels and patterns of polychlorinated biphenyls in edible fish tissue from the central Red Sea coast of Saudi Arabia. Sci Total Environ. 2016;572:915–25.PubMedCrossRefGoogle Scholar
  18. 18.
    Byrne S, et al. Persistent organochlorine pesticide exposure related to a formerly used defense site on St. Lawrence Island, Alaska: data from sentinel fish and human sera. J Toxicol Environ Health A. 2015;78(15):976–92.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Lorber M, et al. Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures. Environ Int. 2015;77:55–62.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Codru N, et al. Diabetes in relation to serum levels of polychlorinated biphenyls and chlorinated pesticides in adult Native Americans. Environ Health Perspect. 2007;115(10):1442–7.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Goncharov A, et al. High serum PCBs are associated with elevation of serum lipids and cardiovascular disease in a Native American population. Environ Res. 2008;106(2):226–39.PubMedCrossRefGoogle Scholar
  22. 22.
    Malik S, et al. Effect of proximity to hazardous waste sites on the development of congenital heart disease. Arch Environ Health. 2004;59(4):177–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Pellequer JL, et al. Structural basis for preferential binding of non-ortho-substituted polychlorinated biphenyls by the monoclonal antibody S2B1. J Mol Recognit. 2005;18(4):282–94.PubMedCrossRefGoogle Scholar
  24. 24.
    Petriello MC, et al. PCB 126 toxicity is modulated by cross-talk between caveolae and Nrf2 signaling. Toxicol Appl Pharmacol. 2014;277(2):192–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Sergeev AV, Carpenter DO. Hospitalization rates for coronary heart disease in relation to residence near areas contaminated with persistent organic pollutants and other pollutants. Environ Health Perspect. 2005;113(6):756–61.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Silverstone AE, et al. Polychlorinated biphenyl (PCB) exposure and diabetes: results from the Anniston Community Health Survey. Environ Health Perspect. 2012;120(5):727–32.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Wang S, et al. Application of nanotechnology in improving bioavailability and bioactivity of diet-derived phytochemicals. J Nutr Biochem. 2014;25(4):363–76.PubMedCrossRefGoogle Scholar
  28. 28.
    Kuratsune M, et al. Yusho, a poisoning caused by rice oil contaminated with polychlorinated biphenyls. HSMHA Health Rep. 1971;86(12):1083–91.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Kuratsune M, et al. Epidemiologic study on Yusho, a poisoning caused by ingestion of rice oil contaminated with a commercial brand of polychlorinated biphenyls. Environ Health Perspect. 1972;1:119–28.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Masuda Y, et al. PCB and PCDF congeners in the blood and tissues of yusho and yu-cheng patients. Environ Health Perspect. 1985;59:53–8.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Seki Y, Kawanishi S, Sano S. Mechanism of PCB-induced porphyria and yusho disease. Ann N Y Acad Sci. 1987;514:222–34.PubMedCrossRefGoogle Scholar
  32. 32.
    Masuda Y. Toxic effects of PCB/PCDF to human observed in Yusho and other poisonings. Fukuoka Igaku Zasshi. 2009;100(5):141–55.PubMedGoogle Scholar
  33. 33.
    Aoki Y. Polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, and polychlorinated dibenzofurans as endocrine disrupters—what we have learned from Yusho disease. Environ Res. 2001;86(1):2–11.PubMedCrossRefGoogle Scholar
  34. 34.
    Hsu ST, et al. Discovery and epidemiology of PCB poisoning in Taiwan: a four-year followup. Environ Health Perspect. 1985;59:5–10.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Loomis D, et al. Cancer mortality among electric utility workers exposed to polychlorinated biphenyls. Occup Environ Med. 1997;54(10):720–8.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kreiss K. Studies on populations exposed to polychlorinated biphenyls. Environ Health Perspect. 1985;60:193–9.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Kimbrough RD, et al. Mortality among capacitor workers exposed to polychlorinated biphenyls (PCBs), a long-term update. Int Arch Occup Environ Health. 2015;88(1):85–101.PubMedCrossRefGoogle Scholar
  38. 38.
    Maroni M, et al. Occupational exposure to polychlorinated biphenyls in electrical workers. II. Health effects. Br J Ind Med. 1981;38(1):55–60.PubMedPubMedCentralGoogle Scholar
  39. 39.
    Li MC, et al. Mortality after exposure to polychlorinated biphenyls and dibenzofurans: 30 years after the “Yucheng Accident”. Environ Res. 2013;120:71–5.PubMedCrossRefGoogle Scholar
  40. 40.
    Hsieh SF, et al. A cohort study on mortality and exposure to polychlorinated biphenyls. Arch Environ Health. 1996;51(6):417–24.PubMedCrossRefGoogle Scholar
  41. 41.
    Cave M, et al. Polychlorinated biphenyls, lead, and mercury are associated with liver disease in American adults: NHANES 2003–2004. Environ Health Perspect. 2010;118(12):1735–42.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Sala M, et al. Association between serum concentrations of hexachlorobenzene and polychlorobiphenyls with thyroid hormone and liver enzymes in a sample of the general population. Occup Environ Med. 2001;58(3):172–7.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Wahlang B, et al. Toxicant-associated steatohepatitis. Toxicol Pathol. 2013;41(2):343–60.PubMedCrossRefGoogle Scholar
  44. 44.
    Wahlang B, et al. Polychlorinated biphenyl 153 is a diet-dependent obesogen that worsens nonalcoholic fatty liver disease in male C57BL6/J mice. J Nutr Biochem. 2013;24(9):1587–95.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Lai IK, et al. N-acetylcysteine (NAC) diminishes the severity of PCB 126-induced fatty liver in male rodents. Toxicology. 2012;302(1):25–33.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Rignall B, et al. Biological and tumor-promoting effects of dioxin-like and non-dioxin-like polychlorinated biphenyls in mouse liver after single or combined treatment. Toxicol Sci. 2013;133(1):29–41.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    National Toxicology P. Toxicology and carcinogenesis studies of a binary mixture of 3,3′,4,4′,5-pentachlorobiphenyl (PCB 126) (Cas No. 57465-28-8) and 2,2′,4,4′,5,5′-hexachlorobiphenyl (PCB 153) (CAS No. 35065-27-1) in female Harlan Sprague-Dawley rats (gavage studies). Natl Toxicol Program Tech Rep Ser. 2006;530:1–258.Google Scholar
  48. 48.
    Zhang S, et al. Chronic exposure to aroclor 1254 disrupts glucose homeostasis in male mice via inhibition of the insulin receptor signal pathway. Environ Sci Technol. 2015;49(16):10084–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Chapados NA, Boucher MP. Liver metabolic disruption induced after a single exposure to PCB126 in rats. Environ Sci Pollut Res Int. 2017;24(2):1854–61.PubMedCrossRefGoogle Scholar
  50. 50.
    Gadupudi GS, et al. PCB126-induced disruption in gluconeogenesis and fatty acid oxidation precedes fatty liver in male rats. Toxicol Sci. 2016;149(1):98–110.PubMedCrossRefGoogle Scholar
  51. 51.
    Goncharov A, et al. Blood pressure and hypertension in relation to levels of serum polychlorinated biphenyls in residents of Anniston, Alabama. J Hypertens. 2010;28(10):2053–60.PubMedCrossRefGoogle Scholar
  52. 52.
    Everett CJ, et al. Association of polychlorinated biphenyls with hypertension in the 1999–2002 National Health and Nutrition Examination Survey. Environ Res. 2008;108(1):94–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Donat-Vargas C, et al. Association between dietary intake of polychlorinated biphenyls and the incidence of hypertension in a Spanish cohort: the Seguimiento Universidad de Navarra project. Hypertension. 2015;65(4):714–21.PubMedCrossRefGoogle Scholar
  54. 54.
    Bergkvist C, et al. Dietary exposure to polychlorinated biphenyls and risk of myocardial infarction in men—a population-based prospective cohort study. Environ Int. 2016;88:9–14.PubMedCrossRefGoogle Scholar
  55. 55.
    Bergkvist C, et al. Dietary exposure to polychlorinated biphenyls is associated with increased risk of stroke in women. J Intern Med. 2014;276(3):248–59.PubMedCrossRefGoogle Scholar
  56. 56.
    Perkins JT, et al. Polychlorinated biphenyls and links to cardiovascular disease. Environ Sci Pollut Res Int. 2016;23(3):2160–72.PubMedCrossRefGoogle Scholar
  57. 57.
    Osius N, et al. Exposure to polychlorinated biphenyls and levels of thyroid hormones in children. Environ Health Perspect. 1999;107(10):843–9.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Koopman-Esseboom C, et al. Effects of polychlorinated biphenyl/dioxin exposure and feeding type on infants’ mental and psychomotor development. Pediatrics. 1996;97(5):700–6.PubMedGoogle Scholar
  59. 59.
    Parham F, et al. Adverse effects in risk assessment: modeling polychlorinated biphenyls and thyroid hormone disruption outcomes in animals and humans. Environ Res. 2012;116:74–84.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rylander L, Rignell-Hydbom A, Hagmar L. A cross-sectional study of the association between persistent organochlorine pollutants and diabetes. Environ Health. 2005;4:28.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Crinnion WJ. Polychlorinated biphenyls: persistent pollutants with immunological, neurological, and endocrinological consequences. Altern Med Rev. 2011;16(1):5–13.PubMedGoogle Scholar
  62. 62.
    Ziegler S, et al. Accelerated telomere shortening in peripheral blood lymphocytes after occupational polychlorinated biphenyls exposure. Arch Toxicol. 2017;91(1):289–300.PubMedCrossRefGoogle Scholar
  63. 63.
    Davis D, Safe S. Immunosuppressive activities of polychlorinated biphenyls in C57BL/6N mice: structure-activity relationships as Ah receptor agonists and partial antagonists. Toxicology. 1990;63(1):97–111.PubMedCrossRefGoogle Scholar
  64. 64.
    Meeker JD, Hauser R. Exposure to polychlorinated biphenyls (PCBs) and male reproduction. Syst Biol Reprod Med. 2010;56(2):122–31.PubMedCrossRefGoogle Scholar
  65. 65.
    Tsuji M, et al. Polychlorinated biphenyls (PCBs) decrease the placental syncytiotrophoblast volume and increase Placental Growth Factor (PlGF) in the placenta of normal pregnancy. Placenta. 2013;34(7):619–23.PubMedCrossRefGoogle Scholar
  66. 66.
    Beischlag TV, et al. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr. 2008;18(3):207–50.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Lindsey S, Papoutsakis ET. The evolving role of the aryl hydrocarbon receptor (AHR) in the normophysiology of hematopoiesis. Stem Cell Rev. 2012;8(4):1223–35.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Lawal AO. Air particulate matter induced oxidative stress and inflammation in cardiovascular disease and atherosclerosis: the role of Nrf2 and AhR-mediated pathways. Toxicol Lett. 2017;270:88–95.PubMedCrossRefGoogle Scholar
  69. 69.
    Garcia-Lara L, et al. Absence of aryl hydrocarbon receptors increases endogenous kynurenic acid levels and protects mouse brain against excitotoxic insult and oxidative stress. J Neurosci Res. 2015;93(9):1423–33.PubMedCrossRefGoogle Scholar
  70. 70.
    Vogel CF, et al. Cross-talk between aryl hydrocarbon receptor and the inflammatory response: a role for nuclear factor-kappaB. J Biol Chem. 2014;289(3):1866–75.PubMedCrossRefGoogle Scholar
  71. 71.
    Liu D, Perkins JT, Hennig B. EGCG prevents PCB-126-induced endothelial cell inflammation via epigenetic modifications of NF-kappaB target genes in human endothelial cells. J Nutr Biochem. 2016;28:164–70.PubMedCrossRefGoogle Scholar
  72. 72.
    Liu D, et al. Exposure to coplanar PCBs induces endothelial cell inflammation through epigenetic regulation of NF-kappaB subunit p65. Toxicol Appl Pharmacol. 2015;289(3):457–65.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Wahlang B, et al. Polychlorinated biphenyl exposure alters the expression profile of microRNAs associated with vascular diseases. Toxicol in Vitro. 2016;35:180–7.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hardesty JE, Wahlang B, Falkner KC, Clair HB, Clark BJ, Ceresa BP, et al. Polychlorinated biphenyls disrupt hepatic epidermal growth factor receptor signaling. Xenobiotica. 2017;47(9):807–20.Google Scholar
  75. 75.
    Saleem TSM, Basha SD. Red wine: a drink to your heart. J Cardiovasc Dis Res. 2010;1(4):171–6.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Sood PK, Nahar U, Nehru B. Curcumin attenuates aluminum-induced oxidative stress and mitochondrial dysfunction in rat brain. Neurotox Res. 2011;20(4):351–61.PubMedCrossRefGoogle Scholar
  77. 77.
    Tapia E, et al. Curcumin prevents maleate-induced nephrotoxicity: relation to hemodynamic alterations, oxidative stress, mitochondrial oxygen consumption and activity of respiratory complex I. Free Radic Res. 2014;48(11):1342–54.PubMedCrossRefGoogle Scholar
  78. 78.
    Kuo JJ, et al. Positive effect of curcumin on inflammation and mitochondrial dysfunction in obese mice with liver steatosis. Int J Mol Med. 2012;30(3):673–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Ringman J, et al. Oral curcumin for Alzheimer’s disease: tolerability and efficacy in a 24-week randomized, double blind, placebo-controlled study. Alzheimers Res Ther. 2012;4(5):43.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Leermakers ET, et al. The effects of lutein on cardiometabolic health across the life course: a systematic review and meta-analysis. Am J Clin Nutr. 2016;103(2):481–94.PubMedCrossRefGoogle Scholar
  81. 81.
    Ng TP, et al. Dietary and supplemental antioxidant and anti-inflammatory nutrient intakes and pulmonary function. Public Health Nutr. 2014;17(9):2081–6.PubMedCrossRefGoogle Scholar
  82. 82.
    Wood AD, et al. Patterns of dietary intake and serum carotenoid and tocopherol status are associated with biomarkers of chronic low-grade systemic inflammation and cardiovascular risk. Br J Nutr. 2014;112(8):1341–52.PubMedCrossRefGoogle Scholar
  83. 83.
    De S, et al. PCB congener specific oxidative stress response by microarray analysis using human liver cell line. Environ Int. 2010;36(8):907–17.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ramadass P, et al. Dietary flavonoids modulate PCB-induced oxidative stress, CYP1A1 induction, and AhR-DNA binding activity in vascular endothelial cells. Toxicol Sci. 2003;76(1):212–9.PubMedCrossRefGoogle Scholar
  85. 85.
    Bandiera SM. Cytochrome P450 enzymes as biomarkers of PCB exposure and modulators of toxicity, in PCBs: recent advances in environmental toxicology and health effects, In: Hansen Larry G, Robertson Larry W, Editors. Lexington: The University Press of Kentucky; 2001.Google Scholar
  86. 86.
    Gutowski M, Kowalczyk S. A study of free radical chemistry: their role and pathophysiological significance. Acta Biochim Pol. 2013;60(1):1–16.PubMedGoogle Scholar
  87. 87.
    Scibior D, Czeczot H. Catalase: structure, properties, functions. Postepy Hig Med Dosw (Online). 2006;60:170–80.Google Scholar
  88. 88.
    Góth L. A simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta. 1991;196(2–3):143–51.PubMedCrossRefGoogle Scholar
  89. 89.
    Rhee SG, et al. Peroxiredoxin functions as a peroxidase and a regulator and sensor of local peroxides. J Biol Chem. 2012;287(7):4403–10.PubMedCrossRefGoogle Scholar
  90. 90.
    Gupta P, Lakes A, Dziubla T. Chapter one—a free radical primer, in Oxidative stress and biomaterials. Cambridge: Academic Press; 2016. p. 1–33.Google Scholar
  91. 91.
    Pietta PG. Flavonoids as antioxidants. J Nat Prod. 2000;63(7):1035–42.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhang YMC. Protective effect of quercetin on Aroclor 1254-induced oxidative damage in cultured chicken spermatogonial cells. Toxicol Sci. 2005;88(2):545–50.PubMedCrossRefGoogle Scholar
  93. 93.
    Kris-Etherton PM, et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med. 2002;113(9, Supplement 2):71–88.CrossRefGoogle Scholar
  94. 94.
    Somparn P, et al. Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull. 2007;30(1):74–8.PubMedCrossRefGoogle Scholar
  95. 95.
    Nakamura Y, et al. Inhibitory effects of curcumin and tetrahydrocurcuminoids on the tumor promoter-induced reactive oxygen species generation in leukocytes in vitro and in vivo. Jpn J Cancer Res. 1998;89(4):361–70.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007;595:105–25.PubMedCrossRefGoogle Scholar
  97. 97.
    Lin J, et al. Curcumin inhibits gene expression of receptor for advanced glycation end-products (RAGE) in hepatic stellate cells in vitro by elevating PPARγ activity and attenuating oxidative stress. Br J Pharmacol. 2012;166(8):2212–27.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Perry MC, et al. Curcumin inhibits tumor growth and angiogenesis in glioblastoma xenografts. Mol Nutr Food Res. 2010;54(8):1192–201.PubMedGoogle Scholar
  99. 99.
    Niu T, et al. Inhibition of autophagy enhances curcumin united light irradiation-induced oxidative stress and tumor growth suppression in human melanoma cells. Sci Rep. 2016;6:31383.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Beatty S, et al. The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 2000;45(2):115–34.PubMedCrossRefGoogle Scholar
  101. 101.
    Kook D, et al. The protective effect of quercetin against oxidative stress in the human RPE in vitro. Invest Ophthalmol Vis Sci. 2008;49(4):1712–20.PubMedCrossRefGoogle Scholar
  102. 102.
    Choi YJ, et al. Quercetin blocks caveolae-dependent proinflammatory responses induced by coplanar PCBs. Environ Int. 2010;36(8):931–4.PubMedCrossRefGoogle Scholar
  103. 103.
    D’Alessio A, et al. Caveolae participate in tumor necrosis factor receptor 1 signaling and internalization in a human endothelial cell line. Am J Pathol. 2005;166(4):1273–82.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Selvakumar K, et al. Protective role of quercetin on PCBs-induced oxidative stress and apoptosis in hippocampus of adult rats. Neurochem Res. 2012;37(4):708–21.PubMedCrossRefGoogle Scholar
  105. 105.
    Saw CLL, et al. The berry constituents quercetin, kaempferol, and pterostilbene synergistically attenuate reactive oxygen species: involvement of the Nrf2-ARE signaling pathway. Food Chem Toxicol. 2014;72:303–11.PubMedCrossRefGoogle Scholar
  106. 106.
    Fraga CG, et al. Basic biochemical mechanisms behind the health benefits of polyphenols. Mol Asp Med. 2010;31(6):435–45.CrossRefGoogle Scholar
  107. 107.
    Halliwell B. Are polyphenols antioxidants or pro-oxidants? What do we learn from cell culture and in vivo studies? Arch Biochem Biophys. 2008;476(2):107–12.PubMedCrossRefGoogle Scholar
  108. 108.
    Costa LG, et al. Mechanisms of neuroprotection by quercetin: counteracting oxidative stress and more. Oxidative Med Cell Longev. 2016;2016:10.Google Scholar
  109. 109.
    Shih AY, et al. Induction of the Nrf2-driven antioxidant response confers neuroprotection during mitochondrial stress in vivo. J Biol Chem. 2005;280(24):22925–36.PubMedCrossRefGoogle Scholar
  110. 110.
    Gan L, Johnson JA. Oxidative damage and the Nrf2-ARE pathway in neurodegenerative diseases. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2014;1842(8):1208–18.CrossRefGoogle Scholar
  111. 111.
    Giordano G, et al. Paraoxonase 2 (PON2) in the mouse central nervous system: a neuroprotective role? Toxicol Appl Pharmacol. 2011;256(3):369–78.PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Costa LG, et al. Modulation of paraoxonase 2 (PON2) in mouse brain by the polyphenol quercetin: a mechanism of neuroprotection? Neurochem Res. 2013;38(9):1809–18.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Chang Y-F, et al. Quercetin induces oxidative stress and potentiates the apoptotic action of 2-methoxyestradiol in human hepatoma cells. Nutr Cancer. 2009;61(5):735–45.PubMedCrossRefGoogle Scholar
  114. 114.
    Tokarz P, Kaarniranta K, Blasiak J. Role of antioxidant enzymes and small molecular weight antioxidants in the pathogenesis of age-related macular degeneration (AMD). Biogerontology. 2013;14(5):461–82.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Singh U, Devaraj S, Jialal I. Vitamin E, oxidative stress, and inflammation. Annu Rev Nutr. 2005;25:151–74.PubMedCrossRefGoogle Scholar
  116. 116.
    Kinnula VL, Crapo JD. Superoxide dismutases in the lung and human lung diseases. Am J Respir Crit Care Med. 2003;167(12):1600–19.PubMedCrossRefGoogle Scholar
  117. 117.
    Kinnula VL. Production and degradation of oxygen metabolites during inflammatory states in the human lung. Curr Drug Targets Inflamm Allergy. 2005;4(4):465–70.PubMedCrossRefGoogle Scholar
  118. 118.
    Kirkman HN, et al. Mechanisms of protection of catalase by NADPH. Kinetics and stoichiometry. J Biol Chem. 1999;274(20):13908–14.PubMedCrossRefGoogle Scholar
  119. 119.
    Flohe L. Glutathione peroxidase. Basic Life Sci. 1988;49:663–8.PubMedGoogle Scholar
  120. 120.
    Comhair SA, et al. Extracellular glutathione peroxidase induction in asthmatic lungs: evidence for redox regulation of expression in human airway epithelial cells. FASEB J. 2001;15(1):70–8.PubMedCrossRefGoogle Scholar
  121. 121.
    Lu J, Holmgren A. The thioredoxin antioxidant system. Free Radic Biol Med. 2014;66:75–87.PubMedCrossRefGoogle Scholar
  122. 122.
    Arthur JR. The glutathione peroxidases. Cell Mol Life Sci. 2000;57(13–14):1825–35.PubMedGoogle Scholar
  123. 123.
    Ladner JE, et al. Parallel evolutionary pathways for glutathione transferases: structure and mechanism of the mitochondrial class kappa enzyme rGSTK1-1. Biochemistry. 2004;43(2):352–61.PubMedCrossRefGoogle Scholar
  124. 124.
    Robinson A, et al. Modelling and bioinformatics studies of the human kappa-class glutathione transferase predict a novel third glutathione transferase family with similarity to prokaryotic 2-hydroxychromene-2-carboxylate isomerases. Biochem J. 2004;379(Pt 3):541–52.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    White E, Shannon JS, Patterson RE. Relationship between vitamin and calcium supplement use and colon cancer. Cancer Epidemiol Biomark Prev. 1997;6(10):769–74.Google Scholar
  126. 126.
    Bunker VW. Free radicals, antioxidants and ageing. Med Lab Sci. 1992;49(4):299–312.PubMedGoogle Scholar
  127. 127.
    Mezzetti A, et al. Systemic oxidative stress and its relationship with age and illness. Associazione Medica "Sabin". J Am Geriatr Soc. 1996;44(7):823–7.PubMedCrossRefGoogle Scholar
  128. 128.
    Masella R, et al. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem. 2005;16(10):577–86.PubMedCrossRefGoogle Scholar
  129. 129.
    Niles RM. Signaling pathways in retinoid chemoprevention and treatment of cancer. Mutat Res. 2004;555(1–2):81–96.PubMedGoogle Scholar
  130. 130.
    Donato LJ, Noy N. Suppression of mammary carcinoma growth by retinoic acid: proapoptotic genes are targets for retinoic acid receptor and cellular retinoic acid-binding protein II signaling. Cancer Res. 2005;65(18):8193–9.PubMedCrossRefGoogle Scholar
  131. 131.
    Lobo V, et al. Free radicals, antioxidants and functional foods: impact on human health. Pharmacogn Rev. 2010;4(8):118–26.PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Reiter RJ, et al. Melatonin as an antioxidant: biochemical mechanisms and pathophysiological implications in humans. Acta Biochim Pol. 2003;50(4):1129–46.PubMedGoogle Scholar
  133. 133.
    El-Agamey A, et al. Carotenoid radical chemistry and antioxidant/pro-oxidant properties. Arch Biochem Biophys. 2004;430(1):37–48.PubMedCrossRefGoogle Scholar
  134. 134.
    Rice-Evans CA, et al. Why do we expect carotenoids to be antioxidants in vivo? Free Radic Res. 1997;26(4):381–98.PubMedCrossRefGoogle Scholar
  135. 135.
    Fang MZ, et al. Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res. 2003;63(22):7563–70.PubMedGoogle Scholar
  136. 136.
    Fang JY, et al. Transdermal delivery of tea catechins and theophylline enhanced by terpenes: a mechanistic study. Biol Pharm Bull. 2007;30(2):343–9.PubMedCrossRefGoogle Scholar
  137. 137.
    Boots AW, Haenen GR, Bast A. Health effects of quercetin: from antioxidant to nutraceutical. Eur J Pharmacol. 2008;585(2–3):325–37.PubMedCrossRefGoogle Scholar
  138. 138.
    Thangapazham RL, Sharma A, Maheshwari RK. Beneficial role of curcumin in skin diseases. Adv Exp Med Biol. 2007;595:343–57.PubMedCrossRefGoogle Scholar
  139. 139.
    Madhyastha R, et al. Curcumin facilitates fibrinolysis and cellular migration during wound healing by modulating urokinase plasminogen activator expression. Pathophysiol Haemost Thromb. 2010;37(2–4):59–66.PubMedGoogle Scholar
  140. 140.
    Stojanović S, Sprinz H, Brede O. Efficiency and mechanism of the antioxidant action of trans-resveratrol and its analogues in the radical liposome oxidation. Arch Biochem Biophys. 2001;391(1):79–89.PubMedCrossRefGoogle Scholar
  141. 141.
    Aruoma OI, et al. The antioxidant action of N-acetylcysteine: its reaction with hydrogen peroxide, hydroxyl radical, superoxide, and hypochlorous acid. Free Radic Biol Med. 1989;6(6):593–7.PubMedCrossRefGoogle Scholar
  142. 142.
    Dodd S, et al. N-acetylcysteine for antioxidant therapy: pharmacology and clinical utility. Expert Opin Biol Ther. 2008;8(12):1955–62.PubMedCrossRefGoogle Scholar
  143. 143.
    Smith RAJ, Murphy MP. Animal and human studies with the mitochondria-targeted antioxidant MitoQ. Ann N Y Acad Sci. 2010;1201(1):96–103.PubMedCrossRefGoogle Scholar
  144. 144.
    D'Archivio M, et al. Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita. 2007;43(4):348–61.PubMedGoogle Scholar
  145. 145.
    Setchell KD, et al. Comparing the pharmacokinetics of daidzein and genistein with the use of 13C-labeled tracers in premenopausal women. Am J Clin Nutr. 2003;77(2):411–9.PubMedCrossRefGoogle Scholar
  146. 146.
    Walle T. Absorption and metabolism of flavonoids. Free Radic Biol Med. 2004;36(7):829–37.PubMedCrossRefGoogle Scholar
  147. 147.
    Rechner AR, et al. Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med. 2004;36(2):212–25.PubMedCrossRefGoogle Scholar
  148. 148.
    Wenzel E, Somoza V. Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res. 2005;49(5):472–81.PubMedCrossRefGoogle Scholar
  149. 149.
    Okada K, et al. Curcumin and especially tetrahydrocurcumin ameliorate oxidative stress-induced renal injury in mice. J Nutr. 2001;131(8):2090–5.PubMedCrossRefGoogle Scholar
  150. 150.
    Lai CS, et al. Tetrahydrocurcumin is more effective than curcumin in preventing azoxymethane-induced colon carcinogenesis. Mol Nutr Food Res. 2011;55(12):1819–28.PubMedCrossRefGoogle Scholar
  151. 151.
    Ireson C, et al. Characterization of metabolites of the chemopreventive agent curcumin in human and rat hepatocytes and in the rat in vivo, and evaluation of their ability to inhibit phorbol ester-induced prostaglandin E2 production. Cancer Res. 2001;61(3):1058–64.PubMedGoogle Scholar
  152. 152.
    Murugesan P, Muthusamy T, Balasubramanian K, Arunakaran J. Studies on the protective role of vitamin C and E against polychlorinated biphenyl (Aroclor 1254)—induced oxidative damage in Leydig cells. Free Radic Res. 2005;39(11):1259–72.Google Scholar
  153. 153.
    Dziubla TD, Muzykantov VR. Synthetic carriers for vascular delivery of protein therapeutics. Biotechnol Genet Eng Rev. 2006;22:267–98.PubMedCrossRefGoogle Scholar
  154. 154.
    Moghimi SM, Szebeni J. Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog Lipid Res. 2003;42(6):463–78.PubMedCrossRefGoogle Scholar
  155. 155.
    Ulrich AS. Biophysical aspects of using liposomes as delivery vehicles. Biosci Rep. 2002;22(2):129–50.PubMedCrossRefGoogle Scholar
  156. 156.
    Yoon W. Embolic agents used for bronchial artery embolisation in massive haemoptysis. Expert Opin Pharmacother. 2004;5(2):361–7.PubMedCrossRefGoogle Scholar
  157. 157.
    Photos PJ, et al. Polymer vesicles in vivo: correlations with PEG molecular weight. J Control Release. 2003;90(3):323–34.PubMedCrossRefGoogle Scholar
  158. 158.
    Abuchowski A, et al. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem. 1977;252(11):3582–6.PubMedGoogle Scholar
  159. 159.
    Dziubla TD, Muro S, Muzykantov VR, Koval M. Nanoscale antioxidant therapeutics. In: Singh KK, editor. Oxidative stress, disease and cancer. London: Imperial College Press; 2006. p. 17–42.Google Scholar
  160. 160.
    Loguercio C, Federico A. Oxidative stress in viral and alcoholic hepatitis. Free Radic Biol Med. 2003;34(1):1–10.PubMedCrossRefGoogle Scholar
  161. 161.
    Feher J, Lengyel G, Blazovics A. Oxidative stress in the liver and biliary tract diseases. Scand J Gastroenterol Suppl. 1998;228:38–46.PubMedCrossRefGoogle Scholar
  162. 162.
    Stylianopoulos T. EPR-effect: utilizing size-dependent nanoparticle delivery to solid tumors. Ther Deliv. 2013;4(4):421–3.PubMedCrossRefGoogle Scholar
  163. 163.
    Akbarzadeh A, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102–2.Google Scholar
  164. 164.
    Hood ED, Shuvaev VV, Muzykantov VR. Targeted antioxidant interventions for vascular pathologies. In: Dziubla TD, Butterfield DA, editors. Oxidative stress and biomaterials. Amsterdam: Academic Press; 2016. p. 323–349.Google Scholar
  165. 165.
    Suntres ZE. Liposomal antioxidants for protection against oxidant-induced damage. J Toxicol. 2011;2011:16.CrossRefGoogle Scholar
  166. 166.
    Mitsopoulos P, et al. Effectiveness of liposomal-N-acetylcysteine against LPS-induced lung injuries in rodents. Int J Pharm. 2008;363(1–2):106–11.PubMedCrossRefGoogle Scholar
  167. 167.
    Alipour M, et al. Prophylactic effect of liposomal N-acetylcysteine against LPS-induced liver injuries. J Endotoxin Res. 2007;13(5):297–304.PubMedCrossRefGoogle Scholar
  168. 168.
    Fan J, et al. Liposomal antioxidants provide prolonged protection against acute respiratory distress syndrome. Surgery. 2000;128(2):332–8.PubMedCrossRefGoogle Scholar
  169. 169.
    Mukhopadhyay S, et al. Role of MAPK/AP-1 signaling pathway in the protection of CEES-induced lung injury by antioxidant liposome. Toxicology. 2009;261(3):143–51.PubMedCrossRefGoogle Scholar
  170. 170.
    Alipour M, et al. Therapeutic effect of liposomal-N-acetylcysteine against acetaminophen-induced hepatotoxicity. J Drug Target. 2013;21(5):466–73.PubMedCrossRefGoogle Scholar
  171. 171.
    Takahashi M, et al. Evaluation of an oral carrier system in rats: bioavailability and antioxidant properties of liposome-encapsulated curcumin. J Agric Food Chem. 2009;57(19):9141–6.PubMedCrossRefGoogle Scholar
  172. 172.
    Thangapazham RL, et al. Evaluation of a nanotechnology-based carrier for delivery of curcumin in prostate cancer cells. Int J Oncol. 2008;32(5):1119–23.PubMedPubMedCentralGoogle Scholar
  173. 173.
    Anand P, et al. Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol. 2008;76(11):1590–611.PubMedCrossRefGoogle Scholar
  174. 174.
    Kumar A, Ahuja A, Ali J, Baboota S. Conundrum and therapeutic potential of curcumin in drug delivery. Crit Rev Ther Drug Carrier Syst. 2010;27(4):279–312.Google Scholar
  175. 175.
    Padhye S, et al. Perspectives on chemopreventive and therapeutic potential of curcumin analogs in medicinal chemistry. Mini Rev Med Chem. 2010;10(5):372–87.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Mandal AK, et al. Hepatoprotective activity of liposomal flavonoid against arsenite-induced liver fibrosis. J Pharmacol Exp Ther. 2007;320(3):994–1001.PubMedCrossRefGoogle Scholar
  177. 177.
    Soloviev A, et al. Arrhythmogenic peroxynitrite-induced alterations in mammalian heart contractility and its prevention with quercetin-filled liposomes. Cardiovasc Toxicol. 2002;2(2):129–39.PubMedCrossRefGoogle Scholar
  178. 178.
    Yuan Z-p, et al. Liposomal quercetin efficiently suppresses growth of solid tumors in murine models. Clin Cancer Res. 2006;12(10):3193–9.PubMedCrossRefGoogle Scholar
  179. 179.
    Ghosh D, et al. Quercetin in vesicular delivery systems: evaluation in combating arsenic-induced acute liver toxicity associated gene expression in rat model. Chem Biol Interact. 2010;186(1):61–71.PubMedCrossRefGoogle Scholar
  180. 180.
    Hung CF, et al. Development and evaluation of emulsion-liposome blends for resveratrol delivery. J Nanosci Nanotechnol. 2006;6(9–10):2950–8.PubMedCrossRefGoogle Scholar
  181. 181.
    Narayanan NK, et al. Liposome encapsulation of curcumin and resveratrol in combination reduces prostate cancer incidence in PTEN knockout mice. Int J Cancer. 2009;125(1):1–8.PubMedCrossRefGoogle Scholar
  182. 182.
    Tanswell AK, Freeman BA. Liposome-entrapped antioxidant enzymes prevent lethal O2 toxicity in the newborn rat. J Appl Physiol (1985). 1987;63(1):347–52.CrossRefGoogle Scholar
  183. 183.
    Chan PH, Longar S, Fishman RA. Protective effects of liposome-entrapped superoxide dismutase on posttraumatic brain edema. Ann Neurol. 1987;21(6):540–7.PubMedCrossRefGoogle Scholar
  184. 184.
    Imaizumi S, et al. Liposome-entrapped superoxide dismutase ameliorates infarct volume in focal cerebral ischaemia. Acta Neurochir Suppl (Wien). 1990;51:236–8.Google Scholar
  185. 185.
    Laursen JB, et al. Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation. 1997;95(3):588–93.PubMedCrossRefGoogle Scholar
  186. 186.
    Vorauer-Uhl K, et al. Topically applied liposome encapsulated superoxide dismutase reduces postburn wound size and edema formation. Eur J Pharm Sci. 2001;14(1):63–7.PubMedCrossRefGoogle Scholar
  187. 187.
    Delanian S, et al. Successful treatment of radiation-induced fibrosis using liposomal Cu/Zn superoxide dismutase: clinical trial. Radiother Oncol. 1994;32(1):12–20.PubMedCrossRefGoogle Scholar
  188. 188.
    Baillet F, et al. Treatment of radiofibrosis with liposomal superoxide dismutase. Preliminary results of 50 cases. Free Radic Res Commun. 1986;1(6):387–94.PubMedCrossRefGoogle Scholar
  189. 189.
    Giovagnoli S, et al. Long-term delivery of superoxide dismutase and catalase entrapped in poly(lactide-co-glycolide) microspheres: in vitro effects on isolated neonatal porcine pancreatic cell clusters. J Control Release. 2005;107(1):65–77.PubMedCrossRefGoogle Scholar
  190. 190.
    Sankar P, et al. Oral nanoparticulate curcumin combating arsenic-induced oxidative damage in kidney and brain of rats. Toxicol Ind Health. 2016;32(3):410–21.PubMedCrossRefGoogle Scholar
  191. 191.
    Simón-Yarza T, et al. Functional benefits of PLGA particulates carrying VEGF and CoQ10 in an animal of myocardial ischemia. Int J Pharm. 2013;454(2):784–90.PubMedCrossRefGoogle Scholar
  192. 192.
    Ankola DD, et al. Development of potent oral nanoparticulate formulation of coenzyme Q10 for treatment of hypertension: can the simple nutritional supplements be used as first line therapeutic agents for prophylaxis/therapy? Eur J Pharm Biopharm. 2007;67(2):361–9.PubMedCrossRefGoogle Scholar
  193. 193.
    Taylor MS, et al. Six bioabsorbable polymers: in vitro acute toxicity of accumulated degradation products. J Appl Biomater. 1994;5(2):151–7.PubMedCrossRefGoogle Scholar
  194. 194.
    Seshadri G, et al. The delivery of superoxide dismutase encapsulated in polyketal microparticles to rat myocardium and protection from myocardial ischemia-reperfusion injury. Biomaterials. 2010;31(6):1372–9.PubMedCrossRefGoogle Scholar
  195. 195.
    Fiore VF, et al. Polyketal microparticles for therapeutic delivery to the lung. Biomaterials. 2010;31(5):810–7.PubMedCrossRefGoogle Scholar
  196. 196.
    Dziubla TD, Karim A, Muzykantov VR. Polymer nanocarriers protecting active enzyme cargo against proteolysis. J Control Release. 2005;102(2):427–39.PubMedCrossRefGoogle Scholar
  197. 197.
    Chung JE, et al. Self-assembled micellar nanocomplexes comprising green tea catechin derivatives and protein drugs for cancer therapy. Nat Nanotechnol. 2014;9(11):907–12.PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Jain AK, Thanki K, Jain S. Co-encapsulation of tamoxifen and quercetin in polymeric nanoparticles: implications on oral bioavailability, antitumor efficacy, and drug-induced toxicity. Mol Pharm. 2013;10(9):3459–74.PubMedCrossRefGoogle Scholar
  199. 199.
    Kumar V, Prud'homme RK. Thermodynamic limits on drug loading in nanoparticle cores. J Pharm Sci. 2008;97(11):4904–14.PubMedCrossRefGoogle Scholar
  200. 200.
    Gref R, et al. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600–3.PubMedCrossRefGoogle Scholar
  201. 201.
    Wilczewska AZ, et al. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020–37.PubMedCrossRefGoogle Scholar
  202. 202.
    Ettmayer P, et al. Lessons learned from marketed and investigational prodrugs. J Med Chem. 2004;47(10):2393–404.PubMedCrossRefGoogle Scholar
  203. 203.
    Rautio J, et al. Prodrugs: design and clinical applications. Nat Rev Drug Discov. 2008;7(3):255–70.PubMedCrossRefGoogle Scholar
  204. 204.
    Beaumont K, et al. Design of ester prodrugs to enhance oral absorption of poorly permeable compounds: challenges to the discovery scientist. Curr Drug Metab. 2003;4(6):461–85.PubMedCrossRefGoogle Scholar
  205. 205.
    Taylor MD. Improved passive oral drug delivery via prodrugs. Adv Drug Deliv Rev. 1996;19(2):131–48.CrossRefGoogle Scholar
  206. 206.
    Wattamwar PP, et al. Antioxidant activity of degradable polymer poly(trolox ester) to suppress oxidative stress injury in the cells. Adv Funct Mater. 2010;20(1):147–54.CrossRefGoogle Scholar
  207. 207.
    Wattamwar PP, et al. Tuning of the pro-oxidant and antioxidant activity of trolox through the controlled release from biodegradable poly(trolox ester) polymers. J Biomed Mater Res A. 2011;99(2):184–91.PubMedCrossRefGoogle Scholar
  208. 208.
    Wattamwar PP, et al. Synthesis and characterization of poly(antioxidant β-amino esters) for controlled release of polyphenolic antioxidants. Acta Biomater. 2012;8(7):2529–37.PubMedCrossRefGoogle Scholar
  209. 209.
    Gupta P, et al. Quercetin conjugated poly(beta-amino esters) nanogels for the treatment of cellular oxidative stress. Acta Biomater. 2015;27:194–204.PubMedPubMedCentralCrossRefGoogle Scholar
  210. 210.
    Gupta P, et al. Controlled curcumin release via conjugation into PBAE nanogels enhances mitochondrial protection against oxidative stress. Int J Pharm. 2016;511(2):1012–21.PubMedPubMedCentralCrossRefGoogle Scholar
  211. 211.
    Dziubla TD, et al. Endothelial targeting of semi-permeable polymer nanocarriers for enzyme therapies. Biomaterials. 2008;29(2):215–27.PubMedCrossRefGoogle Scholar
  212. 212.
    Howard MD, et al. Targeting to endothelial cells augments the protective effect of novel dual bioactive antioxidant/anti-inflammatory nanoparticles. Mol Pharm. 2014;11(7):2262–70.PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Hood ED, et al. Endothelial targeting of nanocarriers loaded with antioxidant enzymes for protection against vascular oxidative stress and inflammation. Biomaterials. 2014;35(11):3708–15.PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Yun X, et al. Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury. J Cereb Blood Flow Metab. 2013;33(4):583–92.PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    Cochran DB, et al. Suppressing iron oxide nanoparticle toxicity by vascular targeted antioxidant polymer nanoparticles. Biomaterials. 2013;34(37):9615–22.PubMedCrossRefGoogle Scholar
  216. 216.
    Maradana MR, Thomas R, O’Sullivan BJ. Targeted delivery of curcumin for treating type 2 diabetes. Mol Nutr Food Res. 2013;57(9):1550–6.PubMedCrossRefGoogle Scholar
  217. 217.
    Sun M, et al. Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine (Lond). 2012;7(7):1085–100.CrossRefGoogle Scholar
  218. 218.
    Mohanty C, Das M, Sahoo SK. Emerging role of nanocarriers to increase the solubility and bioavailability of curcumin. Expert Opin Drug Deliv. 2012;9(11):1347–64.PubMedCrossRefGoogle Scholar
  219. 219.
    Lao CD, et al. Dose escalation of a curcuminoid formulation. BMC Complement Altern Med. 2006;6(1):10.PubMedPubMedCentralCrossRefGoogle Scholar
  220. 220.
    Anand P, et al. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18.PubMedCrossRefGoogle Scholar
  221. 221.
    Appendino G, et al. Potential role of curcumin phytosome (Meriva) in controlling the evolution of diabetic microangiopathy. A pilot study. Panminerva Med. 2011;53(3 Suppl 1):43–9.PubMedGoogle Scholar
  222. 222.
    Teskač K, Kristl J. The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol. Int J Pharm. 2010;390(1):61–9.PubMedCrossRefGoogle Scholar
  223. 223.
    Barnard ML, Baker RR, Matalon S. Mitigation of oxidant injury to lung microvasculature by intratracheal instillation of antioxidant enzymes. Am J Phys. 1993;265(4 Pt 1):L340–5.Google Scholar
  224. 224.
    Walther FJ, David-Cu R, Lopez SL. Antioxidant-surfactant liposomes mitigate hyperoxic lung injury in premature rabbits. Am J Phys. 1995;269(5 Pt 1):L613–7.Google Scholar
  225. 225.
    Neves AR, Queiroz JF, Reis S. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein E. J Nanobiotechnol. 2016;14(1):27.CrossRefGoogle Scholar
  226. 226.
    Yekollu SK, Thomas R, O’Sullivan B. Targeting curcusomes to inflammatory dendritic cells inhibits NF-κB and improves insulin resistance in obese mice. Diabetes. 2011;60(11):2928–38.PubMedPubMedCentralCrossRefGoogle Scholar
  227. 227.
    Zhou N, et al. Galactosylated chitosan-polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin. Carbohydr Polym. 2013;94(1):420–9.PubMedCrossRefGoogle Scholar
  228. 228.
    Abdel-Wahhab MA, et al. Curcumin nanoparticles loaded hydrogels protects against aflatoxin B1-induced genotoxicity in rat liver. Food Chem Toxicol. 2016;94:159–71.PubMedCrossRefGoogle Scholar
  229. 229.
    Storka A, et al. Safety, tolerability and pharmacokinetics of liposomal curcumin in healthy humans. Int J Clin Pharmacol Ther. 2015;53(1):54–65.PubMedCrossRefGoogle Scholar
  230. 230. A phase IB dose escalation study of lipocurc in patients with cancer. 2017, National Library of Medicine Bethesda (MD).
  231. 231.
    Zeng L, et al. Preparation and characterization of (−)-Epigallocatechin-3-gallate (EGCG)-loaded nanoparticles and their inhibitory effects on Human breast cancer MCF-7 cells. Sci Rep. 2017;7:45521.PubMedPubMedCentralCrossRefGoogle Scholar
  232. 232.
    Hu B, et al. Nanochemoprevention by encapsulation of (−)-epigallocatechin-3-gallate with bioactive peptides/chitosan nanoparticles for enhancement of its bioavailability. Chem Commun (Camb). 2012;48(18):2421–3.CrossRefGoogle Scholar
  233. 233.
    Pang X, et al. Hyaluronic acid-quercetin conjugate micelles: synthesis, characterization, in vitro and in vivo evaluation. Colloids Surf B Biointerfaces. 2014;123:778–86.PubMedCrossRefGoogle Scholar
  234. 234.
    Suk JS, et al. Rapid transport of muco-inert nanoparticles in cystic fibrosis sputum treated with N-acetyl cysteine. Nanomedicine (Lond). 2011;6(2):365–75.CrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2017

Authors and Affiliations

  • Prachi Gupta
    • 1
  • Brendan L. Thompson
    • 2
    • 3
  • Banrida Wahlang
    • 2
    • 3
  • Carolyn T. Jordan
    • 4
  • J. Zach Hilt
    • 2
    • 4
  • Bernhard Hennig
    • 2
    • 5
  • Thomas Dziubla
    • 2
    • 4
    Email author
  1. 1.Piramal Pharma SolutionsLexingtonUSA
  2. 2.Superfund Research CenterUniversity of KentuckyLexingtonUSA
  3. 3.Graduate Center for Toxicology, College of MedicineUniversity of KentuckyLexingtonUSA
  4. 4.Department of Chemical and Materials Engineering, College of EngineeringUniversity of KentuckyLexingtonUSA
  5. 5.Department of Animal and Food Sciences, College of Agriculture Food and EnvironmentUniversity of KentuckyLexingtonUSA

Personalised recommendations