Advertisement

Drug Delivery and Translational Research

, Volume 8, Issue 1, pp 1–11 | Cite as

Evaluation of the antitumor effects of vitamin K2 (menaquinone-7) nanoemulsions modified with sialic acid-cholesterol conjugate

  • Jia Shi
  • Songlei Zhou
  • Le Kang
  • Hu Ling
  • Jiepeng Chen
  • Lili Duan
  • Yanzhi Song
  • Yihui Deng
Original Article

Abstract

Numerous studies have recently shown that vitamin K2 (VK2) has antitumor effects in a variety of tumor cells, but there are few reports demonstrating antitumor effects of VK2 in vivo. The antitumor effects of VK2 in nanoemulsions are currently not known. Therefore, we sought to characterize the antitumor potential of VK2 nanoemulsions in S180 tumor cells in the present study. Furthermore, a ligand conjugate sialic acid–cholesterol, with enhanced affinity towards the membrane receptors overexpressed in tumors, was anchored on the surface of the nanoemulsions to increase VK2 distribution to the tumor tissue. VK2 was encapsulated in oil-in-water nanoemulsions, and the physical and chemical stability of the nanoemulsions were characterized during storage at 25 °C. At 25 °C, all nanoemulsions remained physically and chemically stable with little change in particle size. An in vivo study using syngeneic mice with subcutaneously established S180 tumors demonstrated that intravenous or intragastric administration of VK2 nanoemulsions significantly suppressed the tumor growth. The VK2 nanoemulsions modified with sialic acid–cholesterol conjugate showed higher tumor growth suppression than the VK2 nanoemulsions, while neither of them exhibited signs of drug toxicity. In summary, VK2 exerted effective antitumor effects in vivo, and VK2 nanoemulsions modified with sialic acid–cholesterol conjugate enhanced the antitumor activity, suggesting that these VK2 may be promising agents for the prevention or treatment of tumor in patients.

Keywords

Vitamin K2 (menaquinone-7) Nanoemulsions Sialic acid–cholesterol Antitumor effects 

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (81373334).

Compliance with ethical standards

Animal studies were performed in accordance with the Guidelines for Animal Experimentation of Shenyang Pharmaceutical University and approved by the Animal Ethics Committee of the institution.

References

  1. 1.
    Dam H. The antihæmorrhagic vitamin of the chick.: occurrence and chemical nature. Biochem J. 1935;29(6):1273–85.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Shearer MJ, Vitamin K. Lancet. 1995;345(8944):229–34.CrossRefPubMedGoogle Scholar
  3. 3.
    Mahdinia E, Demirci A, Berenjian A. Production and application of menaquinone-7 (vitamin K2): a new perspective. World J Microbiol Biotechnol. 2017;33(1):2.CrossRefPubMedGoogle Scholar
  4. 4.
    Buchanan MDGS, Melvin T, et al. Vitamin K2 (menaquinone) supplementation and its benefits in cardiovascular disease osteoporosis, and cancer. Marshall J Med. 2016;2(3):53.CrossRefGoogle Scholar
  5. 5.
    Tsukamoto Y, Ichise H, Kakuda H, Yamaguchi M. Intake of fermented soybean ( natto ) increases circulating vitamin K 2 (menaquinone-7) and γ-carboxylated osteocalcin concentration in normal individuals. J Bone Miner Metab. 2000;18(4):216–22.CrossRefPubMedGoogle Scholar
  6. 6.
    Gast GCM, Roos NMD, Sluijs I, Bots ML, Beulens JWJ, Geleijnse JM, et al. A high menaquinone intake reduces the incidence of coronary heart disease. Nutr Metab Cardiovasc Dis. 2009;19(7):504–10.CrossRefPubMedGoogle Scholar
  7. 7.
    O’Neil M. The Merck index. Merck & Co; 1989.Google Scholar
  8. 8.
    Collins MDJD. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol Rev. 1981;45(2):316–54.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Nelsestuen GL, Zytkovicz TH, Howard JB. The mode of action of vitamin K identification of γ-carboxyglutamic acid as a component of prothrombin. J Biol Chem. 1974;249(19):6347.PubMedGoogle Scholar
  10. 10.
    Villa JK, Diaz MA, Pizziolo VR, Martino HS. Effect of vitamin K in bone metabolism and vascular calcification: a review of mechanisms of action and evidences. Crit Rev Food Sci Nutr. 2016.  https://doi.org/10.1080/10408398.2016.1211616
  11. 11.
    Shea MK, Kritchevsky SB, Hsu FC, Nevitt M, Booth SL, Kwoh CK, et al. The association between vitamin K status and knee osteoarthritis features in older adults: the Health, Aging and Body Composition Study. Osteoarthr Cart. 2015;23(3):370–8.CrossRefGoogle Scholar
  12. 12.
    Ferland G. Vitamin K and the nervous system: an overview of its actions. Adv Nutr. 2012;3(2):204–12.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Allison AC. The possible role of vitamin K deficiency in the pathogenesis of Alzheimer’s disease and in augmenting brain damage associated with cardiovascular disease. Med Hypotheses. 2001;57(2):151–5.CrossRefPubMedGoogle Scholar
  14. 14.
    Vos M, Esposito G, Edirisinghe JN, Vilain S, Haddad DM, Slabbaert JR, et al. Vitamin K2 is a mitochondrial electron carrier that rescues pink1 deficiency. Science. 2012;336(6086):1306.CrossRefPubMedGoogle Scholar
  15. 15.
    Azuma KIS. Aging mechanisms. Vitamin K benefits in aging and cancer. Japan: Springer; 2015.Google Scholar
  16. 16.
    Li L, Qi Z, Qian J, Bi F, Lv J, Xu L, et al. Induction of apoptosis in hepatocellular carcinoma Smmc-7721 cells by vitamin K(2) is associated with p53 and independent of the intrinsic apoptotic pathway. Mol Cell Biochem. 2010;342(1):125–31.CrossRefPubMedGoogle Scholar
  17. 17.
    Otsuka M, Kato N, Shao RX, Hoshida Y, Ijichi H, Koike Y, et al. Vitamin K2 inhibits the growth and invasiveness of hepatocellular carcinoma cells via protein kinase A activation. Hepatology. 2004;40(1):243–51.CrossRefPubMedGoogle Scholar
  18. 18.
    Yoshida T, Miyazawa K, Kasuga I, Yokoyama T, Minemura K, Ustumi K, et al. Apoptosis induction of vitamin K2 in lung carcinoma cell lines: the possibility of vitamin K2 therapy for lung cancer. Int J Oncol. 2003;23(3):627.PubMedGoogle Scholar
  19. 19.
    Yokoyama T, Miyazawa K, Yoshida T, Ohyashiki K. Combination of vitamin K2 plus imatinib mesylate enhances induction of apoptosis in small cell lung cancer cell lines. Int J Oncol 2005;26(1):33–40.Google Scholar
  20. 20.
    Kawakita H, Tsuchida A, Miyazawa K, Naito M, Shigoka M, Kyo B, et al. Growth inhibitory effects of vitamin K2 on colon cancer cell lines via different types of cell death including autophagy and apoptosis. Int J Mol Med. 2009;23(6):709–16.PubMedGoogle Scholar
  21. 21.
    Tokita H, Tsuchida A, Miyazawa K, Ohyashiki K, Katayanagi S, Sudo H, et al. Vitamin K2-induced antitumor effects via cell-cycle arrest and apoptosis in gastric cancer cell lines. Int J Mol Med. 2006;17(2):235–43.PubMedGoogle Scholar
  22. 22.
    Kiely M, Hodgins SJ, Merrigan BA, Tormey S, Kiely PA, O'Connor EM. Real-time cell analysis of the inhibitory effect of vitamin K2 on adhesion and proliferation of breast cancer cells. Nutr Res. 2015;35(8):736.CrossRefPubMedGoogle Scholar
  23. 23.
    Duan F, Yu Y, Guan R, Xu Z, Liang H, Hong L. Vitamin K2 induces mitochondria-related apoptosis in human bladder cancer cells via ROS and JNK/p38 MAPK signal pathways. PLoS One. 2016;11(8):e0161886.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yue X, Akahira JI, Utsunomiya H, Miki Y, Takahashi N, Niikura H, et al. Steroid and xenobiotic receptor (SXR) as a possible prognostic marker in epithelial ovarian cancer. Pathol Int. 2010;60(5):400–6.CrossRefPubMedGoogle Scholar
  25. 25.
    Lamson DW, Plaza SM. The anticancer effects of vitamin K. Altern Med Rev J Clin Ther. 2003;8(3):303.Google Scholar
  26. 26.
    Nutter LM, Cheng AL, Hung HL, Hsieh RK, Ngo EO, Liu TW. Menadione: spectrum of anticancer activity and effects on nucleotide metabolism in human neoplastic cell lines. Biochem Pharmacol. 1991;41(9):1283–92.CrossRefPubMedGoogle Scholar
  27. 27.
    Kitagawa J, Hara T, Tsurumi H, Ninomiya S, Ogawa K, Adachi S, et al. Synergistic growth inhibition in HL-60 cells by the combination of acyclic retinoid and vitamin K2. J Cancer Res Clin Oncol. 2011;137(5):779–87.CrossRefPubMedGoogle Scholar
  28. 28.
    Russo I, Caroppo F, Alaibac M. Vitamins and melanoma. Cancers. 2015;7(3):1371–87.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Zhang H, Ozaki I, Hamajima H, Iwane S, Takahashi H, Kawaguchi Y, et al. Vitamin K2 augments 5-fluorouracil-induced growth inhibition of human hepatocellular carcinoma cells by inhibiting NF-κB activation. Oncol Rep. 2011;25(1):159–66.PubMedGoogle Scholar
  30. 30.
    Samykutty A, Shetty AV, Dakshinamoorthy G, Kalyanasundaram R, Zheng G, Chen A, et al. Vitamin k2, a naturally occurring menaquinone, exerts therapeutic effects on both hormone-dependent and hormone-independent prostate cancer cells. Evid Based Complement Alternat Med eCAM. 2013;2013(6):287358.PubMedGoogle Scholar
  31. 31.
    Yoshiji H, Kuriyama S, Noguchi R, Yoshii J, Ikenaka Y, Yanase K, et al. Combination of vitamin K2 and the angiotensin-converting enzyme inhibitor, perindopril, attenuates the liver enzyme-altered preneoplastic lesions in rats via angiogenesis suppression. J Hepatol. 2005;42(5):687–93.CrossRefPubMedGoogle Scholar
  32. 32.
    Yao Y, Li L, Zhang H, Jia R, Liu B, Zhao X, et al. Enhanced therapeutic efficacy of vitamin K2 by silencing BCL-2 expression in SMMC-7721 hepatocellular carcinoma cells. Oncol Lett. 2012;4(1):163–7.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Xia J, Matsuhashi S, Hamajima H, Iwane S, Takahashi H, Eguchi Y, et al. The role of PKC isoforms in the inhibition of NF-κB activation by vitamin K2 in human hepatocellular carcinoma cells. J Nutr Biochem. 2012;23(12):1668–75.CrossRefPubMedGoogle Scholar
  34. 34.
    Ogawa M, Nakai S, Deguchi A, Nonomura T, Masaki T, Uchida N, et al. Vitamins K2, K3 and K5 exert antitumor effects on established colorectal cancer in mice by inducing apoptotic death of tumor cells. Int J Oncol. 2007;31(2):323.PubMedGoogle Scholar
  35. 35.
    Habu D, Shiomi S, Tamori A, Takeda T, Tanaka T, Kubo S, et al. Role of vitamin K2 in the development of hepatocellular carcinoma in women with viral cirrhosis of the liver. JAMA. 2004;292(3):358–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Schurgers LJ, Vermeer C. Differential lipoprotein transport pathways of K-vitamins in healthy subjects. Biochim Biophys Acta. 2002;1570(1):27–32.CrossRefPubMedGoogle Scholar
  37. 37.
    Rapoport N, Nam KH, Gupta R, Gao Z, Mohan P, Payne A, et al. Ultrasound-mediated tumor imaging and nanotherapy using drug loaded, block copolymer stabilized perfluorocarbon nanoemulsions. J Control Release. 2011;153(1):4.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Meng Y, Zou C, Madiyalakan R, Woo T, Huang M, Yang X, et al. Water-soluble and biocompatible sono/photosensitizer nanoparticles for enhanced cancer therapy. Nanomedicine. 2017;5(10):1559–69.CrossRefGoogle Scholar
  39. 39.
    Zheng JS, Zheng SY, Zhang YB, Yu B, Zheng W, Yang F, et al. Sialic acid surface decoration enhances cellular uptake and apoptosis-inducing activity of selenium nanoparticles. Colloids Surf B Biointerfaces. 2011;83(1):183.CrossRefPubMedGoogle Scholar
  40. 40.
    She Z, Zhang T, Wang X, Li X, Song Y, Cheng X, et al. The anticancer efficacy of pixantrone-loaded liposomes decorated with sialic acid–octadecylamine conjugate. Biomaterials. 2014;35(19):5216–25.CrossRefPubMedGoogle Scholar
  41. 41.
    Zhou S, Zhang T, Bo P, Xiang L, Liu X, Ling H, et al. Targeted delivery of epirubicin to tumor-associated macrophages by sialic acid-cholesterol conjugate modified liposomes with improved antitumor activity. Int J Pharm. 2017;523(1):203–16.CrossRefPubMedGoogle Scholar
  42. 42.
    Liu Y, Huang L, Liu F. Paclitaxel nanocrystals for overcoming multidrug resistance in cancer. Mol Pharm. 2010;7(3):863.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Nakamura H, Fang J, Maeda H. Development of next-generation macromolecular drugs based on the EPR effect: challenges and pitfalls. Expert Opin Drug Deliv. 2014;12(4):1–12.Google Scholar
  44. 44.
    Whiteside TL, editor. Immune suppression in cancer: effects on immune cells, mechanisms and future therapeutic intervention. Seminars in cancer biology. Elsevier; 2006.Google Scholar
  45. 45.
    Couzin-Frankel J. Cancer immunotherapy. Science. 2013;342(6165):1432–3.CrossRefPubMedGoogle Scholar
  46. 46.
    D DW. Studies correlating the growth rate of a tumor and its metastases and providing evidence for tumor-related systemic growth-retarding factors. Cancer Res. 1972;32(2):374–9.Google Scholar
  47. 47.
    Roth H, Kitta D, Jones GRN, Osswald H, Kunz W. Polyamine responses in a solid transplanted tumor (S180) in liver and in urine during endotoxin-induced tumor injury in the mouse. Cancer. 1981;48(4):945.CrossRefPubMedGoogle Scholar
  48. 48.
    Sjövall K, Nilsson B, Einhorn N. Different types of rupture of the tumor capsule and the impact on survival in early ovarian carcinoma. Int J Gynecol Cancer. 2010;4(5):333–6.CrossRefGoogle Scholar
  49. 49.
    Nath D, Hartnell A, Happerfield L, Miles DW, Burchell J, Taylorpapadimitriou J, et al. Macrophage-tumour cell interactions: identification of MUC1 on breast cancer cells as a potential counter-receptor for the macrophage-restricted receptor, sialoadhesin. Immunology. 1999;98(2):213–9.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Jing S, Song Y, Mei L, Lin X, Yang L, Zhou S, et al. Evaluation of the antitumor effect of dexamethasone palmitate and doxorubicin co-loaded liposomes modified with a sialic acid–octadecylamine conjugate. Eur J Pharm Sci. 2016;93:177–83.CrossRefGoogle Scholar
  51. 51.
    Hong W, Chen D, Zhang X, Zeng J, Hu H, Zhao X, et al. Reversing multidrug resistance by intracellular delivery of Pluronic® P85 unimers. Biomaterials. 2013;34(37):9602–14.CrossRefPubMedGoogle Scholar

Copyright information

© Controlled Release Society 2017

Authors and Affiliations

  1. 1.College of PharmacyShenyang Pharmaceutical UniversityShenyangChina
  2. 2.Sungen Biotech Co., LtdShantouChina

Personalised recommendations