Advertisement

Drug Delivery and Translational Research

, Volume 7, Issue 1, pp 89–99 | Cite as

Microwaved bacterial cellulose-based hydrogel microparticles for the healing of partial thickness burn wounds

  • Manisha Pandey
  • Najwa Mohamad
  • Wan-Li Low
  • Claire Martin
  • Mohd Cairul Iqbal Mohd AminEmail author
Original Article

Abstract

Burn wound management is a complex process because the damage may extend as far as the dermis which has an acknowledged slow rate of regeneration. This study investigates the feasibility of using hydrogel microparticles composed of bacterial cellulose and polyacrylamide as a dressing material for coverage of partial-thickness burn wounds. The microparticulate carrier structure and surface morphology were investigated by Fourier transform infrared, X-ray diffraction, elemental analysis, and scanning electron microscopy. The cytotoxicity profile of the microparticles showed cytocompatibility with L929 cells. Dermal irritation test demonstrated that the hydrogel was non-irritant to the skin and had a significant effect on wound contraction compared to the untreated group. Moreover, histological examination of in vivo burn healing samples revealed that the hydrogel treatment enhanced epithelialization and accelerated fibroblast proliferation with wound repair and intact skin achieved by the end of the study. Both the in vitro and in vivo results proved the biocompatibility and efficacy of hydrogel microparticles as a wound dressing material.

Keywords

Hydrogel microparticles Bacterial cellulose Cytotoxicity Partial-thickness burn wound Microwave irradiation 

Notes

Acknowledgments

The authors would like to thank the Ministry of Higher Education, Malaysia (UKM-Farmasi-02-FRGS0192-2010) and the Universiti Kebangsaan Malaysia (INOVASI-2013-005) for their financial assistance and support.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Church D, El Sayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403–34.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mogoşanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing. Int J Pharm. 2014;463:127–36.CrossRefPubMedGoogle Scholar
  3. 3.
    Pham C, Greenwood J, Cleland H, Woodruff P, Maddern G. Bioengineered skin substitutes for the management of burns: a systematic review. Burns. 2007;33:946–57.CrossRefPubMedGoogle Scholar
  4. 4.
    Lootens L, Brusselaers N, Beele H, Monstrey S. Keratinocytes in the treatment of severe burn injury: an update. Int Wound J. 2012;10:6–12.CrossRefPubMedGoogle Scholar
  5. 5.
    Lin W, Lien C, Yeh H, Yu C, Hsu S. Bacterial cellulose and bacterial cellulose-chitosan membranes for wound dressing applications. Carbohydr Polym. 2013;94:603–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Kwak MH, Kim JE, Go J, Koh EK, Song SH, Son HJ, Kim HS, Yun YH, Jung YJ, Hwang DY. Bacterial cellulose membrane produced by Acetobacter sp. A10 for burn wound dressing applications. Carbohyd Polym. 2015;122:387–98.CrossRefGoogle Scholar
  7. 7.
    Huang S, Fu X. Naturally derived materials-based cell and drug delivery systems in skin regeneration. J Control Release. 2010;142:149–59.CrossRefPubMedGoogle Scholar
  8. 8.
    Silvestre AJD, Freire CSR, Neto CP. Do bacterial cellulose membranes have potential in drug-delivery systems? Expert Opin Drug Deliv. 2014;11:1113–24.CrossRefPubMedGoogle Scholar
  9. 9.
    Czaja W, Krystynowicz A, Bielecki S, Brown Jr RM. Microbial cellulose—the natural power to heal wounds. Biomaterials. 2006;27:145–51.CrossRefPubMedGoogle Scholar
  10. 10.
    Backdahl H, Risberg B, Gatenholm P. Observations on bacterial cellulose tube formation for application as vascular graft. Mater. Sci. Eng. C mater. Biol. Appl. 2011;31(1):14–21.Google Scholar
  11. 11.
    Hennink WE, Van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2012;64:223–36.CrossRefGoogle Scholar
  12. 12.
    Jovanovic J, Adnadjevic B. Influence of microwave heating on the kinetics of acrylic acid polymerization and crosslinking. J Appl Poly Sci. 2010;116:55–63.CrossRefGoogle Scholar
  13. 13.
    Zhao Z, Zhong L, Qibin X, Hongxia X, Yuesheng L. Fast synthesis of temperature-sensitive PNIPAAm hydrogels by microwave irradiation. Eur Poly J. 2008;44:1217–24.CrossRefGoogle Scholar
  14. 14.
    Pandey M, Mohamad N, Amin MCIM. Bacterial cellulose/acrylamide pH-sensitive smart hydrogel: development, characterization, and toxicity studies in ICR mice model. Mol Pharm. 2014;11:3596–608.CrossRefPubMedGoogle Scholar
  15. 15.
    Amin MCIM, Abadi AG, Katas H. Purification, characterization and comparative studies of spray-dried bacterial cellulose microparticles. Carbohydr Polym. 2014;99:180–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Ahmad N, Amin MCIM, Mahali SM, Ismail I, Chuang VTG. Biocompatible and mucoadhesive bacterial cellulose-g-poly (acrylic acid) hydrogels for oral protein delivery. Mol Pharm. 2014;11:4130–42.CrossRefPubMedGoogle Scholar
  17. 17.
    Amjad MW, Amin MCI, Katas H, Butt AM. Doxorubicin-loaded cholic acid polyethyleneimine micelles for targeted delivery of antitumor drugs: synthesis, characterization, and evaluation of their in-vitro cytotoxicity. Nanoscale Res Lett. 2012;7:687–789.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Loo Y, Wong Y, Cai EZ, Ang C, Raju A, Lakshmanan A, Koh AG, Zhou HJ, Lim T, Moochhala SM, Hauser CAE. Ultrashort peptide nanofibrous hydrogels for the acceleration of healing of burn wounds. Biomaterials. 2014;35:1–10.CrossRefGoogle Scholar
  19. 19.
    Alsarra IA. Chitosan topical gel formulation in the management of burn wounds. Int J Biol Macromol. 2009;45:16–21.CrossRefPubMedGoogle Scholar
  20. 20.
    Amin MCIM, Ahmad N, Halib N, Ahmad I. Synthesis and characterization of thermo and pH responsive bacterial cellulose/acrylic acid hydrogel for drug delivery. Carbohydr Polym. 2012;88:465–73.CrossRefGoogle Scholar
  21. 21.
    Pandey M, Amin MCI, Ahmad N, Abeer MM. Rapid synthesis of superabsorbent smart-swelling bacterial cellulose/acrylamide-based hydrogels for drug delivery. Int J Polym Sci. 2013;2013:1–10.CrossRefGoogle Scholar
  22. 22.
    Song Y, Zhou J, Zhang L, Wu X. Homogenous modification of cellulose with acrylamide in NaOH/urea aqueous solutions. Carbohydr Polym. 2008;73:18–25.CrossRefGoogle Scholar
  23. 23.
    Marandi GB, Esfandiari K, Biranvand F, Babapour M, Sadeh S, Mahdavinia GR. pH sensitivity and swelling behavior of partially hydrolyzed formaldehyde-crosslinked poly (acrylamide) superabsorbent hydrogels. J App Polym Sci. 2008;109:1083–92.CrossRefGoogle Scholar
  24. 24.
    Kumar A, Singh K, Ahuja M. Xanthan-g-poly (acrylamide): microwave assisted synthesis, characterization and in-vitro release behavior. Carbohydr Polym. 2009;76:261–7.CrossRefGoogle Scholar
  25. 25.
    Sutar PB, Mishra RK, Pal K, Banthia AK. Development of pH sensitive polyacrylamide grafted pectin hydrogel for controlled drug delivery system. J Mater Sci Mater Med. 2008;19:2247–53.CrossRefPubMedGoogle Scholar
  26. 26.
    Vijan V, Kaity S, Biswas S, Isaac J, Ghosh A. Microwave assisted synthesis and characterization of acrylamide grafted gellan, application in drug delivery. Carbohydr Polym. 2012;90:496–506.CrossRefPubMedGoogle Scholar
  27. 27.
    Ibrahim M, El S, Mamdouh AM, Abdel AM, Dawidar AM, Hugh DCS. Biodegradable pH-responsive alginate-poly (lactic-co-glycolic acid) nano/micro hydrogel matrices for oral delivery of silymarin. Carbohydr Polym. 2011;83:1345–54.CrossRefGoogle Scholar
  28. 28.
    Liu X, Tang M, Zhang T, Hu Y, Zhang S, Kong L, Xue Y. Determination of a threshold dose to reduce or eliminate cdte-induced toxicity in l929 cells by controlling the exposure dose. PLoS One. 2013;8:e59359. doi: 10.1371/journal.pone.0059359.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Baek HS, Ja YY, Dong WH, Dong HL, Oh-Hun K, Jong-Chul P. Evaluation of the extraction method for the cytotoxicity testing of latex gloves. Yonsei Med J. 2005;46:579–83.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Almeida IF, Pereira T, Silva NHCS. Bacterial cellulose membranes as drug delivery systems: an in vivo skin compatibility study. Eur J Pharm Biopharm. 2014;106:264–9.Google Scholar
  31. 31.
    Muangman P, Opasanon S, Suwanchot S, Thangthed O. Efficiency of microbial cellulose dressing in partial-thickness burn wounds. J Am Col Certif Wound Spec. 2011;27; 3(1):9–16.Google Scholar
  32. 32.
    Cai Z, Kim J. Bacterial cellulose/poly(ethylene glycol) composite: characterization and first evaluation of biocompatibility. Cellulose. 2010;17(1):83–91.CrossRefGoogle Scholar
  33. 33.
    Anon. Amended final report on the safety assessment of polyacrylamide and acrylamide residues in cosmetics. Int J Toxicol. 2005;2:21–50.Google Scholar
  34. 34.
    Boateng JS, Matthews KH, Stevens HNE, Eccleston GM. Wound healing dressings and drug delivery systems: a review. J Pharm Sci. 2008;97:2892–923.CrossRefPubMedGoogle Scholar
  35. 35.
    Junker JPE, Kamel RA, Caterson EJ, Eriksson E. Clinical impact upon wound healing and inflammation in moist, wet, and dry environments. Adv Wound Care. 2013;2:348–56.CrossRefGoogle Scholar
  36. 36.
    Mohamad N, Amin MCIM, Pandey M, Ahmad N, Rajab N. Bacterial cellulose/acrylic acid hydrogel synthesized via electron beam irradiation: accelerated burn wound healing in an animal model. Carbohyd Polym. 2014;114:312–20.CrossRefGoogle Scholar
  37. 37.
    Tepole AB, Kuhl E. Systems-based approaches toward wound healing. Pediatr Res. 2013;73:553–63.CrossRefGoogle Scholar
  38. 38.
    Chen S, Tsao C, Chang C, Lai Y, Wu M, Chuang C, Chou H, Wang C, Hsieh K. Assessment of reinforced poly (ethylene glycol) chitosan hydrogels as dressings in a mouse skin wound defect model. Mater Sci Eng C, Mater Biol Appl. 2013;33:2584–94.CrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2016

Authors and Affiliations

  • Manisha Pandey
    • 1
    • 2
  • Najwa Mohamad
    • 2
  • Wan-Li Low
    • 3
  • Claire Martin
    • 3
  • Mohd Cairul Iqbal Mohd Amin
    • 2
    Email author
  1. 1.School of PharmacyInternational Medical UniversityKuala LumpurMalaysia
  2. 2.Centre for Drug Delivery Research, Faculty of PharmacyUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
  3. 3.School of Pharmacy, Faculty of Science and EngineeringUniversity of WolverhamptonWolverhamptonUK

Personalised recommendations