Drug Delivery and Translational Research

, Volume 6, Issue 2, pp 159–173 | Cite as

Stem and progenitor cells: advancing bone tissue engineering

  • R. Tevlin
  • G. G. Walmsley
  • O. Marecic
  • Michael S. Hu
  • D. C. Wan
  • M. T. Longaker
Research Article

Abstract

Unlike many other postnatal tissues, bone can regenerate and repair itself; nevertheless, this capacity can be overcome. Traditionally, surgical reconstructive strategies have implemented autologous, allogeneic, and prosthetic materials. Autologous bone—the best option—is limited in supply and also mandates an additional surgical procedure. In regenerative tissue engineering, there are myriad issues to consider in the creation of a functional, implantable replacement tissue. Importantly, there must exist an easily accessible, abundant cell source with the capacity to express the phenotype of the desired tissue, and a biocompatible scaffold to deliver the cells to the damaged region. A literature review was performed using PubMed; peer-reviewed publications were screened for relevance in order to identify key advances in stem and progenitor cell contribution to the field of bone tissue engineering. In this review, we briefly introduce various adult stem cells implemented in bone tissue engineering such as mesenchymal stem cells (including bone marrow- and adipose-derived stem cells), endothelial progenitor cells, and induced pluripotent stem cells. We then discuss numerous advances associated with their application and subsequently focus on technological advances in the field, before addressing key regenerative strategies currently used in clinical practice. Stem and progenitor cell implementation in bone tissue engineering strategies have the ability to make a major impact on regenerative medicine and reduce patient morbidity. As the field of regenerative medicine endeavors to harness the body’s own cells for treatment, scientific innovation has led to great advances in stem cell-based therapies in the past decade.

Keywords

Regenerative medicine Orthopedic surgery Reconstructive surgery Innovation 

Notes

Acknowledgments

The authors acknowledge the following ongoing support for this work—National Institute of Health grants: R01DE02183, R21DE02423001, R01DE019434, and U01HL099776 (to M.T.L.), the Oak Foundation, the Hagey Laboratory for Pediatric Regenerative Medicine, the A.C.S. Franklin Martin Faculty Research Fellowship (to D.C.W.), the Stanford University Child Health Research Institute Faculty Scholar Award (to D.C.W.), the Plastic Surgery Foundation/Plastic Surgery Research Council Pilot Grant, the Stanford University Transplant and Tissue Engineering Center of Excellence Fellowship and the American Society of Maxillofacial Surgeons Research Grant (to R.T.), the Stanford Medical Scientist Training Program and NIGMS training grant GM07365 (to G.G.W.), the California Institute for Regenerative Medicine Clinical Fellow training grant TG2-01159 and the American Society of Maxillofacial Surgeons/Maxillofacial Surgeons Foundation Research Grant Award (M.S.H.). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Oryan A, Alidadi S, Moshiri A, Maffulli N. Bone regenerative medicine: classic options, novel strategies, and future directions. J Orthop Surg Res. 2014;9(1):18. doi: 10.1186/1749-799x-9-18.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Calori GM, Mazza E, Colombo M, Ripamonti C. The use of bone-graft substitutes in large bone defects: any specific needs? Injury. 2011;42 Suppl 2:S56–63. doi: 10.1016/j.injury.2011.06.011.CrossRefPubMedGoogle Scholar
  3. 3.
    Wada K, Yu W, Elazizi M, Barakat S, Ouimet MA, Rosario-Melendez R, et al. Locally delivered salicylic acid from a poly(anhydride-ester): impact on diabetic bone regeneration. J Control Release Off J Control Release Soc. 2013;171(1):33–7. doi: 10.1016/j.jconrel.2013.06.024.CrossRefGoogle Scholar
  4. 4.
    Tevlin R, McArdle A, Atashroo D, Walmsley GG, Senarath-Yapa K, Zielins ER, et al. Biomaterials for craniofacial bone engineering. J Dent Res. 2014. doi: 10.1177/0022034514547271.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Neovius E, Engstrand T. Craniofacial reconstruction with bone and biomaterials: review over the last 11 years. J Plast Reconstr Aesthet Surg JPRAS. 2010;63(10):1615–23. doi: 10.1016/j.bjps.2009.06.003.CrossRefPubMedGoogle Scholar
  6. 6.
    Baroli B. From natural bone grafts to tissue engineering therapeutics: brainstorming on pharmaceutical formulative requirements and challenges. J Pharm Sci. 2009;98(4):1317–75. doi: 10.1002/jps.21528.CrossRefPubMedGoogle Scholar
  7. 7.
    Flierl MA, Smith WR, Mauffrey C, Irgit K, Williams AE, Ross E, et al. Outcomes and complication rates of different bone grafting modalities in long bone fracture nonunions: a retrospective cohort study in 182 patients. J Orthop Surg Res. 2013;8:33. doi: 10.1186/1749-799x-8-33.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science (New York, NY). 2000;287(5457):1427–30.CrossRefGoogle Scholar
  9. 9.
    Slack JM. Stem cells in epithelial tissues. Science (New York, NY). 2000;287(5457):1431–3.CrossRefGoogle Scholar
  10. 10.
    Daniela F, Vescovi AL, Bottai D. The stem cells as a potential treatment for neurodegeneration. Methods Mol Biol (Clifton, NJ). 2007;399:199–213. doi: 10.1007/978-1-59745-504-6_14.CrossRefGoogle Scholar
  11. 11.
    Charge SB, Rudnicki MA. Cellular and molecular regulation of muscle regeneration. Physiol Rev. 2004;84(1):209–38. doi: 10.1152/physrev.00019.2003.CrossRefPubMedGoogle Scholar
  12. 12.
    Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell. 2002;13(12):4279–95. doi: 10.1091/mbc.E02-02-0105.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Spangrude GJ, Smith L, Uchida N, Ikuta K, Heimfeld S, Friedman J, et al. Mouse hematopoietic stem cells. Blood. 1991;78(6):1395–402.PubMedGoogle Scholar
  14. 14.
    Prockop DJ. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science (New York, NY). 1997;276(5309):71–4.CrossRefGoogle Scholar
  15. 15.
    Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science (New York, NY). 1999;284(5411):143–7.CrossRefGoogle Scholar
  16. 16.
    De Bari C, Dell'Accio F, Tylzanowski P, Luyten FP. Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum. 2001;44(8):1928–42. doi: 10.1002/1529-0131(200108)44:8<1928::aid-art331>3.0.co;2-p.CrossRefPubMedGoogle Scholar
  17. 17.
    Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–55. doi: 10.1016/s0140-6736(04)16627-0.CrossRefPubMedGoogle Scholar
  18. 18.
    Sabatini F, Petecchia L, Tavian M, Jodon de Villeroche V, Rossi GA, Brouty-Boye D. Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab Investig J Tech Methods Pathol. 2005;85(8):962–71. doi: 10.1038/labinvest.3700300.CrossRefGoogle Scholar
  19. 19.
    Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, et al. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy. 2004;6(1):7–14. doi: 10.1080/14653240310004539.CrossRefPubMedGoogle Scholar
  20. 20.
    Zhu Y, Liu T, Song K, Fan X, Ma X, Cui Z. Adipose-derived stem cell: a better stem cell than BMSC. Cell Biochem Funct. 2008;26(6):664–75. doi: 10.1002/cbf.1488.CrossRefPubMedGoogle Scholar
  21. 21.
    Stockmann P, Park J, von Wilmowsky C, Nkenke E, Felszeghy E, Dehner JF, et al. Guided bone regeneration in pig calvarial bone defects using autologous mesenchymal stem/progenitor cells—a comparison of different tissue sources. J Craniomaxillofac Surg Off Publ Eur Assoc Craniomaxillofac Surg. 2012;40(4):310–20. doi: 10.1016/j.jcms.2011.05.004.Google Scholar
  22. 22.
    Ma D, Mao T. Cell-based approaches to promote bone regeneration in distraction osteogenesis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi Zhongguo Xiufu Chongjian Waike Zazhi Chin J Reparative Reconstr Surg. 2012;26(12):1512–5.Google Scholar
  23. 23.
    Nomura I, Watanabe K, Matsubara H, Hayashi K, Sugimoto N, Tsuchiya H. Uncultured autogenous adipose-derived regenerative cells promote bone formation during distraction osteogenesis in rats. Clin Orthop Relat Res. 2014;472(12):3798–806. doi: 10.1007/s11999-014-3608-8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sun Z, Tee BC, Kennedy KS, Kennedy PM, Kim DG, Mallery SR, et al. Scaffold-based delivery of autologous mesenchymal stem cells for mandibular distraction osteogenesis: preliminary studies in a porcine model. PLoS One. 2013;8(9), e74672. doi: 10.1371/journal.pone.0074672.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Sunay O, Can G, Cakir Z, Denek Z, Kozanoglu I, Erbil G, et al. Autologous rabbit adipose tissue-derived mesenchymal stromal cells for the treatment of bone injuries with distraction osteogenesis. Cytotherapy. 2013;15(6):690–702. doi: 10.1016/j.jcyt.2013.02.004.CrossRefPubMedGoogle Scholar
  26. 26.
    Ng MH, Duski S, Tan KK, Yusof MR, Low KC, Rose IM, et al. Repair of segmental load-bearing bone defect by autologous mesenchymal stem cells and plasma-derived fibrin impregnated ceramic block results in early recovery of limb function. BioMed Res Int. 2014;2014:345910. doi: 10.1155/2014/345910.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kang SH, Chung YG, Oh IH, Kim YS, Min KO, Chung JY. Bone regeneration potential of allogeneic or autogeneic mesenchymal stem cells loaded onto cancellous bone granules in a rabbit radial defect model. Cell Tissue Res. 2014;355(1):81–8. doi: 10.1007/s00441-013-1738-z.CrossRefPubMedGoogle Scholar
  28. 28.
    Berner A, Reichert JC, Woodruff MA, Saifzadeh S, Morris AJ, Epari DR, et al. Autologous vs. allogenic mesenchymal progenitor cells for the reconstruction of critical sized segmental tibial bone defects in aged sheep. Acta Biomater. 2013;9(8):7874–84. doi: 10.1016/j.actbio.2013.04.035.CrossRefPubMedGoogle Scholar
  29. 29.
    Liu Y, Yang R, Shi S. Systemic infusion of mesenchymal stem cells improves cell-based bone regeneration via upregulation of regulatory T cells. Tissue Eng A. 2014. doi: 10.1089/ten.TEA.2013.0673.Google Scholar
  30. 30.
    Im JY, Min WK, You C, Kim HO, Jin HK, Bae JS. Bone regeneration of mouse critical-sized calvarial defects with human mesenchymal stem cells in scaffold. Lab Anim Res. 2013;29(4):196–203. doi: 10.5625/lar.2013.29.4.196.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Mao JJ, Giannobile WV, Helms JA, Hollister SJ, Krebsbach PH, Longaker MT, et al. Craniofacial tissue engineering by stem cells. J Dent Res. 2006;85(11):966–79.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yellowley C. CXCL12/CXCR4 signaling and other recruitment and homing pathways in fracture repair. BoneKEy Rep. 2013;2:300. doi: 10.1038/bonekey.2013.34.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ho CY, Sanghani A, Hua J, Coathup MJP, Kalia P, Blunn G. Mesenchymal stem cells with increased SDF-1 expression enhanced fracture healing. Tissue Eng A. 2014. doi: 10.1089/ten.TEA.2013.0762.Google Scholar
  34. 34.
    Park SY, Kim KH, Shin SY, Koo KT, Lee YM, Seol YJ. Dual delivery of rhPDGF-BB and bone marrow mesenchymal stromal cells expressing the BMP2 gene enhance bone formation in a critical-sized defect model. Tissue Eng A. 2013;19(21–22):2495–505. doi: 10.1089/ten.tea.2012.0648.CrossRefGoogle Scholar
  35. 35.
    Tu Q, Valverde P, Li S, Zhang J, Yang P, Chen J. Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng. 2007;13(10):2431–40. doi: 10.1089/ten.2006.0406.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Wang B, Huang S, Pan L, Jia S. Enhancement of bone formation by genetically engineered human umbilical cord-derived mesenchymal stem cells expressing osterix. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(4):e221–9. doi: 10.1016/j.oooo.2011.12.024.CrossRefPubMedGoogle Scholar
  37. 37.
    Zou D, He J, Zhang K, Dai J, Zhang W, Wang S, et al. The bone-forming effects of HIF-1alpha-transduced BMSCs promote osseointegration with dental implant in canine mandible. PLoS One. 2012;7(3), e32355. doi: 10.1371/journal.pone.0032355.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zou D, Zhang Z, He J, Zhang K, Ye D, Han W, et al. Blood vessel formation in the tissue-engineered bone with the constitutively active form of HIF-1alpha mediated BMSCs. Biomaterials. 2012;33(7):2097–108. doi: 10.1016/j.biomaterials.2011.11.053.CrossRefPubMedGoogle Scholar
  39. 39.
    Li J, Li Y, Ma S, Gao Y, Zuo Y, Hu J. Enhancement of bone formation by BMP-7 transduced MSCs on biomimetic nano-hydroxyapatite/polyamide composite scaffolds in repair of mandibular defects. J Biomed Mater Res A. 2010;95(4):973–81. doi: 10.1002/jbm.a.32926.CrossRefPubMedGoogle Scholar
  40. 40.
    Vanleene M, Saldanha Z, Cloyd KL, Jell G, Bou-Gharios G, Bassett JH, et al. Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties. Blood. 2011;117(3):1053–60. doi: 10.1182/blood-2010-05-287565.CrossRefPubMedGoogle Scholar
  41. 41.
    Jones GN, Moschidou D, Lay K, Abdulrazzak H, Vanleene M, Shefelbine SJ, et al. Upregulating CXCR4 in human fetal mesenchymal stem cells enhances engraftment and bone mechanics in a mouse model of osteogenesis imperfecta. Stem Cell Transl Med. 2012;1(1):70–8. doi: 10.5966/sctm.2011-0007.CrossRefGoogle Scholar
  42. 42.
    Haller A. Experimentorum de ossiem formatione. Opera Minora. 1763;2(400):400.Google Scholar
  43. 43.
    Atesok K, Matsumoto T, Karlsson J, Asahara T, Atala A, Doral MN, et al. An emerging cell-based strategy in orthopaedics: endothelial progenitor cells. Knee Surg Sports Traumatol Arthrosc Off J ESSKA. 2012;20(7):1366–77. doi: 10.1007/s00167-012-1940-7.CrossRefGoogle Scholar
  44. 44.
    Dickson KF, Katzman S, Paiement G. The importance of the blood supply in the healing of tibial fractures. Contemp Orthop. 1995;30(6):489–93.PubMedGoogle Scholar
  45. 45.
    Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science (New York, NY). 1997;275(5302):964–7.CrossRefGoogle Scholar
  46. 46.
    Laing AJ, Dillon JP, Condon ET, Street JT, Wang JH, McGuinness AJ, et al. Mobilization of endothelial precursor cells: systemic vascular response to musculoskeletal trauma. J Orthop Res Off Publ Orthop Res Soc. 2007;25(1):44–50. doi: 10.1002/jor.20228.CrossRefGoogle Scholar
  47. 47.
    Matsumoto T, Mifune Y, Kawamoto A, Kuroda R, Shoji T, Iwasaki H, et al. Fracture induced mobilization and incorporation of bone marrow-derived endothelial progenitor cells for bone healing. J Cell Physiol. 2008;215(1):234–42. doi: 10.1002/jcp.21309.CrossRefPubMedGoogle Scholar
  48. 48.
    Zigdon-Giladi H, Michaeli-Geller G, Bick T, Lewinson D, Machtei EE. Human blood-derived endothelial progenitor cells augment vasculogenesis and osteogenesis. J Clin Periodontol. 2014. doi: 10.1111/jcpe.12325.Google Scholar
  49. 49.
    Li R, Atesok K, Nauth A, Wright D, Qamirani E, Whyne CM, et al. Endothelial progenitor cells for fracture healing: a microcomputed tomography and biomechanical analysis. J Orthop Trauma. 2011;25(8):467–71. doi: 10.1097/BOT.0b013e31821ad4ec.CrossRefPubMedGoogle Scholar
  50. 50.
    Fukui T, Mifune Y, Matsumoto T, Shoji T, Kawakami Y, Kawamoto A, et al. Superior potential of CD34-positive cells compared to total mononuclear cells for healing of nonunion following bone fracture. Cell Transplant. 2014. doi: 10.3727/096368914x681586.Google Scholar
  51. 51.
    Rao RR, Stegemann JP. Cell-based approaches to the engineering of vascularized bone tissue. Cytotherapy. 2013;15(11):1309–22. doi: 10.1016/j.jcyt.2013.06.005.CrossRefPubMedGoogle Scholar
  52. 52.
    Toupadakis CA, Granick JL, Sagy M, Wong A, Ghassemi E, Chung DJ, et al. Mobilization of endogenous stem cell populations enhances fracture healing in a murine femoral fracture model. Cytotherapy. 2013;15(9):1136–47. doi: 10.1016/j.jcyt.2013.05.004.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Li R, Nauth A, Li C, Qamirani E, Atesok K, Schemitsch EH. Expression of VEGF gene isoforms in a rat segmental bone defect model treated with EPCs. J Orthop Trauma. 2012;26(12):689–92. doi: 10.1097/BOT.0b013e318266eb7e.CrossRefPubMedGoogle Scholar
  54. 54.
    Kuroda R, Matsumoto T, Kawakami Y, Fukui T, Mifune Y, Kurosaka M. Clinical impact of circulating CD34-positive cells on bone regeneration and healing. Tissue Eng B Rev. 2014;20(3):190–9. doi: 10.1089/ten.TEB.2013.0511.CrossRefGoogle Scholar
  55. 55.
    Rosell A, Morancho A, Navarro-Sobrino M, Martinez-Saez E, Hernandez-Guillamon M, Lope-Piedrafita S, et al. Factors secreted by endothelial progenitor cells enhance neurorepair responses after cerebral ischemia in mice. PLoS One. 2013;8(9), e73244. doi: 10.1371/journal.pone.0073244.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Kuroda R, Matsumoto T, Miwa M, Kawamoto A, Mifune Y, Fukui T, et al. Local transplantation of G-CSF-mobilized CD34(+) cells in a patient with tibial nonunion: a case report. Cell Transplant. 2011;20(9):1491–6. doi: 10.3727/096368910x550189.CrossRefPubMedGoogle Scholar
  57. 57.
    Kuroda R, Matsumoto T, Niikura T, Kawakami Y, Fukui T, Lee SY, et al. Local transplantation of granulocyte colony stimulating factor-mobilized CD34+ cells for patients with femoral and tibial nonunion: pilot clinical trial. Stem Cells Transl Med. 2014;3(1):128–34. doi: 10.5966/sctm.2013-0106.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126(4):663–76. doi: 10.1016/j.cell.2006.07.024.CrossRefPubMedGoogle Scholar
  59. 59.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131(5):861–72. doi: 10.1016/j.cell.2007.11.019.CrossRefPubMedGoogle Scholar
  60. 60.
    Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, et al. Oct4-induced pluripotency in adult neural stem cells. Cell. 2009;136(3):411–9. doi: 10.1016/j.cell.2009.01.023.CrossRefPubMedGoogle Scholar
  61. 61.
    Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol. 2008;26(1):101–6. doi: 10.1038/nbt1374.CrossRefPubMedGoogle Scholar
  62. 62.
    Ardeshirylajimi A, Dinarvand P, Seyedjafari E, Langroudi L, Adegani FJ, Soleimani M. Enhanced reconstruction of rat calvarial defects achieved by plasma-treated electrospun scaffolds and induced pluripotent stem cells. Cell Tissue Res. 2013;354(3):849–60. doi: 10.1007/s00441-013-1693-8.CrossRefPubMedGoogle Scholar
  63. 63.
    Hynes K, Menicanin D, Han J, Marino V, Mrozik K, Gronthos S, et al. Mesenchymal stem cells from iPS cells facilitate periodontal regeneration. J Dent Res. 2013;92(9):833–9. doi: 10.1177/0022034513498258.CrossRefPubMedGoogle Scholar
  64. 64.
    Liu J, Chen W, Zhao Z, Xu HH. Effect of NELL1 gene overexpression in iPSC-MSCs seeded on calcium phosphate cement. Acta Biomater. 2014. doi: 10.1016/j.actbio.2014.08.016.Google Scholar
  65. 65.
    Kang H, Shih YR, Hwang Y, Wen C, Rao V, Seo T, et al. Mineralized gelatin methacrylate-based matrices induce osteogenic differentiation of human induced pluripotent stem cells. Acta Biomater. 2014. doi: 10.1016/j.actbio.2014.08.010.Google Scholar
  66. 66.
    Lian Q, Zhang Y, Zhang J, Zhang HK, Wu X, Zhang Y, et al. Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation. 2010;121(9):1113–23. doi: 10.1161/circulationaha.109.898312.CrossRefPubMedGoogle Scholar
  67. 67.
    Rachmiel A, Leiser Y. The molecular and cellular events that take place during craniofacial distraction osteogenesis. Plast Reconstr Surg Glob Open. 2014;2(1):e98. doi: 10.1097/gox.0000000000000043.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Xie H, Cui Z, Wang L, Xia Z, Hu Y, Xian L, et al. PDGF-BB secreted by preosteoclasts induces angiogenesis during coupling with osteogenesis. Nat Med. 2014. doi: 10.1038/nm.3668.Google Scholar
  69. 69.
    Matsumoto Y, Hayashi Y, Schlieve CR, Ikeya M, Kim H, Nguyen TD, et al. Induced pluripotent stem cells from patients with human fibrodysplasia ossificans progressiva show increased mineralization and cartilage formation. Orphanet J Rare Dis. 2013;8:190. doi: 10.1186/1750-1172-8-190.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Murray IR, Corselli M, Petrigliano FA, Soo C, Peault B. Recent insights into the identity of mesenchymal stem cells: implications for orthopaedic applications. Bone Joint J. 2014;96-b(3):291–8. doi: 10.1302/0301-620x.96b3.32789.CrossRefPubMedGoogle Scholar
  71. 71.
    Levi B, Wan DC, Glotzbach JP, Hyun J, Januszyk M, Montoro D, et al. CD105 protein depletion enhances human adipose-derived stromal cell osteogenesis through reduction of transforming growth factor beta1 (TGF-beta1) signaling. J Biol Chem. 2011;286(45):39497–509. doi: 10.1074/jbc.M111.256529.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Chung MT, Liu C, Hyun JS, Lo DD, Montoro DT, Hasegawa M, et al. CD90 (Thy-1)-positive selection enhances osteogenic capacity of human adipose-derived stromal cells. Tissue Eng A. 2013;19(7–8):989–97. doi: 10.1089/ten.TEA.2012.0370.CrossRefGoogle Scholar
  73. 73.
    Mahalatchimy A, Rial-Sebbag E, Tournay V, Faulkner A. The legal landscape for advanced therapies: material and institutional implementation of European Union rules in France and the United Kingdom. J Law Soc. 2012;39(1):131–49.CrossRefPubMedGoogle Scholar
  74. 74.
    Trounson A, Thakar RG, Lomax G, Gibbons D. Clinical trials for stem cell therapies. BMC Med. 2011;9:52. doi: 10.1186/1741-7015-9-52.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Syed-Picard FN, Shah GA, Costello BJ, Sfeir C. Regeneration of periosteum by human bone marrow stromal cell sheets. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 2014;72(6):1078–83. doi: 10.1016/j.joms.2014.02.005.CrossRefGoogle Scholar
  76. 76.
    Chen T, Wang Y, Bu L, Li N. Construction of functional tissue-engineered bone using cell sheet technology in a canine model. Exp Ther Med. 2014;7(4):958–62. doi: 10.3892/etm.2014.1514.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Ren L, Ma D, Liu B, Li J, Chen J, Yang D, et al. Preparation of three-dimensional vascularized MSC cell sheet constructs for tissue regeneration. BioMed Res Int. 2014;2014:301279. doi: 10.1155/2014/301279.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Walker MR, Patel KK, Stappenbeck TS. The stem cell niche. J Pathol. 2009;217(2):169–80. doi: 10.1002/path.2474.CrossRefPubMedGoogle Scholar
  79. 79.
    Fuchs E, Tumbar T, Guasch G. Socializing with the neighbors: stem cells and their niche. Cell. 2004;116(6):769–78.CrossRefPubMedGoogle Scholar
  80. 80.
    Moore KA, Lemischka IR. Stem cells and their niches. Science (New York, NY). 2006;311(5769):1880–5. doi: 10.1126/science.1110542.CrossRefGoogle Scholar
  81. 81.
    Chan CK, Seo EY, Chen JY, Lo D, McArdle A, Sinha R, et al. Identification and specification of the mouse skeletal stem cell. Cell. 2015;160(1–2):285–98. doi: 10.1016/j.cell.2014.12.002.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Leucht P, Jiang J, Cheng D, Liu B, Dhamdhere G, Fang MY, et al. Wnt3a reestablishes osteogenic capacity to bone grafts from aged animals. J Bone Joint Surg (Am Vol). 2013;95(14):1278–88. doi: 10.2106/jbjs.l.01502.CrossRefGoogle Scholar
  83. 83.
    Jing W, Smith AA, Liu B, Li J, Hunter DJ, Dhamdhere G, et al. Reengineering autologous bone grafts with the stem cell activator WNT3A. Biomaterials. 2015;47:29–40. doi: 10.1016/j.biomaterials.2014.12.014.CrossRefPubMedGoogle Scholar
  84. 84.
    Centers for Disease Control and Prevention C. Prevalence and most common causes of disability among adults—United States, 2005. MMWR Morb Mortal Wkly Rep. 2009;58(16):421–6.Google Scholar
  85. 85.
    Centeno CJ, Schultz JR, Cheever M, Freeman M, Faulkner S, Robinson B, et al. Safety and complications reporting update on the re-implantation of culture-expanded mesenchymal stem cells using autologous platelet lysate technique. Curr Stem Cell Res Ther. 2011;6(4):368–78.CrossRefPubMedGoogle Scholar
  86. 86.
    Koh YG, Jo SB, Kwon OR, Suh DS, Lee SW, Park SH, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthrosc J Arthrosc Relat Surg Off Publ Arthrosc Assoc North Am Int Arthrosc Assoc. 2013;29(4):748–55. doi: 10.1016/j.arthro.2012.11.017.CrossRefGoogle Scholar
  87. 87.
    Gotherstrom C, Westgren M, Shaw SW, Astrom E, Biswas A, Byers PH, et al. Pre- and postnatal transplantation of fetal mesenchymal stem cells in osteogenesis imperfecta: a two-center experience. Stem Cell Transl Med. 2014;3(2):255–64. doi: 10.5966/sctm.2013-0090.CrossRefGoogle Scholar
  88. 88.
    Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM. Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol. 2015;11(3):140–50. doi: 10.1038/nrendo.2014.234.CrossRefPubMedPubMedCentralGoogle Scholar
  89. 89.
    Liebergall M, Schroeder J, Mosheiff R, Gazit Z, Yoram Z, Rasooly L, et al. Stem cell-based therapy for prevention of delayed fracture union: a randomized and prospective preliminary study. Mol Ther J Am Soc Gene Ther. 2013;21(8):1631–8. doi: 10.1038/mt.2013.109.CrossRefGoogle Scholar
  90. 90.
    Gangji V, De Maertelaer V, Hauzeur JP. Autologous bone marrow cell implantation in the treatment of non-traumatic osteonecrosis of the femoral head: five year follow-up of a prospective controlled study. Bone. 2011;49(5):1005–9. doi: 10.1016/j.bone.2011.07.032.CrossRefPubMedGoogle Scholar
  91. 91.
    Gangji V, Hauzeur JP, Matos C, De Maertelaer V, Toungouz M, Lambermont M. Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J Bone Joint Surg (Am Vol). 2004;86-a(6):1153–60.Google Scholar
  92. 92.
    Mao Q, Jin H, Liao F, Xiao L, Chen D, Tong P. The efficacy of targeted intraarterial delivery of concentrated autologous bone marrow containing mononuclear cells in the treatment of osteonecrosis of the femoral head: a five year follow-up study. Bone. 2013;57(2):509–16. doi: 10.1016/j.bone.2013.08.022.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Zhao D, Cui D, Wang B, Tian F, Guo L, Yang L, et al. Treatment of early stage osteonecrosis of the femoral head with autologous implantation of bone marrow-derived and cultured mesenchymal stem cells. Bone. 2012;50(1):325–30. doi: 10.1016/j.bone.2011.11.002.CrossRefPubMedGoogle Scholar
  94. 94.
    Kaigler D, Pagni G, Park CH, Braun TM, Holman LA, Yi E, et al. Stem cell therapy for craniofacial bone regeneration: a randomized, controlled feasibility trial. Cell Transplant. 2013;22(5):767–77. doi: 10.3727/096368912x652968.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Kaigler D, Avila-Ortiz G, Travan S, Taut AD, Padial-Molina M, Rudek I, et al. Bone engineering of maxillary sinus bone deficiencies using enriched CD90+ stem cell therapy: a randomized clinical trial. J Bone Miner Res Off J Am Soc Bone Miner Res. 2015. doi: 10.1002/jbmr.2464.Google Scholar
  96. 96.
    Rush SM. Trinity evolution: mesenchymal stem cell allografting in foot and ankle surgery. Foot Ankle Spec. 2010;3(3):140–3. doi: 10.1177/1938640010369638.CrossRefPubMedGoogle Scholar
  97. 97.
    Eastlack RK, Garfin SR, Brown CR, Meyer SC. Osteocel plus cellular allograft in anterior cervical discectomy and fusion: evaluation of clinical and radiographic outcomes from a prospective multicenter study. Spine. 2014;39(22):E1331–7. doi: 10.1097/brs.0000000000000557.CrossRefPubMedGoogle Scholar
  98. 98.
    Ammerman JM, Libricz J, Ammerman MD. The role of osteocel plus as a fusion substrate in minimally invasive instrumented transforaminal lumbar interbody fusion. Clin Neurol Neurosurg. 2013;115(7):991–4. doi: 10.1016/j.clineuro.2012.10.013.CrossRefPubMedGoogle Scholar

Copyright information

© Controlled Release Society 2015

Authors and Affiliations

  • R. Tevlin
    • 1
    • 2
  • G. G. Walmsley
    • 1
    • 2
  • O. Marecic
    • 1
  • Michael S. Hu
    • 1
  • D. C. Wan
    • 1
  • M. T. Longaker
    • 1
    • 2
  1. 1.Hagey Laboratory for Pediatric Regenerative Medicine, Department of Surgery, Plastic and Reconstructive SurgeryStanford University School of MedicineStanfordUSA
  2. 2.Institute for Stem Cell Biology and Regenerative MedicineStanford University School of MedicineStanfordUSA

Personalised recommendations