Drug Delivery and Translational Research

, Volume 4, Issue 1, pp 74–83

Lipid nanoparticle delivery systems for siRNA-based therapeutics

Review Article

Abstract

Therapeutics based on small interfering RNA (siRNA) have a huge potential for the treatment of disease but requires sophisticated delivery systems for in vivo applications. Lipid nanoparticles (LNP) are proven delivery systems for conventional small molecule drugs with over eight approved LNP drugs. Experience gained in the clinical development of LNP for the delivery of small molecules, combined with an understanding of the physical properties of lipids, can be applied to design LNP systems for in vivo delivery of siRNA. In particular, cationic lipids are required to achieve efficient encapsulation of oligonucleotides; however, the presence of a charge on LNP systems can result in toxic side effects and rapid clearance from the circulation. To address these problems, we have developed ionizable cationic lipids with pKa values below 7 that allow oligonucleotide encapsulation at low pH (e.g., pH 4) and a relatively neutral surface at physiological pH. Further optimization of cationic lipids to achieve maximized endosomal destabilization following uptake has resulted in LNP siRNA systems that can silence genes in hepatocytes at doses as low as 0.005 mg siRNA/kg body weight in mouse models. These systems have been shown to be highly effective clinically, with promising results for the treatment of hypercholesterolemia and transthyretin-induced amyloidosis among others. More LNP siRNA therapeutics, targeting different tissues and diseases, are expected to become available in the near future.

Keywords

Lipid nanoparticles Therapeutics Small interfering RNA Drug delivery systems LNP siRNA systems 

References

  1. 1.
    Fire A et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature. 1998;391(6669):806–11.PubMedCrossRefGoogle Scholar
  2. 2.
    Elbashir SM et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature. 2001;411(6836):494–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Ashfaq UA et al. siRNAs: potential therapeutic agents against hepatitis C virus. Virol J. 2011;8:276.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Chen Y, Cheng G, Mahato RI. RNAi for treating hepatitis B viral infection. Pharm Res. 2008;25(1):72–86.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    DeVincenzo J et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc Natl Acad Sci U S A. 2010;107(19):8800–5.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Morrissey DV et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat Biotechnol. 2005;23(8):1002–7.PubMedCrossRefGoogle Scholar
  7. 7.
    Subramanya S et al. RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment: synthetic siRNA or vector-based shRNA? Expert Opin Biol Ther. 2010;10(2):201–13.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Devi GR. siRNA-based approaches in cancer therapy. Cancer Gene Ther. 2006;13(9):819–29.PubMedCrossRefGoogle Scholar
  9. 9.
    Martinez LA et al. Synthetic small inhibiting RNAs: efficient tools to inactivate oncogenic mutations and restore p53 pathways. Proc Natl Acad Sci U S A. 2002;99(23):14849–54.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Takeshita F, Ochiya T. Therapeutic potential of RNA interference against cancer. Cancer Sci. 2006;97(8):689–96.PubMedCrossRefGoogle Scholar
  11. 11.
    DiFiglia M et al. Therapeutic silencing of mutant huntingtin with siRNA attenuates striatal and cortical neuropathology and behavioral deficits. Proc Natl Acad Sci U S A. 2007;104(43):17204–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Farah MH. RNAi silencing in mouse models of neurodegenerative diseases. Curr Drug Deliv. 2007;4(2):161–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Li T, Koshy S, Folkesson HG. RNA interference for CFTR attenuates lung fluid absorption at birth in rats. Respir Res. 2008;9:55.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Courties G et al. RNA interference-based gene therapy for successful treatment of rheumatoid arthritis. Expert Opin Biol Ther. 2009;9(5):535–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Behlke MA. Chemical modification of siRNAs for in vivo use. Oligonucleotides. 2008;18(4):305–19.PubMedCrossRefGoogle Scholar
  16. 16.
    Dykxhoorn DM, Palliser D, Lieberman J. The silent treatment: siRNAs as small molecule drugs. Gene Ther. 2006;13(6):541–52.PubMedCrossRefGoogle Scholar
  17. 17.
    Zimmermann TS et al. RNAi-mediated gene silencing in non-human primates. Nature. 2006;441(7089):111–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Kanasty RL et al. Action and reaction: the biological response to siRNA and its delivery vehicles. Mol Ther. 2012;20(3):513–24.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Chiu YL, Rana TM. siRNA function in RNAi: a chemical modification analysis. RNA. 2003;9(9):1034–48.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Snead NM, Rossi JJ. RNA interference trigger variants: getting the most out of RNA for RNA interference-based therapeutics. Nucleic Acid Ther. 2012;22(3):139–46.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Bangham AD. Membrane models with phospholipids. Prog Biophys Mol Biol. 1968;18:29–95.PubMedCrossRefGoogle Scholar
  22. 22.
    Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238–52.PubMedCrossRefGoogle Scholar
  23. 23.
    Deamer DW. From “banghasomes” to liposomes: a memoir of Alec Bangham, 1921–2010. FASEB J. 2010;24(5):1308–10.PubMedCrossRefGoogle Scholar
  24. 24.
    Gregoriadis G. Drug entrapment in liposomes. FEBS Lett. 1973;36(3):292–6.PubMedCrossRefGoogle Scholar
  25. 25.
    Gregoriadis G. The carrier potential of liposomes in biology and medicine (second of two parts). N Engl J Med. 1976;295(14):765–70.PubMedCrossRefGoogle Scholar
  26. 26.
    Gregoriadis G. The carrier potential of liposomes in biology and medicine (first of two parts). N Engl J Med. 1976;295(13):704–10.PubMedCrossRefGoogle Scholar
  27. 27.
    Gregoriadis G, Ryman BE. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem J. 1971;124(5):58P.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Huang C. Studies on phosphatidylcholine vesicles. Formation and physical characteristics. Biochemistry. 1969;8(1):344–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Schullery SE et al. Fusion of dipalmitoylphosphatidylcholine vesicles. Biochemistry. 1980;19(17):3919–23.PubMedCrossRefGoogle Scholar
  30. 30.
    Fenske DB, Cullis PR. Liposomal nanomedicines. Expert Opin Drug Deliv. 2008;5(1):25–44.PubMedCrossRefGoogle Scholar
  31. 31.
    Hope MJ et al. Production of large unilamellar vesicles by a rapid extrusion procedure: characterization of size distribution, trapped volume and ability to maintain a membrane potential. Biochim Biophys Acta. 1985;812(1):55–65.PubMedCrossRefGoogle Scholar
  32. 32.
    Mayer LD, Hope MJ, Cullis PR. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim Biophys Acta. 1986;858(1):161–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Szoka F et al. Preparation of unilamellar liposomes of intermediate size (0.1–0.2 mumol) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. Biochim Biophys Acta. 1980;601(3):559–71.PubMedCrossRefGoogle Scholar
  34. 34.
    Batzri S, Korn ED. Single bilayer liposomes prepared without sonication. Biochim Biophys Acta. 1973;298(4):1015–9.PubMedCrossRefGoogle Scholar
  35. 35.
    Stroock AD et al. Chaotic mixer for microchannels. Science. 2002;295(5555):647–51.PubMedCrossRefGoogle Scholar
  36. 36.
    Belliveau NM et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol Ther Nucleic Acids. 2012;1:e37.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhigaltsev IV et al. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir. 2012;28(7):3633–40.PubMedCrossRefGoogle Scholar
  38. 38.
    de Kruijff B, Cullis PR, Radda GK. Differential scanning calorimetry and 31P NMR studies on sonicated and unsonicated phosphatidylcholine liposomes. Biochim Biophys Acta. 1975;406(1):6–20.PubMedCrossRefGoogle Scholar
  39. 39.
    De Kruijff B, Cullis PR, Radda GK. Outside–inside distributions and sizes of mixed phosphatidylcholine–cholesterol vesicles. Biochim Biophys Acta. 1976;436(4):729–40.PubMedCrossRefGoogle Scholar
  40. 40.
    Cullis PR et al. Influence of pH gradients on the transbilayer transport of drugs, lipids, peptides and metal ions into large unilamellar vesicles. Biochim Biophys Acta. 1997;1331(2):187–211.PubMedCrossRefGoogle Scholar
  41. 41.
    Fenske DB, Cullis PR. Entrapment of small molecules and nucleic acid-based drugs in liposomes. Methods Enzymol. 2005;391:7–40.PubMedCrossRefGoogle Scholar
  42. 42.
    Madden TD et al. The accumulation of drugs within large unilamellar vesicles exhibiting a proton gradient: a survey. Chem Phys Lipids. 1990;53(1):37–46.PubMedCrossRefGoogle Scholar
  43. 43.
    Mayer LD, Bally MB, Cullis PR. Uptake of adriamycin into large unilamellar vesicles in response to a pH gradient. Biochim Biophys Acta. 1986;857(1):123–6.PubMedCrossRefGoogle Scholar
  44. 44.
    Mayer LD et al. Characterization of liposomal systems containing doxorubicin entrapped in response to pH gradients. Biochim Biophys Acta. 1990;1025(2):143–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Mayer LD et al. Influence of vesicle size, lipid composition, and drug-to-lipid ratio on the biological activity of liposomal doxorubicin in mice. Cancer Res. 1989;49(21):5922–30.PubMedGoogle Scholar
  46. 46.
    Zhigaltsev IV et al. Development of a weak-base docetaxel derivative that can be loaded into lipid nanoparticles. J Control Release. 2010;144(3):332–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Maeda H et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release Off Journal Control Release Soc. 2000;65(1–2):271–84.CrossRefGoogle Scholar
  48. 48.
    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzym Regul. 2001;41:189–207.CrossRefGoogle Scholar
  49. 49.
    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.PubMedGoogle Scholar
  50. 50.
    Hashizume H et al. Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156(4):1363–80.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Jain RK. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 1987;6(4):559–93.PubMedCrossRefGoogle Scholar
  52. 52.
    Sarin H. Physiologic upper limits of pore size of different blood capillary types and another perspective on the dual pore theory of microvascular permeability. J Angiogenes Res. 2010;2:14.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sarin H et al. Physiologic upper limit of pore size in the blood–tumor barrier of malignant solid tumors. J Transl Med. 2009;7:51.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Kimelberg HK et al. The effect of entrapment in liposomes on the in vivo distribution of [3H]methotrexate in a primate. Cancer Res. 1976;36(8):2949–57.PubMedGoogle Scholar
  55. 55.
    Gregoriadis G, Neerunjun DE. Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications. Eur J Biochem. 1974;47(1):179–85.PubMedCrossRefGoogle Scholar
  56. 56.
    Juliano RL, Stamp D. The effect of particle size and charge on the clearance rates of liposomes and liposome encapsulated drugs. Biochem Biophys Res Commun. 1975;63(3):651–8.PubMedCrossRefGoogle Scholar
  57. 57.
    Hoekstra D, Scherphof G. Effect of fetal calf serum and serum protein fractions on the uptake of liposomal phosphatidylcholine by rat hepatocytes in primary monolayer culture. Biochim Biophys Acta. 1979;551(1):109–21.PubMedCrossRefGoogle Scholar
  58. 58.
    Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J Biol Chem. 1992;267(26):18759–65.PubMedGoogle Scholar
  59. 59.
    Moghimi SM, Patel HM. Differential properties of organ-specific serum opsonins for liver and spleen macrophages. Biochim Biophys Acta. 1989;984(3):379–83.PubMedCrossRefGoogle Scholar
  60. 60.
    Papahadjopoulos D et al. Sterically stabilized liposomes: improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci U S A. 1991;88(24):11460–4.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta. 1991;1068(2):133–41.PubMedCrossRefGoogle Scholar
  62. 62.
    Ishida T et al. Accelerated clearance of PEGylated liposomes in rats after repeated injections. J Control Release. 2003;88(1):35–42.PubMedCrossRefGoogle Scholar
  63. 63.
    Allen TM et al. Stealth liposomes: an improved sustained release system for 1-beta-d-arabinofuranosylcytosine. Cancer Res. 1992;52(9):2431–9.PubMedGoogle Scholar
  64. 64.
    Mayhew EG et al. Pharmacokinetics and antitumor activity of epirubicin encapsulated in long-circulating liposomes incorporating a polyethylene glycol-derivatized phospholipid. Int J Cancer. 1992;51(2):302–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Vaage J et al. Therapy of primary and metastatic mouse mammary carcinomas with doxorubicin encapsulated in long circulating liposomes. Int J Cancer. 1992;51(6):942–8.PubMedCrossRefGoogle Scholar
  66. 66.
    Bakker-Woudenberg IA et al. Enhanced localization of liposomes with prolonged blood circulation time in infected lung tissue. Biochim Biophys Acta. 1992;1138(4):318–26.PubMedCrossRefGoogle Scholar
  67. 67.
    James ND et al. Liposomal doxorubicin (Doxil): an effective new treatment for Kaposi’s sarcoma in AIDS. Clin Oncol (R Coll Radiol). 1994;6(5):294–6.CrossRefGoogle Scholar
  68. 68.
    Muggia FM. Clinical efficacy and prospects for use of pegylated liposomal doxorubicin in the treatment of ovarian and breast cancers. Drugs. 1997;54 Suppl 4:22–9.PubMedCrossRefGoogle Scholar
  69. 69.
    Blade J et al. Efficacy and safety of pegylated liposomal doxorubicin in combination with bortezomib for multiple myeloma: effects of adverse prognostic factors on outcome. Clin Lymphoma Myeloma Leuk. 2011;11(1):44–9.PubMedCrossRefGoogle Scholar
  70. 70.
    Boman NL et al. Liposomal vincristine which exhibits increased drug retention and increased circulation longevity cures mice bearing P388 tumors. Cancer Res. 1994;54(11):2830–3.PubMedGoogle Scholar
  71. 71.
    Boman NL, Mayer LD, Cullis PR. Optimization of the retention properties of vincristine in liposomal systems. Biochim Biophys Acta. 1993;1152(2):253–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Mayer LD et al. Identification of vesicle properties that enhance the antitumour activity of liposomal vincristine against murine L1210 leukemia. Cancer Chemother Pharmacol. 1993;33(1):17–24.PubMedCrossRefGoogle Scholar
  73. 73.
    Webb MS et al. Preclinical pharmacology, toxicology and efficacy of sphingomyelin/cholesterol liposomal vincristine for therapeutic treatment of cancer. Cancer Chemother Pharmacol. 1998;42(6):461–70.PubMedCrossRefGoogle Scholar
  74. 74.
    Webb MS et al. Sphingomyelin-cholesterol liposomes significantly enhance the pharmacokinetic and therapeutic properties of vincristine in murine and human tumour models. Br J Cancer. 1995;72(4):896–904.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.PubMedCrossRefGoogle Scholar
  76. 76.
    Felgner PL et al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci U S A. 1987;84(21):7413–7.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Felgner PL, Ringold GM. Cationic liposome-mediated transfection. Nature. 1989;337(6205):387–8.PubMedCrossRefGoogle Scholar
  78. 78.
    Hafez IM, Maurer N, Cullis PR. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther. 2001;8(15):1188–96.PubMedCrossRefGoogle Scholar
  79. 79.
    Hirko A, Tang F, Hughes JA. Cationic lipid vectors for plasmid DNA delivery. Curr Med Chem. 2003;10(14):1185–93.PubMedCrossRefGoogle Scholar
  80. 80.
    Martin B et al. The design of cationic lipids for gene delivery. Curr Pharm Des. 2005;11(3):375–94.PubMedCrossRefGoogle Scholar
  81. 81.
    Lappalainen K et al. Comparison of cell proliferation and toxicity assays using two cationic liposomes. Pharm Res. 1994;11(8):1127–31.PubMedCrossRefGoogle Scholar
  82. 82.
    Filion MC, Phillips NC. Toxicity and immunomodulatory activity of liposomal vectors formulated with cationic lipids toward immune effector cells. Biochim Biophys Acta. 1997;1329(2):345–56.PubMedCrossRefGoogle Scholar
  83. 83.
    Maurer N et al. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys J. 2001;80(5):2310–26.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Semple SC et al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim Biophys Acta. 2001;1510(1–2):152–66.PubMedCrossRefGoogle Scholar
  85. 85.
    Hafez IM, Cullis PR. Roles of lipid polymorphism in intracellular delivery. Adv Drug Deliv Rev. 2001;47(2–3):139–48.PubMedCrossRefGoogle Scholar
  86. 86.
    Koltover I et al. An inverted hexagonal phase of cationic liposome–DNA complexes related to DNA release and delivery. Science. 1998;281(5373):78–81.PubMedCrossRefGoogle Scholar
  87. 87.
    Heyes J et al. Cationic lipid saturation influences intracellular delivery of encapsulated nucleic acids. J Control Release. 2005;107(2):276–87.PubMedCrossRefGoogle Scholar
  88. 88.
    Jayaraman M et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew Chem Int Ed Engl. 2012;51(34):8529–33.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Semple SC et al. Rational design of cationic lipids for siRNA delivery. Nat Biotechnol. 2010;28(2):172–6.PubMedCrossRefGoogle Scholar
  90. 90.
    Ambegia E et al. Stabilized plasmid-lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression. Biochim Biophys Acta. 2005;1669(2):155–63.PubMedCrossRefGoogle Scholar
  91. 91.
    Fenske DB, MacLachlan I, Cullis PR. Stabilized plasmid-lipid particles: a systemic gene therapy vector. Methods Enzymol. 2002;346:36–71.PubMedCrossRefGoogle Scholar
  92. 92.
    Wheeler JJ et al. Stabilized plasmid-lipid particles: construction and characterization. Gene Ther. 1999;6(2):271–81.PubMedCrossRefGoogle Scholar
  93. 93.
    Akinc A et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol Ther. 2010;18(7):1357–64.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Leung AK et al. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. J Phys Chem C Nanomater Interfaces. 2012;116(34):18440–50.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Basha G et al. Influence of cationic lipid composition on gene silencing properties of lipid nanoparticle formulations of siRNA in antigen-presenting cells. Mol Ther. 2011;19(12):2186–200.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Lee JB et al. Lipid nanoparticle siRNA systems for silencing the androgen receptor in human prostate cancer in vivo. Int J Cancer. 2012;131(5):E781–90.PubMedCrossRefGoogle Scholar
  97. 97.
    Di Paolo D et al. Selective therapeutic targeting of the anaplastic lymphoma kinase with liposomal siRNA induces apoptosis and inhibits angiogenesis in neuroblastoma. Mol Ther. 2011;19(12):2201–12.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    World Gastroenterology Organisation global guideline. Hepatocellular carcinoma (HCC): a global perspective. http://www.worldgastroenterology.org/assets/downloads/en/pdf/guidelines/24_hepatocellular_carcinoma_en.pdf (2009).
  99. 99.
    Mayer TU et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science. 1999;286(5441):971–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Kapitein LC et al. The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks. Nature. 2005;435(7038):114–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Weil D et al. Targeting the kinesin Eg5 to monitor siRNA transfection in mammalian cells. Biotechniques. 2002;33(6):1244–8.PubMedGoogle Scholar
  102. 102.
    Claesson-Welsh L, Welsh M. VEGFA and tumour angiogenesis. J Intern Med. 2013;273(2):114–27.PubMedCrossRefGoogle Scholar
  103. 103.
    Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.PubMedCrossRefGoogle Scholar
  104. 104.
    Landesman Y et al. In vivo quantification of formulated and chemically modified small interfering RNA by heating-in-Triton quantitative reverse transcription polymerase chain reaction (HIT qRT-PCR). Silence. 2010;1(1):16.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Zeldenrust SR, Benson MD. Familial and senile amyloidosis caused by transthyretin. In: Ramirez-Alvarado M, Kelly JW, Dobson C, editors. Protein misfolding diseases: current and emerging principles and therapies. New York: Wiley; 2010.Google Scholar
  106. 106.
    Nagasaka T. Familial amyloidotic polyneuropathy and transthyretin. Subcell Biochem. 2012;65:565–607.PubMedCrossRefGoogle Scholar
  107. 107.
    Jacobson DR et al. Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in Black Americans. N Engl J Med. 1997;336(7):466–73.PubMedCrossRefGoogle Scholar
  108. 108.
    Abifadel M et al. Strategies for proprotein convertase subtilisin kexin 9 modulation: a perspective on recent patents. Expert Opin Ther Pat. 2010;20(11):1547–71.PubMedCrossRefGoogle Scholar
  109. 109.
    Cariou B, Le May C, Costet P. Clinical aspects of PCSK9. Atherosclerosis. 2011;216(2):258–65.PubMedCrossRefGoogle Scholar
  110. 110.
    Farnier M. The role of proprotein convertase subtilisin/kexin type 9 in hyperlipidemia: focus on therapeutic implications. Am J Cardiovasc Drugs. 2011;11(3):145–52.PubMedCrossRefGoogle Scholar
  111. 111.
    Reagan-Shaw S, Ahmad N. Silencing of polo-like kinase (Plk) 1 via siRNA causes induction of apoptosis and impairment of mitosis machinery in human prostate cancer cells: implications for the treatment of prostate cancer. FASEB J. 2005;19(6):611–3.PubMedGoogle Scholar
  112. 112.
    Ramanathan RK, et al., A phase I dose escalation study of TKM-080301, a RNAi therapeutic directed against PLK1, in patients with advanced solid tumors [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research, Abstract number LB-289, 6–10 April, Washington, DC; 2013.Google Scholar

Copyright information

© Controlled Release Society 2013

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyUniversity of British ColumbiaVancouverCanada
  2. 2.University of AlbertaEdmontonCanada
  3. 3.Life Sciences CentreVancouverCanada

Personalised recommendations