Drug Delivery and Translational Research

, Volume 4, Issue 3, pp 256–267 | Cite as

Concurrent oral and inhalation drug delivery using a dual formulation system: the use of oral theophylline carrier with combined inhalable budesonide and terbutaline

Research Article

Abstract

A novel approach to concurrently deliver oral and inhaled drugs as a single formulation is presented. A triple therapy containing theophylline (THEO; orally delivered) with budesonide (BUD) and terbutaline (TERB; as single and co-spray-dried inhaled powders) was prepared as an ordered mix, with THEO acting as a carrier. The aerosolisation performance of THEO formulations containing BUD and TERB alone, physical mix and co-spray-dried powder was evaluated using a next-generation impactor (NGI). Physicochemical properties were investigated using electron microscopy, laser diffraction, dynamic vapour sorption and thermal analysis. NGI analysis indicated that >99 % of the THEO powder was >4.46 μm, with >90 % dissolved within 5 min. Particle size analysis showed TEB and BUD samples were of a suitable size for inhalation. Thermal and moisture analysis suggested powders to be stable at room temperature up to 70 % RH. Aerosol studies indicated a different performance of BUD and TERB depending on the mixing procedure. The co-spray-dried formulation showed the highest performance, with a fine particle fraction (≤4.46 μm) of BUD and TERB of 34.39 ± 3.56 and 33.61 ± 5.67 %, respectively. Such observations suggest that this multicomponent drug delivery system could be developed to concomitantly deliver oral and inhaled drugs, an approach that, to date, does not exist. Ultimately, this technology potentially reduces the requirement for multiple therapies and increases patient compliance.

Keywords

Theophylline Budesonide Terbutaline Inhalation Oral delivery 

References

  1. 1.
    Hambleton G, Weinberger M, Taylor J, Cavanaugh M, Ginchansky E, Godfrey S, et al. Comparison of cromoglycate (cromolyn) and theophylline in controlling symptoms of chronic asthma. A collaborative study. Lancet. 1977;1(8008):381–5.CrossRefPubMedGoogle Scholar
  2. 2.
    Nassif EG, Weinberger M, Thompson R, Huntley W. The value of maintenance theophylline in steroid-dependent asthma. N Engl J Med. 1981;304(2):71–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Dusdieker L, Green M, Smith GD, Ekwo EE, Weinberger M. Comparison of orally administered metaproterenol and theophylline in the control of chronic asthma. J Pediatr. 1982;101(2):281–7.CrossRefPubMedGoogle Scholar
  4. 4.
    Milgrom H, Bender B. Current issues in the use of theophylline. Am Rev Respir Dis. 1993;147(6 Pt 2):S33–9.CrossRefPubMedGoogle Scholar
  5. 5.
    Vaz Fragoso CA, Miller MA. Review of the clinical efficacy of theophylline in the treatment of chronic obstructive pulmonary disease. Am Rev Respir Dis. 1993;147(6 Pt 2):S40–7.CrossRefPubMedGoogle Scholar
  6. 6.
    Barnes PJ. Theophylline in chronic obstructive pulmonary disease: new horizons. Proc Am Thorac Soc. 2005;2(4):334–9. discussion 40–1.CrossRefPubMedGoogle Scholar
  7. 7.
    Mellis CM, Peat JK, Woolcock AJ. The cost of asthma: can it be reduced? PharmacoEconomics. 1993;3(3):205–19.CrossRefPubMedGoogle Scholar
  8. 8.
    Spector S. Noncompliance with asthma therapy—are there solutions? J Asthma. 2000;37(5):381–8.CrossRefPubMedGoogle Scholar
  9. 9.
    Djukanovic R, Finnerty JP, Lee C, Wilson S, Madden J, Holgate ST. The effects of theophylline on mucosal inflammation in asthmatic airways: biopsy results. Eur Respir J. 1995;8(5):831–3.PubMedGoogle Scholar
  10. 10.
    Rabe KF, Magnussen H, Dent G. Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants. Eur Respir J. 1995;8(4):637–42.PubMedGoogle Scholar
  11. 11.
    Markham A, Faulds D. Theophylline. A review of its potential steroid sparing effects in asthma. Drugs. 1998;56(6):1081–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Rabe KF, Dent G. Theophylline and airway inflammation. Clin Exp Allergy. 1998;28 Suppl 3:35–41.PubMedGoogle Scholar
  13. 13.
    Tomita K, Chikumi H, Tokuyasu H, Yajima H, Hitsuda Y, Matsumoto Y, et al. Functional assay of NF-kappaB translocation into nuclei by laser scanning cytometry: inhibitory effect by dexamethasone or theophylline. Naunyn Schmiedebergs Arch Pharmacol. 1999;359(4):249–55.CrossRefPubMedGoogle Scholar
  14. 14.
    Ohta K, Sawamoto S, Nakajima M, Kubota S, Tanaka Y, Miyasaka T, et al. The prolonged survival of human eosinophils with interleukin-5 and its inhibition by theophylline via apoptosis. Clin Exp Allergy. 1996;26 Suppl 2:10–5.CrossRefPubMedGoogle Scholar
  15. 15.
    Yasui K, Hu B, Nakazawa T, Agematsu K, Komiyama A. Theophylline accelerates human granulocyte apoptosis not via phosphodiesterase inhibition. J Clin Invest. 1997;100(7):1677–84.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    American Thoracic Society (1995) Standards for the diagnosis and care of patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152(5 Pt 2):S77–121.Google Scholar
  17. 17.
    Ram FS, Jones PW, Castro AA, De Brito JA, Atallah AN, Lacasse Y, et al. Oral theophylline for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2002;4:CD003902.PubMedGoogle Scholar
  18. 18.
    Zhou Y, Wang X, Zeng X, Qiu R, Xie J, Liu S, et al. Positive benefits of theophylline in a randomized, double-blind, parallel-group, placebo-controlled study of low-dose, slow-release theophylline in the treatment of COPD for 1 year. Respirology. 2006;11(5):603–10 (Randomized controlled trial. Research support, non-U.S. Government).CrossRefPubMedGoogle Scholar
  19. 19.
    Prowse K, Walters EH. Can aminophylline reduce the need for oral corticosteroids? J Int Med Res. 1979;7 Suppl 1:101–5.PubMedGoogle Scholar
  20. 20.
    Rivington RN, Boulet LP, Cote J, Kreisman H, Small DI, Alexander M, et al. Efficacy of Uniphyl, salbutamol, and their combination in asthmatic patients on high-dose inhaled steroids. Am J Respir Crit Care Med. 1995;151(2 Pt 1):325–32.CrossRefPubMedGoogle Scholar
  21. 21.
    Lim S, Tomita K, Caramori G, Jatakanon A, Oliver B, Keller A, et al. Low-dose theophylline reduces eosinophilic inflammation but not exhaled nitric oxide in mild asthma. Am J Respir Crit Care Med. 2001;164(2):273–6.CrossRefPubMedGoogle Scholar
  22. 22.
    Evans DJ, Taylor DA, Zetterstrom O, Chung KF, O’Connor BJ, Barnes PJ. A comparison of low-dose inhaled budesonide plus theophylline and high-dose inhaled budesonide for moderate asthma. N Engl J Med. 1997;337(20):1412–8.CrossRefPubMedGoogle Scholar
  23. 23.
    Ukena D, Harnest U, Sakalauskas R, Magyar P, Vetter N, Steffen H, et al. Comparison of addition of theophylline to inhaled steroid with doubling of the dose of inhaled steroid in asthma. Eur Respir J. 1997;10(12):2754–60.CrossRefPubMedGoogle Scholar
  24. 24.
    Morali T, Yilmaz A, Erkan F, Akkaya E, Ece F, Baran R. Efficacy of inhaled budesonide and oral theophylline in asthmatic subjects. J Asthma. 2001;38(8):673–9.CrossRefPubMedGoogle Scholar
  25. 25.
    Dahl R, Larsen BB, Venge P. Effect of long-term treatment with inhaled budesonide or theophylline on lung function, airway reactivity and asthma symptoms. Respir Med. 2002;96(6):432–8.CrossRefPubMedGoogle Scholar
  26. 26.
    Ford PA, Durham AL, Russell RE, Gordon F, Adcock IM, Barnes PJ. Treatment effects of low-dose theophylline combined with an inhaled corticosteroid in COPD. Chest. 2010;137(6):1338–44 (Randomized controlled trial. Research support, non-U.S. Government).CrossRefPubMedGoogle Scholar
  27. 27.
    Wang Y, Lin K, Wang C, Liao X. Addition of theophylline or increasing the dose of inhaled corticosteroid in symptomatic asthma: a meta-analysis of randomized controlled trials. Yonsei Med J. 2011;52(2):268–75 (Meta-analysis).CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Todd G, Acerini C, Buck J, Murphy N, Ross-Russell R, Warner J. Acute adrenal crisis in asthmatics treated with high-dose fluticasone propionate. Eur Respir J. 2002;19:1207–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Adams N, Bestall J, Jones P. Inhaled fluticasone propionate for chronic asthma. Cochrane Library. 2002(1).Google Scholar
  30. 30.
    Marlin GE, Hartnett BJ, Berend N, Hacket NB. Assessment of combined oral theophylline and inhaled beta-adrenoceptor agonist bronchodilator therapy. Br J Clin Pharmacol. 1978;5((1):45–50 (Clinical trial comparative study randomized controlled trial).CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Angus R, Reagon R, Cheesbrough A. Short-acting beta 2-agonist and oral corticosteroid use in asthma patients prescribed either concurrent beclomethasone and long-acting beta 2-agonist or salmeterol/fluticasone propionate combination. Int J Clin Pract. 2005;59(2):156–62.CrossRefPubMedGoogle Scholar
  32. 32.
    Bateman ED, Boushey HA, Bousquet J, Busse WW, Clark TJ, Pauwels RA, et al. Can guideline-defined asthma control be achieved? The gaining optimal asthma control study. Am J Respir Crit Care Med. 2004;170(8):836–44. (Clinical trial multicenter study randomized controlled trial. Research support, non-U.S. Government].CrossRefPubMedGoogle Scholar
  33. 33.
    O'Byrne PM, Bisgaard H, Godard PP, Pistolesi M, Palmqvist M, Zhu Y, et al. Budesonide/formoterol combination therapy as both maintenance and reliever medication in asthma. Am J Respir Crit Care Med. 2005;171(2):129–36 (Clinical trial multicenter study randomized controlled trial).CrossRefPubMedGoogle Scholar
  34. 34.
    Pauwels RA, Lofdahl CG, Postma DS, Tattersfield AE, O'Byrne P, Barnes PJ, et al. Effect of inhaled formoterol and budesonide on exacerbations of asthma. Formoterol and Corticosteroids Establishing Therapy (FACET) International Study Group. N Engl J Med. 1997;337(20):1405–11 (Clinical trial multicenter study randomized controlled trial. Research support, Non-U.S. Government).CrossRefPubMedGoogle Scholar
  35. 35.
    Society BT (2011) Scottish Intercollegiate Guidelines Network British Guideline on the Management of Asthma. http://www.brit-thoracic.org.uk/guidelines.aspx. 20 August 2012.
  36. 36.
    Global Initiative for Asthma G (2011) Global strategy for asthma management and prevention. http://www.ginasthma.org/Guidelines/guidelines-resources.html. Accessed 20 August 2012.
  37. 37.
    Hartnett BJ, Marlin GE. Comparison of oral theophylline and salbutamol by inhalation in asthmatic patients. Br J Clin Pharmacol. 1976;3(4):591–4 (Comparative study randomized controlled trial).CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ward G, Schultz R (inventors) (2001) Pharmaceutical formulation and method for pulmonary and oral therapy, 19 July 2001.Google Scholar
  39. 39.
    Islam N, Rashid A, Camm G (2011) Effects of magnesium stearate on the efficient dispersion of salbutamol sulphate from carrier-based dry powder inhaler formulations. Proceedings of RDD Europe 2011, volume II: Respiratory Drug Delivery (RDD) Online, Virginia Commonwealth University; 2011. p. 415–8.Google Scholar
  40. 40.
    Guchardi R, Frei M, John E, Kaerger JS. Influence of fine lactose and magnesium stearate on low dose dry powder inhaler formulations. Int J Pharm. 2008;348(1–2):10–7. doi:10.1016/j.ijpharm.2007.06.041.CrossRefPubMedGoogle Scholar
  41. 41.
    Frijlink HW, De Boer AH. Dry powder inhalers for pulmonary drug delivery. Expert Opin Drug Deliv. 2004;1(1):67–86 (Review).CrossRefPubMedGoogle Scholar
  42. 42.
    Pharmacopoeia B. Consistency of formulated preparations. 2011.Google Scholar
  43. 43.
    Pharmacopoeia US. Uniformity of dosage units. 2011.Google Scholar
  44. 44.
    Amidon GL, Lennernas H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413–20 (In vitro research. Support, U.S. Government, P.H.S.).CrossRefPubMedGoogle Scholar
  45. 45.
    Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption: immediate release dosage forms. Pharm Res. 1998;15(1):11–22 (Review. Research support, U.S. Government, P.H.S.).CrossRefPubMedGoogle Scholar
  46. 46.
    Patton JS, Byron PR. Inhaling medicines: delivering drugs to the body through the lungs. Nat Rev Drug Discov. 2007;6(1):67–74 (Review).CrossRefPubMedGoogle Scholar
  47. 47.
    Boraey MA, Hoe S, Sharif H, Miller DP, Lechuga-Ballesteros D, Vehring R. Improvement of the dispersibility of spray-dried budesonide powders using leucine in an ethanol–water cosolvent system. Powder Technology. 2013;236:171–8.CrossRefGoogle Scholar
  48. 48.
    Thi TH, Danede F, Descamps M, Flament MP. Comparison of physical and inhalation properties of spray-dried and micronized terbutaline sulphate. Eur J Pharm Biopharm: Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik eV. 2008;70(1):380–8 (Comparative study).CrossRefGoogle Scholar
  49. 49.
    Borgstrom L, Bondesson E, Moren F, Trofast E, Newman SP. Lung deposition of budesonide inhaled via Turbuhaler®—a comparison with terbutaline sulfate in normal subjects. Eur Respir J. 1994;7(1):69–73.CrossRefPubMedGoogle Scholar
  50. 50.
    GenomeQuest I. Terbutaline. 2005. http://www.drugbank.ca/drugs/DB00871. Accessed 17 August 2012.
  51. 51.
    Shekunov BY, Chattopadhyay P, Tong HH, Chow AH. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res. 2007;24(2):203–27 (Review. Research support, non-U.S. Government).CrossRefPubMedGoogle Scholar
  52. 52.
    Hersey JA. Ordered mixing—new concept in powder mixing practice. Powder Technol. 1975;11(1):41–4.CrossRefGoogle Scholar
  53. 53.
    Pharmacopeia U. Uniformity of dosage units: content uniformity (905). In: Pharmacopeia U, editor; 2004. p. 2396–7.Google Scholar
  54. 54.
    Thi THH, DanËde F, Descamps M, Flament M-P. Comparison of physical and inhalation properties of spray-dried and micronized terbutaline sulphate. Eur J Pharm Biopharm. 2008;70(1):380–8. doi:10.1016/j.ejpb.2008.04.002.CrossRefPubMedGoogle Scholar
  55. 55.
    Suzuki E, Shimomura K, Sekiguchi K. Thermochemical study of theophylline and its hydrate. Chem Pharm Bull. 1989;37:493–7.CrossRefGoogle Scholar
  56. 56.
    Vora KL, Buckton G, Clapham D. The use of dynamic vapour sorption and near infra-red spectroscopy (DVS-NIR) to study the crystal transitions of theophylline and the report of a new solid-state transition. Eur J Pharm Sci: Off J Eur Fed Pharm Sci. 2004;22(2–3):97–105 (Research support, non-U.S. Government).CrossRefGoogle Scholar
  57. 57.
    Phadnis NV, Suryanarayanan R. Polymorphism in anhydrous theophylline—implications on the dissolution rate of theophylline tablets. J Pharm Sci. 1997;86(11):1256–63 (Research support, non-U.S. Government).CrossRefPubMedGoogle Scholar
  58. 58.
    Nolan LM, Tajber L, McDonald BF, Barham AS, Corrigan OI, Healy AM. Excipient-free nanoporous microparticles of budesonide for pulmonary delivery. Eur J Pharm Sci. 2009;37(5):593–602.CrossRefPubMedGoogle Scholar
  59. 59.
    The Merck Index (online resource). Whitehouse Station, NJ: Merck and Co., Inc. Accessed 23 August 2012.Google Scholar
  60. 60.
    Harris RK, Hodgkinson P, Larsson T, Muruganantham A, Ymén I, Yufit DS, et al. Characterization of polymorphs and solvates of terbutaline sulfate. Cryst Growth Des. 2008;8(1):80–90.CrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2013

Authors and Affiliations

  • Rania O. Salama
    • 1
  • Paul M. Young
    • 1
    • 2
  • Daniela Traini
    • 1
    • 2
  1. 1.Respiratory Technology, Woolcock Institute of Medical ResearchGlebeAustralia
  2. 2.Discipline of PharmacologySydney Medical School, University of SydneySydneyAustralia

Personalised recommendations