Advertisement

Drug Delivery and Translational Research

, Volume 3, Issue 4, pp 336–351 | Cite as

Nanotechnology for CNS delivery of bio-therapeutic agents

  • Lipa Shah
  • Sunita Yadav
  • Mansoor AmijiEmail author
Review Article

Abstract

The current therapeutic strategies are not efficient in treating disorders related to the central nervous system (CNS) and have only shown partial alleviation of symptoms, as opposed to disease-modifying effects. With change in population demographics, incidence of CNS disorders, especially neurodegenerative diseases, is expected to rise dramatically. Current treatment regimens are associated with severe side-effects, especially given that most of these are chronic therapies and involve elderly population. In this review, we highlight the challenges and opportunities in delivering newer and more effective bio-therapeutic agents for the treatment of CNS disorders. Bio-therapeutics like proteins, peptides, monoclonal antibodies, growth factors, and nucleic acids are thought to have a profound effect on halting the progression of neurodegenerative disorders and also provide a unique function of restoring damaged cells. We provide a review of the nano-sized formulation-based drug delivery systems and alternate modes of delivery, like the intranasal route, to carry bio-therapeutics effectively to the brain.

Keywords

Central nervous system Blood–brain barrier Nano-sized formulations Intranasal delivery Systemic delivery Bio-therapeutics Drug delivery Olfactory receptor neurons 

References

  1. 1.
    McGonigle P. Peptide therapeutics for CNS indications. Biochem Pharmacol. 2012;83(5):559–66.PubMedCrossRefGoogle Scholar
  2. 2.
    Rajadhyaksha M, Boyden T, Liras J, El-Kattan A, Brodfuehrer J. Current advances in delivery of biotherapeutics across the blood–brain barrier. Curr Drug Discov Technol. 2011;8(2):87–101.PubMedCrossRefGoogle Scholar
  3. 3.
    Garcel A, Martel S, Carrupt P, Doelker E, Delie F. In vitro blood brain barrier models as a screening tool for colloidal drug delivery systems and other nanosystems. Int J Biomed Nanosci Nanotechnol. 2010;1(2):133–63.CrossRefGoogle Scholar
  4. 4.
    Pardridge WM. Re-engineering biopharmaceuticals for delivery to brain with molecular Trojan horses. Bioconjug Chem. 2008;19(7):1327–38.PubMedCrossRefGoogle Scholar
  5. 5.
    Potschka H. Role of CNS efflux drug transporters in antiepileptic drug delivery: overcoming CNS efflux drug transport. Adv Drug Deliv Rev. 2012;64(10):943–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Barchet TM, Amiji MM. Challenges and opportunities in CNS delivery of therapeutics for neurodegenerative diseases. Expert Opin Drug Deliv. 2009;6(3):211–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Dietz GP, Bahr M. Delivery of bioactive molecules into the cell: the Trojan horse approach. Mol Cell Neurosci. 2004;27(2):85–131.PubMedCrossRefGoogle Scholar
  8. 8.
    Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19(3):311–30.PubMedCrossRefGoogle Scholar
  9. 9.
    Van RI, Cakir-Tascioglu S, Hennink WE, Storm G, Schiffelers RM, Mastrobattista E. In vivo methods to study uptake of nanoparticles into the brain. Pharm Res. 2011;28(3):456–71.CrossRefGoogle Scholar
  10. 10.
    Pardridge WM. Molecular Trojan horses for blood–brain barrier drug delivery. Discov Med. 2006;6(34):139–43.PubMedGoogle Scholar
  11. 11.
    Musacchio T, Torchilin VP. Recent developments in lipid-based pharmaceutical nanocarriers. Front Biosci. 2011;16:1388–412.PubMedCrossRefGoogle Scholar
  12. 12.
    Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv. 2009;6(10):1017–32.PubMedCrossRefGoogle Scholar
  13. 13.
    Pardridge WM. Vector-mediated drug delivery to the brain. Adv Drug Deliv Rev. 1999;36(2–3):299–321.PubMedCrossRefGoogle Scholar
  14. 14.
    Soni V, Kohli DV, Jain SK. Transferrin-conjugated liposomal system for improved delivery of 5-fluorouracil to brain. J Drug Target. 2008;16(1):73–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Zhang Y, Calon F, Zhu C, Boado RJ, Pardridge WM. Intravenous nonviral gene therapy causes normalization of striatal tyrosine hydroxylase and reversal of motor impairment in experimental parkinsonism. Hum Gene Ther. 2003;14(1):1–12.PubMedCrossRefGoogle Scholar
  16. 16.
    Lindqvist A, Rip J, Gaillard PJ, Bjorkman S, Hammarlund-Udenaes M. Enhanced Brain Delivery of the Opioid Peptide DAMGO in Glutathione PEGylated Liposomes: A Microdialysis Study. Mol Pharm 2012.Google Scholar
  17. 17.
    Zara GP, Cavalli R, Bargoni A, Fundaro A, Vighetto D, Gasco MR. Intravenous administration to rabbits of non-stealth and stealth doxorubicin-loaded solid lipid nanoparticles at increasing concentrations of stealth agent: pharmacokinetics and distribution of doxorubicin in brain and other tissues. J Drug Target. 2002;10(4):327–35.PubMedCrossRefGoogle Scholar
  18. 18.
    Wong HL, Bendayan R, Rauth AM, Li Y, Wu XY. Chemotherapy with anticancer drugs encapsulated in solid lipid nanoparticles. Adv Drug Deliv Rev. 2007;59(6):491–504.PubMedCrossRefGoogle Scholar
  19. 19.
    Blasi P, Giovagnoli S, Schoubben A, Ricci M, Rossi C. Solid lipid nanoparticles for targeted brain drug delivery. Adv Drug Deliv Rev. 2007;59(6):454–77.PubMedCrossRefGoogle Scholar
  20. 20.
    Wong HL, Bendayan R, Rauth AM, Wu XY. Development of solid lipid nanoparticles containing ionically complexed chemotherapeutic drugs and chemosensitizers. J Pharm Sci. 2004;93(8):1993–2008.PubMedCrossRefGoogle Scholar
  21. 21.
    Di SA, Iannitelli A, Laserra S, Sozio P. Drug delivery strategies for Alzheimer's disease treatment. Expert Opin Drug Deliv. 2011;8(5):581–603.CrossRefGoogle Scholar
  22. 22.
    Sarker DK. Engineering of nanoemulsions for drug delivery. Curr Drug Deliv. 2005;2(4):297–310.PubMedCrossRefGoogle Scholar
  23. 23.
    Ganta S, Deshpande D, Korde A, Amiji M. A review of multifunctional nanoemulsion systems to overcome oral and CNS drug delivery barriers. Mol Membr Biol. 2010;27(7):260–73.PubMedCrossRefGoogle Scholar
  24. 24.
    Vyas TK, Shahiwala A, Amiji MM. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations. Int J Pharm. 2008;347(1–2):93–101.PubMedCrossRefGoogle Scholar
  25. 25.
    Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv. 2006;3(2):219–32.PubMedCrossRefGoogle Scholar
  26. 26.
    Wong HL, Wu XY, Bendayan R. Nanotechnological advances for the delivery of CNS therapeutics. Adv Drug Deliv Rev. 2012;64(7):686–700.PubMedCrossRefGoogle Scholar
  27. 27.
    Huwyler J, Yang J, Pardridge WM. Receptor mediated delivery of daunomycin using immunoliposomes: pharmacokinetics and tissue distribution in the rat. J Pharmacol Exp Ther. 1997;282(3):1541–6.PubMedGoogle Scholar
  28. 28.
    Liu L, Guo K, Lu J, Venkatraman SS, Luo D, Ng KC, et al. Biologically active core/shell nanoparticles self-assembled from cholesterol-terminated PEG-TAT for drug delivery across the blood–brain barrier. Biomaterials. 2008;29(10):1509–17.PubMedCrossRefGoogle Scholar
  29. 29.
    Michaelis K, Hoffmann MM, Dreis S, Herbert E, Alyautdin RN, Michaelis M, et al. Covalent linkage of apolipoprotein e to albumin nanoparticles strongly enhances drug transport into the brain. J Pharmacol Exp Ther. 2006;317(3):1246–53.PubMedCrossRefGoogle Scholar
  30. 30.
    Fortin D, Gendron C, Boudrias M, Garant MP. Enhanced chemotherapy delivery by intraarterial infusion and blood–brain barrier disruption in the treatment of cerebral metastasis. Cancer. 2007;109(4):751–60.PubMedCrossRefGoogle Scholar
  31. 31.
    Becker I, Becker KF, Meyermann R, Hollt V. The multidrug-resistance gene MDR1 is expressed in human glial tumors. Acta Neuropathol. 1991;82(6):516–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Sikic BI, Fisher GA, Lum BL, Halsey J, Beketic-Oreskovic L, Chen G. Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol. 1997;40(Suppl):S13–9.PubMedCrossRefGoogle Scholar
  33. 33.
    Lee YJ, Maeda J, Kusuhara H, Okauchi T, Inaji M, Nagai Y, et al. In vivo evaluation of P-glycoprotein function at the blood–brain barrier in nonhuman primates using [11C]verapamil. J Pharmacol Exp Ther. 2006;316(2):647–53.PubMedCrossRefGoogle Scholar
  34. 34.
    Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm. 2009;379(1):146–57.PubMedCrossRefGoogle Scholar
  35. 35.
    Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56(1):3–17.PubMedCrossRefGoogle Scholar
  36. 36.
    Illum L. Is nose-to-brain transport of drugs in man a reality? J Pharm Pharmacol. 2004;56(1):3–17.PubMedCrossRefGoogle Scholar
  37. 37.
    Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1–18.PubMedCrossRefGoogle Scholar
  38. 38.
    Dhuria SV, Hanson LR, Frey II WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.PubMedGoogle Scholar
  39. 39.
    Thorne RG, Pronk GJ, Padmanabhan V, Frey WH. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.PubMedCrossRefGoogle Scholar
  40. 40.
    Banks WA, During MJ, Niehoff ML. Brain uptake of the glucagon-like peptide-1 antagonist exendin(9–39) after intranasal administration. J Pharmacol Exp Ther. 2004;309(2):469–75.PubMedCrossRefGoogle Scholar
  41. 41.
    Baker H, Spencer RF. Transneuronal transport of peroxidase-conjugated wheat germ agglutinin (WGA-HRP) from the olfactory epithelium to the brain of the adult rat. Exp Brain Res. 1986; 63(3):461–473.Google Scholar
  42. 42.
    Thorne RG, Pronk GJ, Padmanabhan V, Frey WH. Delivery of insulin-like growth factor-I to the rat brain and spinal cord along olfactory and trigeminal pathways following intranasal administration. Neuroscience. 2004;127(2):481–96.PubMedCrossRefGoogle Scholar
  43. 43.
    Alcala-Barraza SR, Lee MS, Hanson LR, McDonald AA, Frey WH, McLoon LK. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. Journal of Drug Targeting. 2010;18(3):179–90.PubMedCrossRefGoogle Scholar
  44. 44.
    Clerico DM, Lanza DC, To WC. Handbook of olfaction and gustation, 2nd edn. New York: Marcel Dekker, Inc.; 2003. p. 1–16. Google Scholar
  45. 45.
    Gray H. Gray’s anatomy, 15th revised edition. New York: BountyBooks; 1978.Google Scholar
  46. 46.
    Illum L. Transport of drugs from the nasal cavity to the central nervous system. Eur J Pharm Sci. 2000;11(1):1–18.PubMedCrossRefGoogle Scholar
  47. 47.
    Bradbury MWB, Cserr HF. Drainage of cerebral interstitial fluid and of cerebrospinal fluid into lymphatics . In: Johnston MG, editor. Experimental Biology of lymphatic circulation. Amsterdam and New York; 1985. p. 355–391.Google Scholar
  48. 48.
    Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5(6):514–6.PubMedCrossRefGoogle Scholar
  49. 49.
    Dhanda DS, FreyWH II, Leopold D, Kompella UB. Approaches for drug deposition in the human olfactory epithelium. Drug Delivery Technology. 2005;5:64–72.Google Scholar
  50. 50.
    Kumar ATC, Umberkoman B, Saini KD, David GFX. Uptake of radioactivity by body fluids and tissues in rhesus monkeys after intravenous injection or intranasal spray of tritium-labelled oestradiol and progesterone. Curr Sci. 1974;43:435–9.Google Scholar
  51. 51.
    Sakane T, Akizuki M, Yamashita S, Sezaki H, Nadai T. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the dissociation of the drug. J Pharm Pharmacol. 1994;46(5):378–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Sakane T, Akizuki M, Taki Y, Yamashita S, Sezaki H, Nadai T. Direct drug transport from the rat nasal cavity to the cerebrospinal fluid: the relation to the molecular weight of drugs. J Pharm Pharmacol. 1995;47(5):379–81.PubMedCrossRefGoogle Scholar
  53. 53.
    Wang Q, Chen G, Zeng S. Pharmacokinetics of Gastrodin in rat plasma and CSF after i.n. and i.v. Int J Pharm. 2007;341(1–2):20–5.PubMedCrossRefGoogle Scholar
  54. 54.
    Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm. 2007;337(1–2):1–24.PubMedCrossRefGoogle Scholar
  55. 55.
    Illum L. Nanoparticulate systems for nasal delivery of drugs: a real improvement over simple systems? J Pharm Sci. 2007;96(3):473–83.PubMedCrossRefGoogle Scholar
  56. 56.
    Merkus FW, Verhoef JC, Schipper NG, Marttin E. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv Drug Deliv Rev. 1998;29(1–2):13–38.PubMedGoogle Scholar
  57. 57.
    Lee VHL, Yamamoto A. Penetration and enzymatic barriers to peptide and protein absorption. Advanced Drug Delivery Reviews. 1989;4(2):171–207.CrossRefGoogle Scholar
  58. 58.
    Harris AS, Nilsson IM, Wagner ZG, Alkner U. Intranasal administration of peptides: nasal deposition, biological response, and absorption of desmopressin. J Pharm Sci. 1986;75(11):1085–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Graff CL, Pollack GM. Functional evidence for P-glycoprotein at the nose-brain barrier. Pharm Res. 2005;22(1):86–93.PubMedCrossRefGoogle Scholar
  60. 60.
    Ozsoy Y. Handbook of particulate drug delivery. In: Kumar MNV, editor. California: American Scientific Publisher; 2008. p. 143.Google Scholar
  61. 61.
    Wang X, He H, Leng W, Tang X. Evaluation of brain-targeting for the nasal delivery of estradiol by the microdialysis method. Int J Pharm. 2006;317(1):40–6.PubMedCrossRefGoogle Scholar
  62. 62.
    Smith J, Wood E, Dornish M. Effect of chitosan on epithelial cell tight junctions. Pharm Res. 2004;21(1):43–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Morimoto K, Katsumata H, Yabuta T, Iwanaga K, Kakemi M, Tabata Y, et al. Evaluation of gelatin microspheres for nasal and intramuscular administrations of salmon calcitonin. Eur J Pharm Sci. 2001;13(2):179–85.PubMedCrossRefGoogle Scholar
  64. 64.
    Graff CL, Pollack GM. P-Glycoprotein attenuates brain uptake of substrates after nasal instillation. Pharm Res. 2003;20(8):1225–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Kravtzoff R, Appelqvist T, Haddouk H, Manciaux X, Cholet G, De M, I, et al. Preclinical toxicology of biovectorTM nanoparticles: part II, local tolerance, genetic toxicology and pharmacokinetics. Toxicology Letters. 1998; 95[1001]: 117.Google Scholar
  66. 66.
    Gao X, Wu B, Zhang Q, Chen J, Zhu J, Zhang W, et al. Brain delivery of vasoactive intestinal peptide enhanced with the nanoparticles conjugated with wheat germ agglutinin following intranasal administration. J Control Release. 2007;121(3):156–67.PubMedCrossRefGoogle Scholar
  67. 67.
    Gao X, Chen J, Tao W, Zhu J, Zhang Q, Chen H, et al. UEA I-bearing nanoparticles for brain delivery following intranasal administration. Int J Pharm. 2007;340(1–2):207–15.PubMedCrossRefGoogle Scholar
  68. 68.
    Migliore MM, Vyas TK, Campbell RB, Amiji MM, Waszczak BL. Brain delivery of proteins by the intranasal route of administration: a comparison of cationic liposomes versus aqueous solution formulations. J Pharm Sci. 2010;99(4):1745–61.PubMedGoogle Scholar
  69. 69.
    Hansom LR, Frey WH II, Hoekman JD, Pohl J. Lipid growth factor formulations. In: EPO, editor. 2008.Google Scholar
  70. 70.
    Hanson LR, Fine JM, Hoekman JD, Nguyen TM, Burns RB, Martinez PM, et al. Intranasal delivery of growth differentiation factor 5 to the central nervous system. Drug Deliv. 2012;19(3):149–54.PubMedCrossRefGoogle Scholar
  71. 71.
    Werle M, Bernkop-Schnurch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30(4):351–67.PubMedCrossRefGoogle Scholar
  72. 72.
    Joubert J, Geldenhuys WJ, Van der Schyf CJ, Oliver DW, Kruger HG, Govender T, et al. Polycyclic cage structures as lipophilic scaffolds for neuroactive drugs. ChemMedChem. 2012;7(3):375–84.PubMedCrossRefGoogle Scholar
  73. 73.
    Bodor N, Prokai L, Wu WM, Farag H, Jonalagadda S, Kawamura M, et al. A strategy for delivering peptides into the central nervous system by sequential metabolism. Science. 1992;257(5077):1698–700.PubMedCrossRefGoogle Scholar
  74. 74.
    Wu J, Yoon SH, Wu WM, Bodor N. Synthesis and biological evaluations of brain-targeted chemical delivery systems of [Nva2]-TRH. J Pharm Pharmacol. 2002;54(7):945–50.PubMedCrossRefGoogle Scholar
  75. 75.
    Ganta S, Amiji M. Coadministration of Paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Mol Pharm. 2009;6(3):928–39.PubMedCrossRefGoogle Scholar
  76. 76.
    Kumar P, Wu H, McBride JL, Jung KE, Kim MH, Davidson BL, et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature. 2007;448(7149):39–43.PubMedCrossRefGoogle Scholar
  77. 77.
    Wu D, Pardridge WM. Central nervous system pharmacologic effect in conscious rats after intravenous injection of a biotinylated vasoactive intestinal peptide analog coupled to a blood–brain barrier drug delivery system. J Pharmacol Exp Ther. 1996;279(1):77–83.PubMedGoogle Scholar
  78. 78.
    Demeule M, Currie JC, Bertrand Y, Che C, Nguyen T, Regina A, et al. Involvement of the low-density lipoprotein receptor-related protein in the transcytosis of the brain delivery vector angiopep-2. J Neurochem. 2008;106(4):1534–44.PubMedCrossRefGoogle Scholar
  79. 79.
    Martini A, Muggetti L, Warchol MP. Nasal and pulmonary drug delivery systems. Expert Opinion on Therapeutic Patents. 2000;10(3):315–23.CrossRefGoogle Scholar
  80. 80.
    Romeo VD, deMeireles JC, Gries WJ, Xia WJ, Sileno AP, Pimplaskar HK, et al. Optimization of systemic nasal drug delivery with pharmaceutical excipients. Adv Drug Deliv Rev. 1998;29(1–2):117–33.PubMedGoogle Scholar
  81. 81.
    Graff CL, Pollack GM. Nasal drug administration: potential for targeted central nervous system delivery. J Pharm Sci. 2005;94(6):1187–95.PubMedCrossRefGoogle Scholar
  82. 82.
    Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 2012. 46(1–3):3–26Google Scholar
  83. 83.
    Mackie C, Brewster M, Noppe M, Loftsson T, Lampo A. The Use of Solubilizing Excipients and Approaches to Generate Toxicology Vehicles for Contemporary Drug Pipelines. Solvent Systems and Their Selection in Pharmaceutics and Biopharmaceutics. New York: Springer; 2007. p. 221.Google Scholar
  84. 84.
    Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21(2):201–30.PubMedCrossRefGoogle Scholar
  85. 85.
    Strasser JF, Fung LK, Eller S, Grossman SA, Saltzman WM. Distribution of 1,3-bis(2-chloroethyl)-1-nitrosourea and tracers in the rabbit brain after interstitial delivery by biodegradable polymer implants. J Pharmacol Exp Ther. 1995;275(3):1647–55.PubMedGoogle Scholar
  86. 86.
    Schenk D, Barbour R, Dunn W, Gordon G, Grajeda H, Guido T, et al. Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature. 1999;400(6740):173–7.PubMedCrossRefGoogle Scholar
  87. 87.
    Laquintana V, Trapani A, Denora N, Wang F, Gallo JM, Trapani G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin Drug Deliv. 2009;6(10):1017–32.PubMedCrossRefGoogle Scholar
  88. 88.
    Dahm P, Nitescu P, Appelgren L, Curelaru I. Efficacy and technical complications of long-term continuous intraspinal infusions of opioid and/or bupivacaine in refractory nonmalignant pain: a comparison between the epidural and the intrathecal approach with externalized or implanted catheters and infusion pumps. Clin J Pain. 1998;14(1):4–16.PubMedCrossRefGoogle Scholar
  89. 89.
    Krewson CE, Klarman ML, Saltzman WM. Distribution of nerve growth factor following direct delivery to brain interstitium. Brain Res. 1995;680(1–2):196–206.PubMedCrossRefGoogle Scholar
  90. 90.
    Ilias W, Todoroff B. Optimizing pain control through the use of implantable pumps. Med Devices (Auckl ). 2008;1:41–7.CrossRefGoogle Scholar
  91. 91.
    Victorov IV, Prass K, Dirnagl U. Improved selective, simple, and contrast staining of acidophilic neurons with vanadium acid fuchsin. Brain Res Brain Res Protoc. 2000;5(2):135–9.PubMedCrossRefGoogle Scholar
  92. 92.
    Kinoshita M, McDannold N, Jolesz FA, Hynynen K. Targeted delivery of antibodies through the blood–brain barrier by MRI-guided focused ultrasound. Biochem Biophys Res Commun. 2006;340(4):1085–90.PubMedCrossRefGoogle Scholar
  93. 93.
    Liu XF, Fawcett JR, Hanson LR, Frey WH. The window of opportunity for treatment of focal cerebral ischemic damage with noninvasive intranasal insulin-like growth factor-I in rats. J Stroke Cerebrovasc Dis. 2004;13(1):16–23.PubMedCrossRefGoogle Scholar
  94. 94.
    Born J, Lange T, Kern W, McGregor GP, Bickel U, Fehm HL. Sniffing neuropeptides: a transnasal approach to the human brain. Nat Neurosci. 2002;5(6):514–6.PubMedCrossRefGoogle Scholar
  95. 95.
    Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proc Natl Acad Sci U S A. 1996;93(24):14164–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Alcalay RN, Giladi E, Pick CG, Gozes I. Intranasal administration of NAP, a neuroprotective peptide, decreases anxiety-like behavior in aging mice in the elevated plus maze. Neurosci Lett. 2004;361(1–3):128–31.PubMedCrossRefGoogle Scholar
  97. 97.
    Dhuria SV, Hanson LR, Frey WH. Intranasal drug targeting of hypocretin-1 (orexin-A) to the central nervous system. J Pharm Sci. 2009;98(7):2501–15.PubMedCrossRefGoogle Scholar
  98. 98.
    Rat D, Schmitt U, Tippmann F, Dewachter I, Theunis C, Wieczerzak E, et al. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J. 2011;25(9):3208–18.PubMedCrossRefGoogle Scholar
  99. 99.
    Francis GJ, Martinez JA, Liu WQ, Xu K, Ayer A, Fine J, et al. Intranasal insulin prevents cognitive decline, cerebral atrophy and white matter changes in murine type I diabetic encephalopathy. Brain. 2008;131(Pt 12):3311–34.PubMedCrossRefGoogle Scholar
  100. 100.
    Fliedner S, Schulz C, Lehnert H. Brain uptake of intranasally applied radioiodinated leptin in Wistar rats. Endocrinology. 2006;147(5):2088–94.PubMedCrossRefGoogle Scholar
  101. 101.
    Ross TM, Martinez PM, Renner JC, Thorne RG, Hanson LR, Frey WH. Intranasal administration of interferon beta bypasses the blood–brain barrier to target the central nervous system and cervical lymph nodes: a non-invasive treatment strategy for multiple sclerosis. J Neuroimmunol. 2004;151(1–2):66–77.PubMedCrossRefGoogle Scholar
  102. 102.
    Alcala-Barraza SR, Lee MS, Hanson LR, McDonald AA, Frey WH, McLoon LK. Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. Journal of Drug Targeting. 2010;18(3):179–90.PubMedCrossRefGoogle Scholar
  103. 103.
    Ma YP, Ma MM, Ge S, Guo RB, Zhang HJ, Frey WH, et al. Intranasally delivered TGF-beta1 enters brain and regulates gene expressions of its receptors in rats. Brain Res Bull. 2007;74(4):271–7.PubMedCrossRefGoogle Scholar
  104. 104.
    Yu YP, Xu QQ, Zhang Q, Zhang WP, Zhang LH, Wei EQ. Intranasal recombinant human erythropoietin protects rats against focal cerebral ischemia. Neurosci Lett. 2005;387(1):5–10.PubMedCrossRefGoogle Scholar
  105. 105.
    Yang JP, Liu HJ, Cheng SM, Wang ZL, Cheng X, Yu HX, et al. Direct transport of VEGF from the nasal cavity to brain. Neurosci Lett. 2009;449(2):108–11.PubMedCrossRefGoogle Scholar
  106. 106.
    Draghia R, Caillaud C, Manicom R, Pavirani A, Kahn A, Poenaru L. Gene delivery into the central nervous system by nasal instillation in rats. Gene Ther. 1995;2(6):418–23.PubMedGoogle Scholar
  107. 107.
    Jerusalmi A, Morris-Downes MM, Sheahan BJ, Atkins GJ. Effect of intranasal administration of Semliki Forest virus recombinant particles expressing reporter and cytokine genes on the progression of experimental autoimmune encephalomyelitis. Mol Ther. 2003;8(6):886–94.PubMedCrossRefGoogle Scholar
  108. 108.
    Oh YK, Kim JP, Hwang TS, Ko JJ, Kim JM, Yang JS, et al. Nasal absorption and biodistribution of plasmid DNA: an alternative route of DNA vaccine delivery. Vaccine. 2001;19(31):4519–25.PubMedCrossRefGoogle Scholar
  109. 109.
    Kim ID, Kim SW, Lee JK. Gene knockdown in the olfactory bulb, amygdala, and hypothalamus by intranasal siRNA administration. Korean J Anat. 2009;42:285–92.Google Scholar
  110. 110.
    Renner DB, Frey WH, Hanson LR. Intranasal delivery of siRNA to the olfactory bulbs of mice via the olfactory nerve pathway. Neurosci Lett. 2012;513(2):193–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Danielyan L, Schafer R, von Ameln-Mayerhofer A, Bernhard F, Verleysdonk S, Buadze M, et al. Therapeutic efficacy of intranasally delivered mesenchymal stem cells in a rat model of Parkinson disease. Rejuvenation Res. 2011;14(1):3–16.PubMedCrossRefGoogle Scholar
  112. 112.
    Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci. 2006;7(1):41–53.PubMedCrossRefGoogle Scholar
  113. 113.
    Dhuria SV, Hanson LR, Frey WH. Intranasal delivery to the central nervous system: mechanisms and experimental considerations. J Pharm Sci. 2010;99(4):1654–73.PubMedGoogle Scholar

Copyright information

© Controlled Release Society 2013

Authors and Affiliations

  1. 1.Department of Pharmaceutical SciencesSchool of Pharmacy, Northeastern UniversityBostonUSA

Personalised recommendations