Drug Delivery and Translational Research

, Volume 2, Issue 6, pp 454–462 | Cite as

VIP-targeted cytotoxic nanomedicine for breast cancer

  • Aparna Dagar
  • Antonina Kuzmis
  • Israel Rubinstein
  • Marin Sekosan
  • Hayat Onyuksel
Research Article


Cancer chemotherapy is hampered by serious toxicity to healthy tissues. Conceivably, encapsulation of cytotoxic drugs in actively targeted, biocompatible nanocarriers could overcome this problem. Accordingly, we used sterically stabilized mixed micelles (SSMM) composed of biocompatible and biodegradable phospholipids to solubilize paclitaxel (P), a hydrophobic model cytotoxic drug, and deliver it to breast cancer in rats. To achieve active targeting, the surface of SSMM was grafted with a ligand, human vasoactive intestinal peptide (VIP) that selectively interacts with its cognate receptors overexpressed on breast cancer cells. We found that even in vitro cytotoxicity of P-SSMM-VIP was 2-fold higher that that of free paclitaxel (p < 0.05). Given the unique attributes of P-SSMM and P-SSMM-VIP, most notable small hydrodynamic diameter (∼15 nm) and stealth properties, biodistribution of paclitaxel was significantly altered. Accumulation of paclitaxel in breast tumor was highest for P-SSMM-VIP, followed by P-SSMM and Cremophor-based paclitaxel (PTX). Importantly, bone marrow accumulation of paclitaxel encapsulated in both SSMM-VIP and SSMM was significantly less than that of PTX. Administration of clinically relevant dose of paclitaxel (5 mg/kg) as P-SSMM-VIP and P-SSMM eradicated carcinogen-induced orthotopic breast cancer in rats, whereas PTX decreased tumor size by only 45 %. In addition, a 5-fold lower dose (1 mg/kg) of paclitaxel in actively targeted P-SSMM-VIP was associated with ∼80 % reduction in tumor size while the response to PTX and P-SSMM was significantly less. Hypotension was not observed when VIP was grafted onto SSMM. Based on our findings, we propose further development of effective and safe VIP-grafted phospholipid micelle nanomedicines of anti-cancer drugs for targeted treatment of solid tumors in humans.


Phospholipid mixed micelles Targeted drug delivery Human vasoactive intestinal peptide Breast cancer Paclitaxel MNU-induced breast cancer 

Supplementary material

13346_2012_107_MOESM1_ESM.pdf (103 kb)
ESM 1(PDF 103 kb)


  1. 1.
    Singh S, Dash AK. Paclitaxel in cancer treatment: perspectives and prospects of its delivery challenges. Crit Rev Ther Drug Carrier Syst. 2009;26(4):333–72.PubMedCrossRefGoogle Scholar
  2. 2.
    Lim SB, Banerjee A, Onyuksel H. Improvement of drug safety by the use of lipid-based nanocarriers. J Control Release. 2012.Google Scholar
  3. 3.
    Banerjee A, Onyuksel H. Human pancreatic polypeptide in a phospholipid-based micellar formulation. Pharm Res. 2012;29(6):1698–711.PubMedCrossRefGoogle Scholar
  4. 4.
    Koo OM, Rubinstein I, Onyuksel H. Actively targeted low-dose camptothecin as a safe, long-acting, disease-modifying nanomedicine for rheumatoid arthritis. Pharm Res. 2011;28(4):776–87.PubMedCrossRefGoogle Scholar
  5. 5.
    Onyuksel H, Mohanty PS, Rubinstein I. VIP-grafted sterically stabilized phospholipid nanomicellar 17-allylamino-17-demethoxy geldanamycin: a novel targeted nanomedicine for breast cancer. Int J Pharm. 2009;365(1–2):157–61.PubMedCrossRefGoogle Scholar
  6. 6.
    Cesur H, Rubinstein I, Pai A, Onyuksel H. Self-associated indisulam in phospholipid-based nanomicelles: a potential nanomedicine for cancer. Nanomedicine. 2009;5(2):178–83.PubMedCrossRefGoogle Scholar
  7. 7.
    Krishnadas A, Rubinstein I, Önyüksel H. Sterically stabilized phospholipid mixed micelles: in vitro evaluation as a novel carrier for water-insoluble drugs. Pharm Res. 2003;20(2):297–302.PubMedCrossRefGoogle Scholar
  8. 8.
    Ashok B, Arleth L, Hjelm RP, Rubinstein I, Onyuksel H. In vitro characterization of PEGylated phospholipid micelles for improved drug solubilization: effects of PEG chain length and PC incorporation. J Pharm Sci. 2004;93(10):2476–87.PubMedCrossRefGoogle Scholar
  9. 9.
    Kuzmis A, Lim SB, Desai E, Jeon E, Lee BS, Rubinstein I, et al. Micellar nanomedicine of human neuropeptide Y. Nanomedicine. 2011;4(7):464–71.Google Scholar
  10. 10.
    Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv Drug Deliv Rev. 2011;63(3):136–51.PubMedCrossRefGoogle Scholar
  11. 11.
    Wittrup KD, Thurber GM, Schmidt MM, Rhoden JJ. Practical theoretic guidance for the design of tumor-targeting agents. Methods Enzymol. 2012;503:255–68.PubMedCrossRefGoogle Scholar
  12. 12.
    Dagar S, Krishnadas A, Rubinstein I, Blend MJ, Onyuksel H. VIP grafted sterically stabilized liposomes for targeted imaging of breast cancer: in vivo studies. J Control Release. 2003;91(1–2):123–33.PubMedCrossRefGoogle Scholar
  13. 13.
    Zhang XX, Eden HS, Chen X. Peptides in cancer nanomedicine: drug carriers, targeting ligands and protease substrates. J Control Release. 2012;159(1):2–13Google Scholar
  14. 14.
    Yu B, Tai HC, Xue W, Lee LJ, Lee RJ. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol Membr Biol. 2010;27(7):286–98.PubMedCrossRefGoogle Scholar
  15. 15.
    Reubi JC. In vitro evaluation of VIP/PACAP receptors in healthy and diseased human tissues. Clinical implications. Ann N Y Acad Sci. 2000;921:1–25.PubMedCrossRefGoogle Scholar
  16. 16.
    Ortner A, Wernig K, Kaisler R, Edetsberger M, Hajos F, Kohler G, et al. VPAC receptor mediated tumor cell targeting by protamine based nanoparticles. J Drug Target. 2010;18(6):457–67.PubMedCrossRefGoogle Scholar
  17. 17.
    Reubi JC, Laderach U, Waser B, Gebbers JO, Robberecht P, Laissue JA. Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res. 2000;60(11):3105–12.PubMedGoogle Scholar
  18. 18.
    Schulz S, Rocken C, Mawrin C, Weise W, Hollt V, Schulz S. Immunocytochemical identification of VPAC1, VPAC2, and PAC1 receptors in normal and neoplastic human tissues with subtype-specific antibodies. Clin Cancer Res. 2004;10(24):8235–42.PubMedCrossRefGoogle Scholar
  19. 19.
    Dagar S, Sekosan M, Rubinstein I, Onyuksel H. Detection of VIP receptors in MNU-induced breast cancer in rats: implications for breast cancer targeting. Breast Cancer Res Treat. 2001;65(1):49–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Reubi JC. In vitro identification of vasoactive intestinal peptide receptors in human tumors: implications for tumor imaging. J Nucl Med. 1995;36(10):1846–53.PubMedGoogle Scholar
  21. 21.
    Reubi C, Gugger M, Waser B. Co-expressed peptide receptors in breast cancer as a molecular basis for in vivo multireceptor tumour targeting. Eur J Nucl Med Mol Imaging. 2002;29(7):855–62.PubMedCrossRefGoogle Scholar
  22. 22.
    Raderer M, Kurtaran A, Yang Q, Meghdadi S, Vorbeck F, Hejna M, et al. Iodine-123-vasoactive intestinal peptide receptor scanning in patients with pancreatic cancer. J Nucl Med. 1998;39(9):1570–5.PubMedGoogle Scholar
  23. 23.
    Rubinstein I, Soos I, Onyuksel H. Intracellular delivery of VIP-grafted sterically stabilized phospholipid mixed nanomicelles in human breast cancer cells. Chem Biol Interact. 2008;171(2):190–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Onyuksel H, Jeon E, Rubinstein I. Nanomicellar paclitaxel increases cytotoxicity of multidrug resistant breast cancer cells. Cancer Lett. 2009;274(2):327–30.PubMedCrossRefGoogle Scholar
  25. 25.
    Fahrenkrug J, Hannibal J, Tams J, Georg B. Immunohistochemical localization of the VIP1 receptor (VPAC1R) in rat cerebral blood vessels: relation to PACAP and VIP containing nerves. J Cereb Blood Flow Metab. 2000;20(8):1205–14.PubMedCrossRefGoogle Scholar
  26. 26.
    Dagar S, Sekosan M, Lee BS, Rubinstein I, Onyuksel H. VIP receptors as molecular targets of breast cancer: implications for targeted imaging and drug delivery. J Control Release. 2001;74(1–3):129–34.PubMedCrossRefGoogle Scholar
  27. 27.
    Sou K, Endo T, Takeoka S, Tsuchida E. Poly(ethylene glycol)-modification of the phospholipid vesicles by using the spontaneous incorporation of poly(ethylene glycol)-lipid into the vesicles. Bioconjug Chem. 2000;11(3):372–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Seelig J. Titration calorimetry of lipid–peptide interactions. Biochim Biophys Acta. 1997;1331(1):103–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Zuidam NJ, de Vruch R., Crommelin D.J.A. Characterization of liposomes. In: Torchilin VP, Weissig V., editors. Liposomes. 2nd ed. Oxford: Oxford University Press; 2003. p. 31.Google Scholar
  30. 30.
    Moody TW, Jensen RT. Breast cancer VPAC1 receptors. Ann N Y Acad Sci. 2006;1070:436–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Moon RC, Constantinou AI. Dietary retinoids and carotenoids in rodent models of mammary tumorigenesis. Breast Cancer Res Treat. 1997;46(2–3):181–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Arleth L, Ashok B, Onyuksel H, Thiyagarajan P, Jacob J, Hjelm RP. Detailed structure of hairy mixed micelles formed by phosphatidylcholine and PEGylated phospholipids in aqueous media. Langmuir. 2005;21(8):3279–90.PubMedCrossRefGoogle Scholar
  33. 33.
    Couvineau A, Tan YV, Ceraudo E, Lacapere JJ, Murail S, Neumann JM, et al. The human VPAC1 receptor: identification of the N-terminal ectodomain as a major VIP-binding site by photoaffinity labeling and 3D modeling. Ann N Y Acad Sci. 2006;1070:205–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Bhunia A, Domadia PN, Bhattacharjya S. Structural and thermodynamic analyses of the interaction between melittin and lipopolysaccharide. Biochim Biophys Acta. 2007;1768(12):3282–91.PubMedCrossRefGoogle Scholar
  35. 35.
    Schote U, Ganz P, Fahr A, Seelig J. Interactions of cyclosporines with lipid membranes as studied by solid-state nuclear magnetic resonance spectroscopy and high-sensitivity titration calorimetry. J Pharm Sci. 2002;91(3):856–67.PubMedCrossRefGoogle Scholar
  36. 36.
    Hagiwara H, Sunada Y. Mechanism of taxane neurotoxicity. Breast Cancer. 2004;11(1):82–5.PubMedCrossRefGoogle Scholar
  37. 37.
    Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008;69(1):1–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Spratlin J, Sawyer MB. Pharmacogenetics of paclitaxel metabolism. Crit Rev Oncol Hematol. 2007;61(3):222–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Wang Y, Li X, Wang L, Xu Y, Cheng X, Wei P. Formulation and pharmacokinetic evaluation of a paclitaxel nanosuspension for intravenous delivery. Int J Nanomed. 2011;6:1497–507.Google Scholar
  40. 40.
    Fetterly GJ, Straubinger RM. Pharmacokinetics of paclitaxel-containing liposomes in rats. AAPS PharmSci. 2003;5(4):E32.PubMedCrossRefGoogle Scholar
  41. 41.
    Desai N. Challenges in development of nanoparticle-based therapeutics. AAPS J. 2012;14(2):282–95.PubMedCrossRefGoogle Scholar
  42. 42.
    Tsubura A, Lai YC, Miki H, Sasaki T, Uehara N, Yuri T, et al. Review: animal models of N-Methyl-N-nitrosourea-induced mammary cancer and retinal degeneration with special emphasis on therapeutic trials. In Vivo. 2011;25(1):11–22.PubMedGoogle Scholar
  43. 43.
    Nowfar S, Teplitzky SR, Melancon K, Kiefer TL, Cheng Q, Dwived PD, et al. Tumor prevention by 9-cis-retinoic acid in the N-nitroso-N-methylurea model of mammary carcinogenesis is potentiated by the pineal hormone melatonin. Breast Cancer Res Treat. 2002;72(1):33–43.PubMedCrossRefGoogle Scholar
  44. 44.
    Virgolini I, Raderer M, Kurtaran A, Angelberger P, Banyai S, Yang Q, et al. Vasoactive intestinal peptide-receptor imaging for the localization of intestinal adenocarcinomas and endocrine tumors. N Engl J Med. 1994;331(17):1116–21.PubMedCrossRefGoogle Scholar
  45. 45.
    Leamon CP. Folate-targeted drug strategies for the treatment of cancer. Curr Opin Investig Drugs. 2008;9(12):1277–86.PubMedGoogle Scholar
  46. 46.
    Daniels TR, Delgado T, Helguera G, Penichet ML. The transferrin receptor part II: targeted delivery of therapeutic agents into cancer cells. Clin Immunol. 2006;121(2):159–76.PubMedCrossRefGoogle Scholar
  47. 47.
    Rubinstein I, Ashok B, Tsueshita T, Onyuksel H. All D-VIP mitigates vasodilation elicited by L-VIP, micellar L-VIP and micellar PACAP1-38, but not PACAP1-38, in vivo. Peptides. 2005;26(3):509–15.PubMedCrossRefGoogle Scholar
  48. 48.
    Montana M, Ducros C, Verhaeghe P, Terme T, Vanelle P, Rathelot P. Albumin-bound paclitaxel: the benefit of this new formulation in the treatment of various cancers. J Chemother. 2011;23(2):59–66.PubMedGoogle Scholar

Copyright information

© Controlled Release Society 2012

Authors and Affiliations

  • Aparna Dagar
    • 1
    • 5
  • Antonina Kuzmis
    • 1
  • Israel Rubinstein
    • 3
    • 4
  • Marin Sekosan
    • 3
    • 6
  • Hayat Onyuksel
    • 1
    • 2
  1. 1.Department of Biopharmaceutical Sciences, College of PharmacyUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of BioengineeringUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Department of MedicineUniversity of Illinois at ChicagoChicagoUSA
  4. 4.Jesse Brown VA Medical CenterChicagoUSA
  5. 5.Fresenius Kabi USASchaumburgUSA
  6. 6.John H. Stroger, Jr. HospitalChicagoUSA

Personalised recommendations