Drug Delivery and Translational Research

, Volume 2, Issue 6, pp 418–436 | Cite as

Aptamer-conjugated polymeric nanoparticles for targeted cancer therapy

  • Athulya Aravind
  • Yasuhiko Yoshida
  • Toru Maekawa
  • D. Sakthi Kumar
Review Article


Recent advances in cancer nanotechnology have led to the emergence of aptamer-enabled technologies to diagnose and treat cancer. Aptamers with their high binding sensitivity and specificity are highly attractive for a wide variety of applications in molecular targeting. Aptamer-escorted drug-loaded polymeric nanoparticles represent a promising technology, which facilitates controlled release and targeted approach to deliver drugs to the desired site with marginal or any collateral damage. By properly integrating these nanobased approaches with the established cancer research findings could help to resolve some of the existing problems in the current conventional cancer therapy. In this review, we discuss the progresses achieved in the aptamer mediated nanoparticle drug delivery and properties of nanoparticles, which play a significant role in developing the aptamer–nanoparticle bioconjugates. In addition, we highlight the recent preclinical works involving these bioconjugates as cancer therapeutics.


Nanoparticles Polymers Targeted Drug delivery Aptamers Antibodies Cancer therapy 



Athulya Aravind thanks the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, for the financial support given as Monbukagakusho fellowship. Part of this study has been supported by a grant for the Program of the Strategic Research Foundation at Private Universities S1101017, organized by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) Japan since April 2012.

Conflict of interest

None of the authors have any competing or conflicting interests.


  1. 1.
    Levy-Nissenbaum E, Radovic-Moreno AF, Wang AZ, et al. Nanotechnology and aptamers: applications in drug delivery. Trends Biotechnol. 2008;26:442–9.PubMedCrossRefGoogle Scholar
  2. 2.
    Zhang L, Chan JM, Gu FX, et al. Self-assembled lipid–polymer hybrid nanoparticles: a robust drug delivery platform. ACS Nano. 2008;2:1696–702.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang L, et al. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83:761–9.PubMedCrossRefGoogle Scholar
  4. 4.
    Brewer E, Coleman J and Lowman A. Emerging technologies of polymeric nanoparticles in cancer drug delivery. J. Nanomaterials. 2011;2011. doi: 10.1155/2011/408675.
  5. 5.
    Hans ML, Lowman AM. Biodegradable nanoparticles for drug delivery and targeting. Curr Opin Solid State Mater Sci. 2002;6:319–27.CrossRefGoogle Scholar
  6. 6.
    Chiellini E, Solaro R. Biodegradable polymeric materials. Adv Mater. 1996;8:305–13.CrossRefGoogle Scholar
  7. 7.
    Lewis DH. Controlled release of bioactive agents from lactide/glycolide polymers. In: Chasin M, Langer R, editors. Biodegradable polymers as drug delivery devices. New York: Marcel Dekker; 1990. p. 1–41.Google Scholar
  8. 8.
    Jeong B, Bae YH, Lee DS, Kim SW. Biodegradable block copolymers as injectable drug-delivery systems. Nature. 1997;388:860–2.PubMedCrossRefGoogle Scholar
  9. 9.
    Gref R, Luck M, Quellec P, et al. Steakth corona-core nanoparticles surface modified by polyethylene glycol (PEG): influence of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B. 2000;18:301–13.CrossRefGoogle Scholar
  10. 10.
    Dunne M, Corrigan OI, Ramtoola Z. Influence of particle size and dissolution conditions on the degradation properties of polylactide-co-glycolide particles. Biomaterials. 2000;21:1659–68.PubMedCrossRefGoogle Scholar
  11. 11.
    Grayson ACR, Cima MJ, Langer R. Size and temperature effects on poly (lactic-co-glycolic acid) degradation and microreservoir device performance. Biomaterials. 2005;26:2137–45.PubMedCrossRefGoogle Scholar
  12. 12.
    Reed AM, Gilding DK. Biodegradable polymers for use in surgeryopoly(glycolic)/poly(lactic acid) homo and copolymers: 2. In vitro degradation. Polymer. 1981;22:494–8.CrossRefGoogle Scholar
  13. 13.
    Vincent MJ, Duncan R. Polymer conjugates:nanosized medicines for treating cancer. Trends Biotechnol. 2006;24:39–47.CrossRefGoogle Scholar
  14. 14.
    Cerchia L, de Franciscis V. Targeting cancer cells with nucleic acid aptamers. Trends Biotechnol. 2010;28:517–25.PubMedCrossRefGoogle Scholar
  15. 15.
    Que-Gewirth NS, Sullenger BA. Gene therapy progress and prospects: RNA aptamers. Gene Ther. 2007;14:283–91.PubMedCrossRefGoogle Scholar
  16. 16.
    Hicke BJ, Stephens AW. Escort aptamers: a delivery service for diagnosis and therapy. J Clin Invest. 2000;106:923–38.PubMedCrossRefGoogle Scholar
  17. 17.
    Wang KY, et al. A DNA aptamer which binds to and inhibits thrombin exhibits a new structural motif for DNA. Biochemistry. 1993;32:1899–904.PubMedCrossRefGoogle Scholar
  18. 18.
    Fang X, Tan W. Aptamers generated from cell-SELEX for molecular medicine: a chemical biology approach. Acc Chem Res. 2010;43:48–57.PubMedCrossRefGoogle Scholar
  19. 19.
    Osborne SE, Ellington AD. Nucleic acid selection and the challenge of combinatorial chemistry. Chem Rev. 1997;97:349–70.PubMedCrossRefGoogle Scholar
  20. 20.
    Osborne SE, Matsumura I, Ellington AD. Aptamers as therapeutic and diagnostic reagents: problems and prospects. Curr Opin Chem Biol. 1997;1:5–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Famulok M, Hartig JS, Mayer G. Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev. 2007;107:3715–43.PubMedCrossRefGoogle Scholar
  22. 22.
    Navani NK, Li Y. Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol. 2006;10:272–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Bunka DH, Stockley PG. Aptamers come of ages at last. Nat Rev Microbiol. 2006;4:588–96.PubMedCrossRefGoogle Scholar
  24. 24.
    Farokhzad OC, Jon S, Langer R. Aptamers and cancer nanotechnology. In: Amiji MM, editor. Nanotechnology for cancer therapy. Boca Raton: Taylor & Francis Group; 2006. pp. 289–313Google Scholar
  25. 25.
    Drolet DW, Nelson J, Tucker CE, et al. Pharmacokinetics and safety of an anti-vascular endothelial growth factor aptamer (NX1838) following injection into the vitrous humor of rhesus monkeys. Pharm Res. 2000;17:1503–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Fitzwater T, Polisky BA. SELEX primer. Methods Enzymol. 1996;267:275–301.PubMedCrossRefGoogle Scholar
  27. 27.
    White RR, Sullenger BA, Rusconi CP. Developing aptamers into therapeutics. J Clin Invest. 2000;106:929–34.PubMedCrossRefGoogle Scholar
  28. 28.
    Huang DB, et al. Crystal structure of NF-kB (p50)2 complexed to a high-affinity RNA aptamer. Proc Natl Acad Sci USA. 2003;100:9268–73.PubMedCrossRefGoogle Scholar
  29. 29.
    Girvan AC, et al. AGRO100 inhibits activation of nuclear factor-kappaB (NF-kB) by forming a complex with NF-kappaB essential modulator (NEMO) and nucleolin. Mol Cancer Ther. 2006;5:1790–9.PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang L, Radovic-Moreno AF, Alexis F, et al. Co-delivery of hydrophobic and hydrophilic drugs from nanoparticle-aptamer bioconjugates. ChemMedChem. 2007;2:1268–71.PubMedCrossRefGoogle Scholar
  31. 31.
    Charlton J, Sennello J, Smith D. In vivo imagining of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol. 1997;4:809–16.PubMedCrossRefGoogle Scholar
  32. 32.
    Pestourie C, Tavitian B, Duconge F. Aptamers against extracellular targets for in vivo applications. Biochimie. 2005;87:921–30.PubMedCrossRefGoogle Scholar
  33. 33.
    Herr JK, et al. Aptamer-conjugated nanoparticles for selective collection and detection of cancer cells. Anal Chem. 2006;78:2918–24.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee JH, et al. A therapeutic aptamer inhibits angiogenesis by specifically targeting the heparin binding domain of VEGF165. Proc Natl Acad Sci USA. 2005;102:18902–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Green LS, et al. Nuclease-resistant nucleic acid ligands to vascular permeability factor/vascular endothelial growth factor. Chem Biol. 1995;2:683–95.PubMedCrossRefGoogle Scholar
  36. 36.
    Gragoudas ES, Adamis AP, Cunningham ET, et al. Pegaptanib for neovascular age-related mascular degeneration. N Engl J Med. 2004;351:2805–16.PubMedCrossRefGoogle Scholar
  37. 37.
    Vinores SA. Technology evalution pegaptanib. Eyetech/Pfizer. Curr Opin Mol Ther. 2003;5:673–9.PubMedGoogle Scholar
  38. 38.
    Doggrell SA. Pegaptanib: the first antiangiogenic agent approved for neovascular macular degeneration. Expert Opin Pharmacother. 2005;6:1421–3.PubMedCrossRefGoogle Scholar
  39. 39.
    Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature. 1990;346:818–22.PubMedCrossRefGoogle Scholar
  40. 40.
    Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10.PubMedCrossRefGoogle Scholar
  41. 41.
    Taghdisi SM, Lavaee P, Ramezani M, Abnous K. Reversible targeting and controlled release delivery of daunorubicin to cancer cells by aptamer-wrapped carbon nanotubes. Eur J Pharm Biopharm. 2011;77:200–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Aptamers JW. In: Meyers RA, editor. Encyclopedia in analytical chemistry. Chichester: Wiley; 2000. p. 4848–71.Google Scholar
  43. 43.
    Bouchard PR, Hutabarat RM, Thompson KM. Discovery and development of therapeutic aptamers. Annu Rev Pharmacol Toxicol. 2010;50:237–57.PubMedCrossRefGoogle Scholar
  44. 44.
    Vater A, Klussmann S. Toward third-generation aptamers: Spiegelmers and their therapeutic prospects. Curr Opin Drug Discov Dev. 2003;6:253–61.Google Scholar
  45. 45.
    Eulberg D, Klussmann S. Spiegelmers: biostable aptamers Chem. Biochem. 2003;4:979–83.Google Scholar
  46. 46.
    Schmidt KS, Borkowski S, Kurreck J, et al. Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res. 2004;32:5757–65.PubMedCrossRefGoogle Scholar
  47. 47.
    Tucker CE, Chen LS, Judkins MB, et al. Detection and plasma pharmacokinetics of an anto-vascular endothelial growth factor oligonucleotides-aptamer (NX1838) in rhesus monkeys. J Chromatogr B: Biomed Sci Appl. 1999;732:203–12.CrossRefGoogle Scholar
  48. 48.
    Ozalp VO and Schafer J. Aptamer–nanoparticle bioconjugates for drug delivery. In: Hashim AA, editor. The delivery of nanoparticles. 2012; doi: 10.5772/35188
  49. 49.
    Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin Cancer Res. 2002;8:1172–81.PubMedGoogle Scholar
  50. 50.
    Hong K, Kirpotin DB, Park JW, et al. Anti-HER2 immunoliposomes for targeted drug delivery. Ann NY Acad Sci. 1999;886:293–6.PubMedCrossRefGoogle Scholar
  51. 51.
    de Menezes DE L, Pilarski LM, Belch AR, Allen TM. Selective targeting of immunoliposomal doxorubicin against human multiple myeloma in vitro and ex vivo. Biochim Biophys Acta. 2000;1466:205–20.CrossRefGoogle Scholar
  52. 52.
    de Menezes DE L, Pilarski LM, Allen TM. In vitro and in vivo targeting of immunoliposomal doxorubicin to human B cell Lymphoma. Cancer Res. 1998;58:3320–30.Google Scholar
  53. 53.
    Fahmy TM, Fong PM, Goyal A, Saltzman WM. Targeted for drug delivery. Mater Today. 2005;5:18–26.Google Scholar
  54. 54.
    Huang G, Gao J, Hu Z. Controlled drug release from hydrogel nanoparticle networks. J Control Release. 2004;94:303–11.PubMedCrossRefGoogle Scholar
  55. 55.
    Gao J, Niklason L, Zhao XM, Langer R. Surface modification of polyanhydride microspheres. J Pharm Sci. 1998;87:246–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Sommerfeld P, Sabel BA, Schroeder U. Long term stability of PBCA nanoparticle suspensions. J Microencapsul. 2000;17:69–79.PubMedCrossRefGoogle Scholar
  57. 57.
    Molpeceres J, Chacon M, Guzman M, et al. A polycapro-lactone nanoparticle formulation of cyclosporine-A improves the prediction of area under the curve using a limited sampling strategy. Int J Pharm. 1999;187:101–13.PubMedCrossRefGoogle Scholar
  58. 58.
    Alonso MJ, Gupta RK, Min C, et al. Biodegradable microspheres as controlled-release tetanus toxoid delivery systems. Vaccine. 1994;12:299–306.PubMedCrossRefGoogle Scholar
  59. 59.
    Davda J, Labhasetwar V. Characterization of nanoparticle uptake by endothelial cells. Int J Pharm. 2002;233:51–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Deng JS, Li L, Tian Y, et al. In vitro characterization of poly orthoester microparticles containing bupivacaine. Pharm Dev Technol. 2003;8:31–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28:5–24.PubMedCrossRefGoogle Scholar
  62. 62.
    Matsusue Y, Hanafusa S, Yamamuro T, et al. Tissue reaction of bioabsorbable ultra high strength poly(L-lactide)rod. A long term study in rabbits. Clin Orthop Relat Res. 1995;317:246–53.PubMedGoogle Scholar
  63. 63.
    Win KY, Feng SS. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials. 2005;26:2713–22.PubMedCrossRefGoogle Scholar
  64. 64.
    Thamake SI, Raut SL, Ranjan AP, et al. Surface functionalization of PLGA nanoparticles by non-covalent insertion of a homo-bifunctional spacer for active targeting in cancer therapy. Nanotechnology. 2011;22:035101.PubMedCrossRefGoogle Scholar
  65. 65.
    Tong R, Yala L, Fan TM, Cheng J. The formulation of aptamer-coated paclitaxel-polylactide nanoconjugates and their targeting to cancer cells. Biomaterials. 2010;31:3043–53.PubMedCrossRefGoogle Scholar
  66. 66.
    Brigger I, Dubernet C, Couvreur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev. 2002;54:631–51.PubMedCrossRefGoogle Scholar
  67. 67.
    Hobbs SK, Monsky WL, Yuan F, et al. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci USA. 1998;95:4607–12.PubMedCrossRefGoogle Scholar
  68. 68.
    Monsky WL, Fukumura D, Gohongi T, et al. Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Res. 1999;59:4129–35.PubMedGoogle Scholar
  69. 69.
    Yuan F, Dellian M, Fukumura D, et al. Vascular permeability in a human tumor xenograft: molecular size-dependence and cut-off size. Cancer Res. 1995;55:3752–6.PubMedGoogle Scholar
  70. 70.
    Sledge Jr GW, Miller KD. Exploiting the hallmarks of cancer: the future conquest of breast cancer. Eur J Cancer. 2003;39:1668–75.PubMedCrossRefGoogle Scholar
  71. 71.
    Teicher BA. Molecular targets and cancer therapeutics: discovery, development and clinical validation. Drug Resist Updat. 2000;3:67–73.PubMedCrossRefGoogle Scholar
  72. 72.
    Maeda H, Wu J, Sawa T, et al. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65:271–84.PubMedCrossRefGoogle Scholar
  73. 73.
    Moghimi SM. Mechanisms of splenic clearance of blood cells and particles: towards development of new splenotropic agents. Adv Drug Deliv Rev. 1995;17:103–15.CrossRefGoogle Scholar
  74. 74.
    Liu D, Mori A, Huang L. Role of liposome size and RES blockade in controlling biodistribution and tumor uptake of GM1-containing liposomes. Biochim Biophys Acta. 1992;1104:95–101.PubMedCrossRefGoogle Scholar
  75. 75.
    Rejman J, Oberle V, Zuhorn IS, et al. Size-dependent internalization of particles via the pathways of clathrinand caveolae-mediated endocytosis. Biochem J. 2004;377:159–69.PubMedCrossRefGoogle Scholar
  76. 76.
    Koval M, Prieter K, Adles C, et al. Size of IgG-opsonized particles determines macrophage response during internalization. Exp Cell Res. 1998;242:265–73.PubMedCrossRefGoogle Scholar
  77. 77.
    Sahay G, Alakhova DY, Kabanov AV. Endocytosis of nanomedicines. J Control Release. 2010;145:182–95.PubMedCrossRefGoogle Scholar
  78. 78.
    Farokhzad OC, Cheng J, Teply BA, et al. Targeted nanoparticle–aptamer bioconjugates for cancer chemotherapy in vivo. Proc Natl Acad Sci USA. 2006;103:6315–20.PubMedCrossRefGoogle Scholar
  79. 79.
    Farokhzad OC, Jon S, Khademhosseini A, et al. Nanoparticle–aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer Res. 2004;64:7668–72.PubMedCrossRefGoogle Scholar
  80. 80.
    Jaffar S, Nam KT, Khademhosseini A, et al. Layer-by-layer surface modification and patterned electrodeposition of quantum dots. Nano Lett. 2004;4:1421–5.CrossRefGoogle Scholar
  81. 81.
    Campbell RB, Fukumura D, Brown EB, et al. Cationic charge determines the distribution of liposomes between the vascular and extra vascular compartments of tumors. Cancer Res. 2002;62:6831–6.PubMedGoogle Scholar
  82. 82.
    Langer R, Folkman J. Polymers for the sustained release of proteins and other macromolecules. Nature. 1976;263:797–800.PubMedCrossRefGoogle Scholar
  83. 83.
    Gref R, Minamitake Y, Peracchia MT, et al. Poly(ethylene glycol)-coated nanospheres: potential carriers for intravenous drug administration, Pharm. Biotechnol. 1997;10:167–98.Google Scholar
  84. 84.
    Lemarchand C, Gref R, Couvrneur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm. 2004;58:327–41.PubMedCrossRefGoogle Scholar
  85. 85.
    Lemarchand C, Gref R, Passirani C, et al. Influence of polysaccharide coating on the interactions of nanoparticles with biological systems. Biomaterials. 2006;27:108–18.PubMedCrossRefGoogle Scholar
  86. 86.
    Weissleder R, Kelly K, Sun EY, et al. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol. 2005;23:1418–23.PubMedCrossRefGoogle Scholar
  87. 87.
    Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin. Review of animal and human studies. Clin Pharmacokinet. 2003;42:419–36.PubMedCrossRefGoogle Scholar
  88. 88.
    Mosqueira VC, Legrand P, Morgat JL, et al. Biodistribution of long-circulating PEG-grafted nanocapsules in mice:effects of PEG chain length and density. Pharm Res. 2001;18:1411–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Gref R, Minamitake Y, Peracchia MT, et al. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263:1600–3.PubMedCrossRefGoogle Scholar
  90. 90.
    Cheng J, Teply BA, Sherifi I, et al. Formulation of functionalized PLGA-PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28:869–76.PubMedCrossRefGoogle Scholar
  91. 91.
    Sehgal D, Vijay IK. A method for the high efficiency of water-soluble carbodiimide-mediated amidation. Anal Biochem. 1994;218:87–91.PubMedCrossRefGoogle Scholar
  92. 92.
    Aravind A, Varghese SH, Veeranarayanan S, et al. Aptamer-labeled PLGA nanoparticles for targeting cancer cells. Cancer Nano. 2012. doi  10.1007/s12645-011-0024-6
  93. 93.
    Nair BG, Nagaoka Y, Morimoto H, et al. Aptamer conjugated magnetic nanoparticles as nanosurgeons. Nanotechnology. 2010;21:455102–10.PubMedCrossRefGoogle Scholar
  94. 94.
    Lü J, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9:325–41.PubMedCrossRefGoogle Scholar
  95. 95.
    Lavik EB, Hrkach JS, Lotan N, et al. A simple synthetic route to the formation of a block copolymer of poly (lactic-co-glycolic acid) and polylysine for the fabrication of functionalized, degradable structures for biomedical applications. J Biomed Mater Res. 2001;58:291–4.PubMedCrossRefGoogle Scholar
  96. 96.
    Caponetti G, Hrkach JS, Kriwet B, et al. Microparticles of novel branched copolymers of lactic acid and amino acids: preparation and characterization. J Pharm Sci. 1999;88:136–41.PubMedCrossRefGoogle Scholar
  97. 97.
    Faraasen S, Voros J, Csucs G, et al. Ligand-specific targeting of microspheres to phagocytes by surface modification withpoly(L-lysine)-grafted poly(ethylene glycol) conjugate. Pharm Res. 2003;20:237–46.PubMedCrossRefGoogle Scholar
  98. 98.
    Zheng J, Hornsby PJ. Production of microspheres with surface amino groups from blends of poly(lactide-co-glycolide) and poly(epsilon-CBZ-L-lysine) and use for encapsulation. Biotechnol Program. 1999;15:763–7.CrossRefGoogle Scholar
  99. 99.
    Keegan ME, Falcone JL, Leung TC, et al. Biodegradable microspheres with enhanced capacity for covalently bound surface ligands. Macromolecules. 2004;37:9779–984.CrossRefGoogle Scholar
  100. 100.
    Muller M, Vörös J, Csúcs G, et al. Surface modification of PLGA microspheres. J Biomed Mater Res A. 2003;66:55–61.PubMedCrossRefGoogle Scholar
  101. 101.
    Park A, Wu B, Griffith LG. Integration of surface modification and 3D fabrication techniques to prepare patterned poly (l-lactide) substrates allowing regionally selective cell adhesion. J Biomater Sci Polym Ed. 1998;9:89–110.PubMedCrossRefGoogle Scholar
  102. 102.
    Croll TI, O’Connor AJ, Stevens GW, et al. Controllable surface modification of poly(lactic-co-glycolic acid) (PLGA) by hydrolysis or aminolysis I: physical, chemical, and theoretical aspects. Biomacromolecules. 2004;5:463–73.PubMedCrossRefGoogle Scholar
  103. 103.
    Cao Y, Croll TI, Cooper-White J, et al. Production and surface modification of polylactide-based polymeric scaffolds for soft-tissue engineering. Methods Mol Biol. 2004;238:87–112.PubMedGoogle Scholar
  104. 104.
    Yang J, Wan Y, Yang J, et al. Plasma-treated, collagen anchored polylactone: its cell affinity evaluation under shear or shear-free conditions J. Biomed Mater Res. 2003;67A:1139–47.CrossRefGoogle Scholar
  105. 105.
    Wan YQ, Qu X, Bei JZ, et al. Characterization of surface property of poly(lactide-co-glycolide) after oxygen plasma treatment. Biomaterials. 2004;25:4777–83.PubMedCrossRefGoogle Scholar
  106. 106.
    Orava EW, Cicmil N, Gariépy J. Delivering cargoes into cancer cells using DNA aptamers targeting internalized surface portals. Biochim Biophys Acta. 2010;1798:2190–200.PubMedCrossRefGoogle Scholar
  107. 107.
    Bagalkot V, Farokhzad OC, Langer R, Jon S. An aptamer–doxorubicin physical conjugate as a novel targeted drug-delivery platform. Angew Chem. 2006;45:8149–52.CrossRefGoogle Scholar
  108. 108.
    Ferreira CS, Cheung MC, Missailidis S, et al. Phototoxic aptamers selectively enter and kill epithelial cancer cells. Nucleic Acids Res. 2009;37:866–76.PubMedCrossRefGoogle Scholar
  109. 109.
    Huang YF, Shangguan D, Liu H, et al. Molecular assembly of an aptamer–drug conjugate for targeted drug delivery to tumor cells. Chembiochem. 2009;10:862–8.PubMedCrossRefGoogle Scholar
  110. 110.
    Willner D, Trail PA, Hofstead SJ, et al. (6-Maleimidocaproyl)hydrazone of doxorubicin—a new derivative for the preparation of immunoconjugates of doxorubicin. Bioconjug Chem. 1993;4:521–7.PubMedCrossRefGoogle Scholar
  111. 111.
    Chu TC, Marks III JW, Lavery LA, et al. Aptamer: toxin conjugates that specifically target prostate tumor cells. Cancer Res. 2006;66:5989–92.PubMedCrossRefGoogle Scholar
  112. 112.
    McCauley TG, Hamaguchi N, Stanton M. Aptamer-based biosensor arrays for detection and quantification of biological macromolecules. Anal Biochem. 2003;319:244–50.PubMedCrossRefGoogle Scholar
  113. 113.
    Hicke BJ, Stephens AW, Gould T, et al. Tumor targeting by an aptamer. J Nucl Med. 2006;47:668–78.PubMedGoogle Scholar
  114. 114.
    Zhou J, Rossi JJ. Aptamer-targeted cell-specific RNA interference. Silence. 2010;1:4.PubMedCrossRefGoogle Scholar
  115. 115.
    Chu TC, et al. Labeling tumor cells with fluorescent nanocrystal-aptamer bioconjugates. Biosens Bioelectron. 2006;21:1859–66.PubMedCrossRefGoogle Scholar
  116. 116.
    McNamara JO, et al. Cell type-specific delivery of siRNAs with aptamer–siRNA chimeras. Nat Biotechnol. 2006;24:1005–15.PubMedCrossRefGoogle Scholar
  117. 117.
    Huang CC, et al. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal Chem. 2005;77:5735–41.PubMedCrossRefGoogle Scholar
  118. 118.
    Chen T, Shukoor MI, Wang R, Zhao Z, Yuan Q, Bamrungsap S, et al. Smart multifunctional nanostructure for targeted cancer chemotherapy and magnetic resonance imaging. ACS Nano. 2011;5(10):7866–73.PubMedCrossRefGoogle Scholar
  119. 119.
    Willis MC, et al. Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug Chem. 1998;9:573–82.PubMedCrossRefGoogle Scholar
  120. 120.
    Estevez CM, Huang Y-F, Kang H, O’Donoghue MB, Bamrungsap S, Yan J et al. 2010 Nanoparticle–aptamer conjugates for cancer cell targeting and detection. In: Grobmyer SR, Moudgil BM, editors. Cancer nanotechnology, methods in molecular biology. p. 624, doi:  10.1007/978-1-60761-609-2_16
  121. 121.
    Aravind A, Veeranarayanan S, Poulose AC, Nair R, Nagaoka Y, Yoshida Y, et al. Aptamer-functionalized silica nanoparticles for targeted cancer therapy. Bio Nano Sci. 2012;2:1–8.Google Scholar
  122. 122.
    Bagalkot V, et al. Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer. Nano Lett. 2007;7:3065–70.PubMedCrossRefGoogle Scholar
  123. 123.
    Maehashi K, et al. Label-free protein biosensor based on aptamer-modified carbon nanotube field-effect transistors. Anal Chem. 2007;79:782–7.PubMedCrossRefGoogle Scholar
  124. 124.
    Fan Z, Shelton M, Singh AK, et al. Multifunctional plasmonic shell-magnetic core nanoparticles for targeted diagnostics, isolation, and photothermal destruction of tumor cells. ACS Nano. 2012;6:1065–73. doi:  10.1021/nn2045246 Google Scholar
  125. 125.
    Pangburn TO, Petersen MA, Waybrant B, et al. Peptide- and aptamer- functionalized nanovectors for targeted delivery of therapeutics. J Biomech Eng. 2009;131:0740051–07400520.CrossRefGoogle Scholar
  126. 126.
    Lee JF, Stovall GM, Ellington AD. Aptamer therapeutics advance. Curr Opin Chem Bio. 2006;10:282–9.CrossRefGoogle Scholar
  127. 127.
    Murphy GP, Elgamal AA, Su SL, et al. Current evaluation of the tissue localization and diagnostic utility of prostate specific membrane antigen. Cancer. 1998;83:2259–69.PubMedCrossRefGoogle Scholar
  128. 128.
    Farokhzad OC, Khademhosseini A, Jon S, et al. Microfluidic system for studying the interaction of nanoparticles and microparticles with cells. Anal Chem. 2005;77:5453–9.PubMedCrossRefGoogle Scholar
  129. 129.
    Tong R, Coyle VJ, Tang L, et al. Polylactide nanoparticles containing stably incorporated cyanine dyes for in vitro and in vivo imaging applications. Micro Res Technol. 2010;73:901–9.CrossRefGoogle Scholar
  130. 130.
    Janat-Amsbury MM, Yockman JW, Lee M, Kern S, Furgeson DY, Bikram M, et al. Combination of local, nonviral IL12 gene therapy and systemic paclitaxel treatment in a metastatic breast cancer model. Mol Ther. 2004;9:829–36.PubMedCrossRefGoogle Scholar
  131. 131.
    MacDiarmid JA, Amaro-Mugridge NB, Madrid-Weiss J, Sedliarou I, Wetzel S, Kochar K, et al. Sequential treatment of drug-resistant tumors with targeted minicells containing siRNA or a cytotoxic drug. Nat Biotechnol. 2009;27:643–51.PubMedCrossRefGoogle Scholar
  132. 132.
    Dong X, Liu A, Zer C, Feng J, Zhen Z, Yang M, et al. siRNA inhibition of telomerase enhances the anti-cancer effect of doxorubicin in breast cancer cells. BMC Cancer. 2009;9:133–42.PubMedCrossRefGoogle Scholar
  133. 133.
    Kim E, Jung Y, Choi H, et al. Prostate cancer cell death produced by the co-delivery of Bcl-xL shRNA and doxorubicin using an aptamer-conjugated polyplex. Biomaterials. 2010;31:4592–9.PubMedCrossRefGoogle Scholar
  134. 134.
    Dhar S, Gu FX, Langer R, et al. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(IV) prodrug-PLGA-PEG nanoparticles. Proc Natl Acad Sci USA. 2008;105:17356–61.PubMedCrossRefGoogle Scholar
  135. 135.
    Dhar S, Kolishetti N, Lippard SJ and Farokhzad OC. Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci USA 2012. doi: 10.1073/pnas.1011379108
  136. 136.
    Shi J, Xiao Z, Kamaly N, Farokhzad OC. Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation. Acc Chem Res. 2011;44:1123–34.PubMedCrossRefGoogle Scholar
  137. 137.
    Farrell D, Ptak K, Nicholas J, et al. Nanotechnology-based cancer therapeutics—promise and challenge-lessons learned through the NCI alliance for nanotechnology in cancer. Pharm Res. 2011;28:273–8.PubMedCrossRefGoogle Scholar
  138. 138.
    Gu F, Zhang L, Teply BA, et al. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc Natl Acad Sci USA. 2008;105:2586–91.PubMedCrossRefGoogle Scholar
  139. 139.
    Fujiyama J, Nakase Y, Osaki K, et al. Cisplatin incorporated in microspheres: development and fundamental studies for its clinical application. J Control Release. 2003;89:397–408.PubMedCrossRefGoogle Scholar
  140. 140.
    Avgoustakis K, Beletsi A, Panagi Z, et al. PLGA-mPEG nanoparticles of cisplatin: in vitro nanoparticle degradation, in vitro drug release and in vivo drug residence in blood properties. J Control Release. 2002;79:123–35.PubMedCrossRefGoogle Scholar
  141. 141.
    Avgoustakis K, Beletsi A, Panagi Z, et al. Effect of copolymer composition on the physicochemical characteristics, in vitro stability, and biodistribution of PLGA–mPEG nanoparticles. Int J Pharm. 2003;259:115–27.PubMedCrossRefGoogle Scholar
  142. 142.
    Stolnik S, et al. Polylactide-poly(ethylene glycol) micellar-like particles as potential drug carriers: production, colloidal properties and biological performance. J Drug Target. 2001;9:361–78.PubMedCrossRefGoogle Scholar
  143. 143.
    Moreno D, et al. Characterization of cisplatin cytotoxicity delivered from PLGA-systems. Eur J Pharm Biopharm. 2008;68:503–12.PubMedCrossRefGoogle Scholar
  144. 144.
    Gryparis EC, Hatziapostolou M, Papadimitriou E, Avgoustakis K. Anticancer activity of cisplatin-loaded PLGA-mPEG nanoparticles on LNCaP prostate cancer cells. Eur J Pharm Biopharm. 2007;67:1–8.PubMedCrossRefGoogle Scholar
  145. 145.
    Kolishetti N, Dhar S, Valencia PM, et al. Engineering of self-assembled nanoparticle platform for precisely controlled combination drug therapy. Proc Natl Acad Sci USA. 2010;107:17939–44.PubMedCrossRefGoogle Scholar
  146. 146.
    Guo J, Gao X, Su L, et al. Aptamer-functionalized PEG-PLGA nanoparticles for enhanced anti-glioma drug delivery. Biomaterials. 2011;32:8010–20.PubMedCrossRefGoogle Scholar
  147. 147.
    Chan JM, Zhang L, Yuet KP, et al. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials. 2009;30:1627–34.PubMedCrossRefGoogle Scholar
  148. 148.
    Wang AZ, Yuet K, Zhang LF, et al. ChemoRad nanoparticles: a novel multifunctional nanoparticle platform for targeted delivery of concurrent chemoradiation. Nanomedicine. 2010;5:361–8.PubMedCrossRefGoogle Scholar
  149. 149.
    Xiao Z, Levy-Nissenbaum E, Alexis F, et al. Engineering of targeted nanoparticles for cancer therapy using internalizing aptamers isolated by cell-uptake selection. ACS Nano. 2012;6:696–704.PubMedCrossRefGoogle Scholar
  150. 150.
    Ferreira CS, et al. DNA aptamers that bind to MUC1 tumour marker: design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol. 2006;27:289–301.PubMedCrossRefGoogle Scholar
  151. 151.
    Yu C, Hu Y, Duan J, et al. Novel aptamer–nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One. 2011;6:e24077.PubMedCrossRefGoogle Scholar
  152. 152.
    Weinstein JN, van Osdol W. Early intervention in cancer using monoclonal antibodies and other biological ligands: micropharmacology and the “binding site barrier”. Cancer Res. 1992;52:2747–51.Google Scholar
  153. 153.
    Jain RK. Delivery of molecular medicine to solid tumors: lessons from in vivo imaging of gene expression and function. J Control Release. 2001;74:7–25.PubMedCrossRefGoogle Scholar
  154. 154.
    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407:249–57.PubMedCrossRefGoogle Scholar
  155. 155.
    Less JR, Skalak TC, Sevick EMC, Jain RK. Microvascular architecture in a mammary carcinoma: branching patterns and vessel dimensions. Cancer Res. 1991;51:265–73.PubMedGoogle Scholar
  156. 156.
    Patan S, Munn LL, Jain RK. Intussusceptive microvascular growth in solid tumors: a novel mechanism of tumorangiogenesis. Microvasc Res. 1996;51:260–72.PubMedCrossRefGoogle Scholar
  157. 157.
    Folkman J. Tumor angiogenesis. In: Holland JF, Frei III E, Bast Jr RC, Kufe DW, Pollock RE, Weichselbaum RR, editors. Cancer medicine. 5th ed. Ontario: Decker; 2000. p. 132–52.Google Scholar
  158. 158.
    Endrich B, Reinhold HS, Gross JF, Intaglietta M. Tissue perfusion in homogeneity during early tumor growth in rats. J Natl Cancer Inst. 1979;62:387–95.PubMedGoogle Scholar
  159. 159.
    Jain RK. Determinants of tumor blood flow: a review. Cancer Res. 1988;48:2641–58.PubMedGoogle Scholar
  160. 160.
    Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47:3039–51.PubMedGoogle Scholar
  161. 161.
    Krishna R, Mayer LD. Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci. 2000;11:265–83.PubMedCrossRefGoogle Scholar
  162. 162.
    Mi J, Zhang X, Giangrande PH, et al. Targeted inhibition of alphavbeta3 integrin with an RNA aptamer impairs endothelial cell growth and survival. Biochem Biophys Res Commun. 2005;338:956–63.PubMedCrossRefGoogle Scholar
  163. 163.
    Chen CH, Chernis GA, Hoang VQ, Landgraf R. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc Natl Acad Sci USA. 2003;100:9226–31.PubMedCrossRefGoogle Scholar
  164. 164.
    Lupold SE, et al. Identification and characterization of nuclease-stabilized RNA molecules that bind human prostate cancer cells via the prostate-specific membrane antigen. Cancer Res. 2002;62:4029–33.PubMedGoogle Scholar
  165. 165.
    Dapic V, Abdomerovic V, Marrington R, et al. Biophysical and biological properties of quadruplex oligonucleotides. Nucleic Acids Res. 2003;31:2097–107.PubMedCrossRefGoogle Scholar
  166. 166.
    Barnhart KM, Laber DA, Bates PJ et al. AGRO100: the translation from lab to clinic of a tumor targeted nucleic acid aptamer. In Proceedings from the American Society for Clinical Oncology, New Orleans, 2004.Google Scholar
  167. 167.
    Laber DA, Sharma VR, Bhupalam L et al. In update on the first phase I study of AGRO100 in advanced cancer. American Society of Clinical Oncology Annual Meeting, Abstract 3064; 2005.Google Scholar
  168. 168.
    Jeong S, Eom T, Kim S, et al. In vitro selection of the RNA aptamer against Sialyl Lewis X and its inhibition of the cell adhesion. Biochem Biophys Res Commun. 2001;281:237–43.PubMedCrossRefGoogle Scholar
  169. 169.
    Santulli-Marotto S, Nair SK, Rusconi C, et al. Multivalent RNA aptamers that inhibit CTLA-4 and enhance tumor immunity. Cancer Res. 2003;63:7483–9.PubMedGoogle Scholar
  170. 170.
    Shangguan D, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA. 2006;103:11838–43.PubMedCrossRefGoogle Scholar
  171. 171.
    Xiao Z, et al. Cell-specific internalization study of an aptamer from whole cell selection. Chemistry. 2008;14:1769–75.PubMedCrossRefGoogle Scholar
  172. 172.
    Daniels DA, et al. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci USA. 2003;100:15416–21.PubMedCrossRefGoogle Scholar
  173. 173.
    Hicke BJ, Marion C, Chang YF, et al. Tenascin-C aptamers are generated using tumor cells and purified protein. J Biol Chem. 2001;276:48644–54.PubMedCrossRefGoogle Scholar
  174. 174.
    Blank M, Weinschenk T, Priemer M, et al. Systemic evolution of a DNA aptamer binding to rat brain tumor microvessels, selective targeting of endothelial regulatory protein pigpen. J Biol Chem. 2001;276:16464–8.PubMedCrossRefGoogle Scholar
  175. 175.
    Green LS, et al. Inhibitory DNA ligands to platelet-derived growth factor B-chain. Biochemistry. 1996;35:14413–24.PubMedCrossRefGoogle Scholar
  176. 176.
    Zhou C, et al. Detection of oncoprotein platelet-derived growth factor using a fluorescent signaling complex of an aptamer and TOTO. Anal Bioanal Chem. 2006;384:1175–80.PubMedCrossRefGoogle Scholar
  177. 177.
    Burmeister P, et al. Direct in vitro selection of a 2′-O-methyl aptamer to VEGF. Chem Biol. 2005;12:25–33.PubMedCrossRefGoogle Scholar
  178. 178.
    Ruckman J, et al. 2′-Fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF165). Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain. J Biol Chem. 1998;273:20556–67.PubMedCrossRefGoogle Scholar
  179. 179.
    Cerchia L, et al. Neutralizing aptamers from whole-cell SELEX inhibit the RET receptor tyrosine kinase. PLoS Biol. 2005;3:e123.PubMedCrossRefGoogle Scholar
  180. 180.
    Pashenkov M, et al. Phase II trial of a toll-like receptor 9-activating oligonucleotide in patients with metastatic melanoma. J Clin Oncol. 2006;24:5716–24.PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2012

Authors and Affiliations

  • Athulya Aravind
    • 1
  • Yasuhiko Yoshida
    • 1
  • Toru Maekawa
    • 1
  • D. Sakthi Kumar
    • 1
  1. 1.Bio Nano Electronics Research Center, Graduate School of Interdisciplinary New ScienceToyo UniversityKawagoeJapan

Personalised recommendations