Advertisement

Drug Delivery and Translational Research

, Volume 2, Issue 6, pp 437–453 | Cite as

Evaluation of new bi-functional terpolymeric nanoparticles for simultaneous in vivo optical imaging and chemotherapy of breast cancer

  • Alireza Shalviri
  • Ping Cai
  • Andrew M. Rauth
  • Jeffery T. Henderson
  • Xiao Yu Wu
Research Article

Abstract

Successful development of a nanoparticulate system for cancer chemotherapy requires detailed knowledge of its biodistribution, clearance and anti-tumour efficacy in vivo. Herein we developed new bi-functional nanoparticles for simultaneous in vivo optical imaging and delivery of the anticancer drug doxorubicin (Dox) for enhanced chemotherapy. Two types of nanoparticles were synthesized, namely preformed nanoparticles (PF-NPs) and self-assembled nanoparticles (SA-NPs). The PF-NPs were prepared by cross-linking graft polymerization of methacrylic acid and polysorbate 80 with starch (PMAA-PS 80-g-St) and then loading the particles with Dox. The SA-NPs were formed upon addition of Dox to non-cross-linked PMAA-PS 80-g-St. A near infrared fluorescent probe was conjugated with the PMAA unit of the nanoparticles. The biodistribution, tumour targeting and pharmacokinetics of the Dox-loaded nanoparticles in mice were determined by in vivo/ex vivo fluorescence imaging and ex vivo fluorescence microscopy. The anti-tumour efficacy of the nanoparticles was investigated using a murine orthotopic breast cancer model. PF-NPs had an average hydrodynamic diameter and zeta potential of 137 ± 3 nm and −38 ± 1 mV, respectively. These values were measured at 62 ± 5 nm and −35 ± 5 mV for SA-NPs. PF-NPs exhibited a porous morphology while the SA-NPs appeared to have a denser structure. SA-NPs outperformed the PF-NPs in terms of blood circulation, tumour uptake and penetration. PF-NPs and SA-NPs exhibited no systemic toxicity and inhibited tumour growth significantly better than the free Dox solution with SA-NPs being the best, attributable to their excellent tumour uptake and penetration. This work demonstrates the usefulness of these bi-functional nanoparticles as nanotheranostics.

Keywords

Bi-functional nanoparticles In vivo fluorescence imaging Doxorubicin Biodistribution Theranostics 

Notes

Acknowledgments

The authors are grateful for the support of NSERC Discovery grant and Equipment grant to X.Y. Wu, CIHR/CBCRA operating grant to X.Y. Wu and A.M. Rauth and the Ontario graduate scholarship and the University of Toronto and Ben Cohen Fund scholarships to A. Shalviri. The authors are also thankful to Franky Liu for his assistance in producing diagrams.

Ethical standards

All animal handling and procedures were conducted under protocols approved by the Animal Care committee at the Ontario Cancer Institute following guidelines set forth by the Canadian Council on Animal Care.

Supplementary material

13346_2012_103_MOESM1_ESM.docx (3.3 mb)
ESM 1 (DOCX 3412 kb)

References

  1. 1.
    Chidambaram M, Manavalan R, Kathiresan K. Nanotherapeutics to overcome conventional cancer chemotherapy limitations. J Pharm Pharm Sci. 2011;14(1):67–77.PubMedGoogle Scholar
  2. 2.
    Lammers T, Kiessling F, Hennink WE, Storm G. Nanotheranostics and image-guided drug delivery: current concepts and future directions. Mol Pharmaceutics. 2010;7(6):1899–912.CrossRefGoogle Scholar
  3. 3.
    Maeda H. The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. Adv Enzyme Regul. 2001;41(1):189–207.CrossRefPubMedGoogle Scholar
  4. 4.
    Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Controlled Release. 2000;65(1–2):271–84.CrossRefGoogle Scholar
  5. 5.
    Torchilin VP. Passive and active drug targeting: drug delivery to tumors as an example. In: Schafer-Korting M, editor. Handb Exp Pharmacol. New York: Springer; 2010. p. 3–53.Google Scholar
  6. 6.
    Harrington KJ, Mohammadtaghi S, Uster PS, Glass D, Peters AM, Vile RG, et al. Effective targeting of solid tumors in patients with locally advanced cancers by radiolabeled pegylated liposomes. Clin Cancer Res. 2001;7(2):243–54.PubMedGoogle Scholar
  7. 7.
    Wiseman GA, White CA, Sparks RB, Erwin WD, Podoloff DA, Lamonica D, et al. Biodistribution and dosimetry results from a phase III prospectively randomized controlled trial of Zevalin (TM) radioimmunotherapy for low-grade, follicular, or transformed B-cell non-Hodgkin's lymphoma. Crit Rev Oncol Hematol. 2001;39(1–2):181–94.CrossRefPubMedGoogle Scholar
  8. 8.
    Park K, Kim JH, Nam YS, Lee S, Nam HY, Kim K, et al. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J Controlled Release. 2007;122(3):305–14.CrossRefGoogle Scholar
  9. 9.
    Erdogan S, Medarova ZO, Roby A, Moore A, Torchilin VP. Enhanced tumor MR imaging with gadolinium–loaded polychelating polymer–containing tumor–targeted liposomes. J Magn Reson Imaging. 2008;27(3):574–80.CrossRefPubMedGoogle Scholar
  10. 10.
    Shuhendler AJ, Staruch R, Oakden W, Gordijo CR, Rauth AM, Stanisz GJ, et al. Thermally-triggered ‘off-on-off’ response of gadolinium-hydrogel-lipid hybrid nanoparticles defines a customizable temperature window for non-invasive magnetic resonance imaging thermometry. J Controlled Release. 2011;157(3):478–84.CrossRefGoogle Scholar
  11. 11.
    Lammers T, Subr V, Ulbrich K, Hennink WE, Storm G, Kiessling F. Polymeric nanomedicines for image-guided drug delivery and tumor-targeted combination therapy. Nano Today. 2010;5(3):197–212.CrossRefGoogle Scholar
  12. 12.
    Choi KY, Liu G, Lee S, Chen X. Theranostic nanoplatforms for simultaneous cancer imaging and therapy: current approaches and future perspectives. Nanoscale. 2012;4(2):330–42.CrossRefPubMedGoogle Scholar
  13. 13.
    Seymour LW, Ferry DR, Anderson D, Hesslewood S, Julyan PJ, Poyner R, et al. Hepatic drug targeting: phase I evaluation of polymer-bound doxorubicin. J Clin Oncol. 2002;20(6):1668–76.CrossRefPubMedGoogle Scholar
  14. 14.
    Mulder WJM, Strijkers GJ, van Tilborg GAF, Griffioen AW, Nicolay K. Lipid–based nanoparticles for contrast–enhanced MRI and molecular imaging. NMR Biomed. 2006;19(1):142–64.CrossRefPubMedGoogle Scholar
  15. 15.
    Aswathy RG, Yoshida Y, Maekawa T, Kumar DS. Near-infrared quantum dots for deep tissue imaging. Anal Bioanal Chem. 2010;397(4):1417–35.CrossRefPubMedGoogle Scholar
  16. 16.
    Altınoglu EI, Adair JH. Near infrared imaging with nanoparticles. Nanomed Nanobiotechnol. 2010;2(5):461–77.CrossRefGoogle Scholar
  17. 17.
    Rao J, Dragulescu-Andrasi A, Yao H. Fluorescence imaging in vivo: recent advances. Curr Opin Biotechnol. 2007;18(1):17–25.CrossRefPubMedGoogle Scholar
  18. 18.
    Shuhendler AJ, Prasad P, Chan HKC, Gordijo CR, Soroushian B, Kolios M, et al. Hybrid quantum dot-fatty ester stealth nanoparticles: toward clinically relevant in vivo optical imaging of deep tissue. ACS Nano. 2011;5(3):1958–66.CrossRefPubMedGoogle Scholar
  19. 19.
    Ballou B, Ernst LA, Andreko S, Harper T, Fitzpatrick JAJ, Waggoner AS, et al. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjugate Chem. 2007;18(2):389–96.CrossRefGoogle Scholar
  20. 20.
    Cai W, Shin DW, Chen K, Gheysens O, Cao Q, Wang SX, et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 2006;6(4):669–76.CrossRefPubMedGoogle Scholar
  21. 21.
    Diagaradjane P, Orenstein-Cardona JM, Colón-Casasnovas NE, Deorukhkar A, Shentu S, Kuno N, et al. Imaging epidermal growth factor receptor expression in vivo: pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe. Clin Cancer Res. 2008;14(3):731–41.CrossRefPubMedGoogle Scholar
  22. 22.
    Shalviri A, Chan HK, Raval G, Abdekhodaie MJ, Liu Q, Heerklotz H et al. Design of pH-responsive nanoparticles of terpolymer of poly(methacrylic acid), polysorbate 80 and starch for delivery of doxorubicin. Colloids and Surfaces B: Biointerfaces. 2012;101:405–13. doi: 10.1016/j.colsurfb.2012.07.015.
  23. 23.
    Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm. 2004;58(2):327–41.CrossRefPubMedGoogle Scholar
  24. 24.
    Passirani C, Barratt G, Devissaguet JP, Labarre D. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly (methyl methacrylate). Pharm Res. 1998;15(7):1046–50.CrossRefPubMedGoogle Scholar
  25. 25.
    Weissleder R, Bogdanov A, Neuwelt EA, Papisov M. Long-circulating iron oxides for MR imaging. Adv Drug Delivery Rev. 1995;16(2–3):321–34.CrossRefGoogle Scholar
  26. 26.
    Besheer A, Vogel J, Glanz D, Kressler J, Groth T, Mäder K. Characterization of PLGA nanospheres stabilized with amphiphilic polymers: hydrophobically modified hydroxyethyl starch vs pluronics. Mol Pharmaceutics. 2009;6(2):407–15.CrossRefGoogle Scholar
  27. 27.
    Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, et al. A new polymer–lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res. 2006;23(7):1574–85.CrossRefPubMedGoogle Scholar
  28. 28.
    Shuhendler AJ, Cheung RY, Manias J, Connor A, Rauth AM, Wu XY. A novel doxorubicin-mitomycin C co-encapsulated nanoparticle formulation exhibits anti-cancer synergy in multidrug resistant human breast cancer cells. Breast Cancer Res Treat. 2010;119(2):255–69.CrossRefPubMedGoogle Scholar
  29. 29.
    Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm Res. 2004;21(2):201–30.CrossRefPubMedGoogle Scholar
  30. 30.
    Cappel MJ, Kreuter J. Effect of nonionic surfactants on transdermal drug delivery: I. Polysorbates. Int J Pharm. 1991;69(2):143–53.CrossRefGoogle Scholar
  31. 31.
    MacKay JA, Chen M, McDaniel JR, Liu W, Simnick AJ, Chilkoti A. Self-assembling chimeric polypeptide–doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat Mater. 2009;8(12):993–9.CrossRefPubMedGoogle Scholar
  32. 32.
    Malvern Instruments. Zetasizer nano user manual. 4th ed. Worcestershire: Malvern Instruments; 2008.Google Scholar
  33. 33.
    Opanasopit P, Nishikawa M, Hashida M. Factors affecting drug and gene delivery: effects of interaction with blood components. Crit Rev Ther Drug Carrier Syst. 2002;19(3):191–233.CrossRefPubMedGoogle Scholar
  34. 34.
    Kumar R, Roy I, Ohulchanskky TY, Vathy L, Bergey EJ, Sajjad M, et al. In vivo biodistribution and clearance studies using multimodal organically modified silica nanoparticles. ACS Nano. 2010;4:699–708. doi: 10.1021/nn901146y.CrossRefPubMedGoogle Scholar
  35. 35.
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol Pharmaceutics. 2008;5(4):505–15.CrossRefGoogle Scholar
  36. 36.
    Jain TK, Reddy MK, Morales MA, Leslie-Pelecky DL, Labhasetwar V. Biodistribution, clearance, and biocompatibility of iron oxide magnetic nanoparticles in rats. Mol Pharmaceutics. 2008;5(2):316–27.CrossRefGoogle Scholar
  37. 37.
    Fischer HC, Liu L, Pang KS, Chan WCW. Pharmacokinetics of nanoscale quantum dots: in vivo distribution, sequestration, and clearance in the rat. Adv Funct Mater. 2006;16(10):1299–305.CrossRefGoogle Scholar
  38. 38.
    Nagayama S, Ogawara K, Fukuoka Y, Higaki K, Kimura T. Time-dependent changes in opsonin amount associated on nanoparticles alter their hepatic uptake characteristics. Int J Pharm. 2007;342(1–2):215–21.CrossRefPubMedGoogle Scholar
  39. 39.
    Rolland A, Verge RL, Collet B, Toujas L. Blood clearance and organ distribution of intravenously administered polymethacrylic nanoparticles in mice. J Pharm Sci. 1989;78(6):481–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Araujo L, Löbenberg R, Kreuter J. Influence of the surfactant concentration on the body distribution of nanoparticles. J Drug Targeting. 1999;6(5):373–85.CrossRefGoogle Scholar
  41. 41.
    Wohlfart S, Gelperina S, Kreuter J. Transport of drugs across the blood–brain barrier by nanoparticles. J Controlled Release. 2011;161(2):264–73.CrossRefGoogle Scholar
  42. 42.
    Ishida T, Harashima H, Kiwada H. Liposome clearance. Biosci Rep. 2002;22(2):197–224.CrossRefPubMedGoogle Scholar
  43. 43.
    Moghimi S, Muir I, Illum L, Davis S, Kolb-Bachofen V. Coating particles with a block co-polymer (poloxamine-908) suppresses opsonization but permits the activity of dysopsonins in the serum. Biochim Biophys Acta. 1993;1179(2):157–65.CrossRefPubMedGoogle Scholar
  44. 44.
    Moghimi S, Patel H. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system—the concept of tissue specificity. Adv Drug Delivery Rev. 1998;32(1–2):45–60.CrossRefGoogle Scholar
  45. 45.
    Brun PH, DeGroot JL, Dickson EFG, Farahani M, Pottier RH. Determination of the in vivo pharmacokinetics of palladium-bacteriopheophorbide (WST09) in EMT6 tumour-bearing Balb/c mice using graphite furnace atomic absorption spectroscopy. Photochem Photobiol Sci. 2004;3(11–12):1006–10.CrossRefPubMedGoogle Scholar
  46. 46.
    Korbelik M, Krosl G, Krosl J, Dougherty GJ. The role of host lymphoid populations in the response of mouse EMT6 tumor to photodynamic therapy. Cancer Res. 1996;56(24):5647.PubMedGoogle Scholar
  47. 47.
    Monsky WL, Carreira CM, Tsuzuki Y, Gohongi T, Fukumura D, Jain RK. Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad versus cranial tumors. Clin Cancer Res. 2002;8(4):1008–13.PubMedGoogle Scholar
  48. 48.
    Bekaii-Saab TS, Villalona-Calero MA. Preclinical experience with docetaxel in gastrointestinal cancers. Semin Oncol. 2005;32(Suppl4):3–9.CrossRefGoogle Scholar
  49. 49.
    Gabizon A, Tzemach D, Mak L, Bronstein M, Horowitz AT. Dose dependency of pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (DOXIL) in murine models. J Drug Targeting. 2002;10(7):539–48.CrossRefGoogle Scholar
  50. 50.
    Hong RL, Huang CJ, Tseng YL, Pang VF, Chen ST, Liu JJ, et al. Direct comparison of liposomal doxorubicin with or without polyethylene glycol coating in C-26 tumor-bearing mice. Clin Cancer Res. 1999;5(11):3645–52.PubMedGoogle Scholar
  51. 51.
    Shuhendler AJ, Prasad P, Leung M, Rauth AM, DaCosta RS, Wu XY. A novel solid lipid nanoparticle formulation for active targeting to tumor αvβ3 integrin receptors reveals cyclic RGD as a double–edged sword. Adv Healthcare Mate’r. 2012. doi: 10.1002/adhm.201200006.
  52. 52.
    Mattarollo SR, Loi S, Duret H, Ma Y, Zitvogel L, Smyth MJ. Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res. 2011;71(14):4809–20.CrossRefPubMedGoogle Scholar
  53. 53.
    Mihich E. On the immunomodulating effects of anti-cancer drugs and their therapeutic exploitation. Jpn J Clin Oncol. 2000;30(11):469–71.CrossRefPubMedGoogle Scholar
  54. 54.
    Mrkvan T, Sirova M, Etrych T, Chytil P, Strohalm J, Plocova D, et al. Chemotherapy based on HPMA copolymer conjugates with pH-controlled release of doxorubicin triggers anti-tumor immunity. J Controlled Release. 2005;110(1):119–29.CrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2012

Authors and Affiliations

  • Alireza Shalviri
    • 1
  • Ping Cai
    • 1
  • Andrew M. Rauth
    • 2
  • Jeffery T. Henderson
    • 1
  • Xiao Yu Wu
    • 1
  1. 1.Department of Pharmaceutical Sciences, Leslie Dan Faculty of PharmacyUniversity of TorontoTorontoCanada
  2. 2.Division of Applied Molecular OncologyOntario Cancer InstituteTorontoCanada

Personalised recommendations