Drug Delivery and Translational Research

, Volume 3, Issue 2, pp 143–151 | Cite as

Identification and characterization of a novel scFv recognizing human and mouse CD133

  • Suresh Kumar Swaminathan
  • Lin Niu
  • Nate Waldron
  • Steve Kalscheuer
  • David M. Zellmer
  • Michael R. Olin
  • John R. Ohlfest
  • Daniel A. Vallera
  • Jayanth PanyamEmail author
Research Article


CD133, also known as Prominin-1, is expressed on stem cells present in many tissues and tumors. In this work, we have identified and characterized a single-chain variable fragment (scFv) for the efficient and specific recognition of CD133. Phage display was used to develop the scFv from a previously reported anti-CD133 hybridoma clone 7, which was capable of recognizing both glycosylated and non-glycosylated forms of human CD133. The scFv immunostained CD133+ Caco-2 cells, but not CD133−/low U87 cells. Significantly, it immunostained CD133 cells transiently transfected with the mouse CD133 gene as well as CD133+ mouse cells. Co-immunostaining studies in mouse bone marrow cells, using anti-CD133 scFv-FITC and anti-mouse CD133-PE (clone 13A4) commercial antibody, indicated that the epitopes recognized by these reagents partially overlap. Taken together, these results suggest that the scFv can recognize mouse CD133 protein in addition to recognizing human CD133. This new scFv is expected to be valuable both as a molecular diagnostic reagent for identifying CD133+ cells and as a ligand for targeting therapeutics to CD133+ tumor-initiating cells.


CD133 ScFv Cancer stem cells Prominin-1 



We thank Dong Chen at Creative Dynamics, Inc. for contributing reagents and expertise used in generating the CD133-reactive antibodies.


  1. 1.
    Yin AH, Miraglia S, Zanjani ED, Almeida-Porada G, Ogawa M, Leary AG, et al. AC133, a novel marker for human hematopoietic stem and progenitor cells. Blood. 1997;90(12):5002–12.PubMedGoogle Scholar
  2. 2.
    Uchida N, Buck DW, He D, Reitsma MJ, Masek M, Phan TV, et al. Direct isolation of human central nervous system stem cells. Proc Natl Acad Sci U S A. 2000;97(26):14720–5. doi: 10.1073/pnas.97.26.1472097/26/14720.PubMedCrossRefGoogle Scholar
  3. 3.
    Peichev M, Naiyer AJ, Pereira D, Zhu Z, Lane WJ, Williams M, et al. Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood. 2000;95(3):952–8.PubMedGoogle Scholar
  4. 4.
    Weigmann A, Corbeil D, Hellwig A, Huttner WB. Prominin, a novel microvilli-specific polytopic membrane protein of the apical surface of epithelial cells, is targeted to plasmalemmal protrusions of non-epithelial cells. Proc Natl Acad Sci U S A. 1997;94(23):12425–30.PubMedCrossRefGoogle Scholar
  5. 5.
    Fabrizi E, di Martino S, Pelacchi F, Ricci-Vitiani L. Therapeutic implications of colon cancer stem cells. World J Gastroenterol. 2010;16(31):3871–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Harper LJ, Piper K, Common J, Fortune F, Mackenzie IC. Stem cell patterns in cell lines derived from head and neck squamous cell carcinoma. J Oral Pathol Med. 2007;36(10):594–603. doi: 10.1111/j.1600-0714.2007.00617.x.PubMedCrossRefGoogle Scholar
  7. 7.
    Du Z, Qin R, Wei C, Wang M, Shi C, Tian R, et al. Pancreatic cancer cells resistant to chemoradiotherapy rich in “stem-cell-like” tumor cells. Dig Dis Sci. 2010;56(3):741–50. doi: 10.1007/s10620-010-1340-0.PubMedCrossRefGoogle Scholar
  8. 8.
    Ohlfest JR, Zellmer D, Panyam J, Swaminathan SK, Oh S, Waldron N et al. Immunotoxin targeting CD133+ breast carcinoma cells. Drug Deliv and Transl Res. 2012. doi: 10.1007/s13346-012-0066-2.
  9. 9.
    Waldron NN, Kaufman DS, Oh S, Inde Z, Hexum MK, Ohlfest JR, et al. Targeting tumor-initiating cancer cells with dCD133KDEL shows impressive tumor reductions in a xenotransplant model of human head and neck cancer. Mol Cancer Ther. 2011;10(10):1829–38. doi: 10.1158/1535-7163.MCT-11-0206.PubMedCrossRefGoogle Scholar
  10. 10.
    Bidlingmaier S, Zhu X, Liu B. The utility and limitations of glycosylated human CD133 epitopes in defining cancer stem cells. J Mol Med. 2008;86(9):1025–32. doi: 10.1007/s00109-008-0357-8.PubMedCrossRefGoogle Scholar
  11. 11.
    Kemper K, Sprick MR, de Bree M, Scopelliti A, Vermeulen L, Hoek M, et al. The AC133 epitope, but not the CD133 protein, is lost upon cancer stem cell differentiation. Cancer Res. 2010;70(2):719–29. doi: 10.1158/0008-5472.CAN-09-1820.PubMedCrossRefGoogle Scholar
  12. 12.
    Florek M, Haase M, Marzesco AM, Freund D, Ehninger G, Huttner WB, et al. Prominin-1/CD133, a neural and hematopoietic stem cell marker, is expressed in adult human differentiated cells and certain types of kidney cancer. Cell Tissue Res. 2005;319(1):15–26. doi: 10.1007/s00441-004-1018-z.PubMedCrossRefGoogle Scholar
  13. 13.
    Swaminathan SK, Olin MR, Forster CL, Cruz KSS, Panyam J, Ohlfest JR. Identification of a novel monoclonal antibody recognizing CD133. J Immunol Methods. 2010;361(1–2):110–5.PubMedCrossRefGoogle Scholar
  14. 14.
    Wiesner SM, Decker SA, Larson JD, Ericson K, Forster C, Gallardo JL, et al. De novo induction of genetically engineered brain tumors in mice using plasmid DNA. Cancer Res. 2009;69(2):431–9. doi: 10.1158/0008-5472.CAN-08-1800.PubMedCrossRefGoogle Scholar
  15. 15.
    Swaminathan SK, Olin MR, Forster CL, Cruz KS, Panyam J, Ohlfest JR. Identification of a novel monoclonal antibody recognizing CD133. J Immunol Methods. 2010;361(1–2):110–5. doi: 10.1016/j.jim.2010.07.007.PubMedCrossRefGoogle Scholar
  16. 16.
    Vander Griend DJ, Karthaus WL, Dalrymple S, Meeker A, DeMarzo AM, Isaacs JT. The role of CD133 in normal human prostate stem cells and malignant cancer-initiating cells. Cancer Res. 2008;68(23):9703–11. doi: 10.1158/0008-5472.CAN-08-3084.PubMedCrossRefGoogle Scholar
  17. 17.
    Jaksch M, Munera J, Bajpai R, Terskikh A, Oshima RG. Cell cycle-dependent variation of a CD133 epitope in human embryonic stem cell, colon cancer, and melanoma cell lines. Cancer Res. 2008;68(19):7882–6. doi: 10.1158/0008-5472.CAN-08-0723.PubMedCrossRefGoogle Scholar
  18. 18.
    Quirici N, Soligo D, Caneva L, Servida F, Bossolasco P, Deliliers GL. Differentiation and expansion of endothelial cells from human bone marrow CD133(+) cells. Br J Haematol. 2001;115(1):186–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Sugiyama T, Rodriguez RT, McLean GW, Kim SK. Conserved markers of fetal pancreatic epithelium permit prospective isolation of islet progenitor cells by FACS. Proc Natl Acad Sci U S A. 2007;104(1):175–80. doi: 10.1073/pnas.0609490104.PubMedCrossRefGoogle Scholar
  20. 20.
    Shmelkov SV, St Clair R, Lyden D, Rafii S. AC133/CD133/Prominin-1. Int J Biochem Cell Biol. 2005;37(4):715–9. doi: 10.1016/j.biocel.2004.08.010.PubMedCrossRefGoogle Scholar
  21. 21.
    Shmelkov SV, Jun L, St Clair R, McGarrigle D, Derderian CA, Usenko JK, et al. Alternative promoters regulate transcription of the gene that encodes stem cell surface protein AC133. Blood. 2004;103(6):2055–61.PubMedCrossRefGoogle Scholar
  22. 22.
    Pellacani D, Packer RJ, Frame FM, Oldridge EE, Berry PA, Labarthe M-C et al. Regulation of the stem cell marker CD133 is independent of promoter hypermethylation in human epithelial differentiation and cancer. Mol Cancer. 2011;10:94.Google Scholar
  23. 23.
    Roper K, Corbeil D, Huttner WB. Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol. 2000;2(9):582–92.PubMedCrossRefGoogle Scholar
  24. 24.
    Miraglia S, Godfrey W, Yin AH, Atkins K, Warnke R, Holden JT, et al. A novel five-transmembrane hematopoietic stem cell antigen: isolation, characterization, and molecular cloning. Blood. 1997;90(12):5013–21.PubMedGoogle Scholar
  25. 25.
    Mak AB, Blakely KM, Williams RA, Penttila P-A, Shukalyuk AI, Osman KT, et al. CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope. J Biol Chem. 2011;286(47):41046–56.PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2012

Authors and Affiliations

  • Suresh Kumar Swaminathan
    • 1
  • Lin Niu
    • 1
  • Nate Waldron
    • 2
    • 4
  • Steve Kalscheuer
    • 1
  • David M. Zellmer
    • 3
  • Michael R. Olin
    • 3
  • John R. Ohlfest
    • 3
  • Daniel A. Vallera
    • 2
  • Jayanth Panyam
    • 1
    • 5
    Email author
  1. 1.Department of Pharmaceutics, College of Pharmacy, Masonic Cancer CenterUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Therapeutic Radiology–Radiation Oncology, Masonic Cancer CenterUniversity of MinnesotaMinneapolisUSA
  3. 3.Department of Pediatrics, Masonic Cancer CenterUniversity of MinnesotaMinneapolisUSA
  4. 4.Department of Pharmacology, Masonic Cancer CenterUniversity of MinnesotaMinneapolisUSA
  5. 5.College of PharmacyUniversity of MinnesotaMinneapolisUSA

Personalised recommendations