Advertisement

Drug Delivery and Translational Research

, Volume 3, Issue 2, pp 113–120 | Cite as

Cancer stem cells and therapeutic targets: an emerging field for cancer treatment

  • Arokia Priyanka Vaz
  • Moorthy P. Ponnusamy
  • Surinder K. Batra
Review Article

Abstract

Recent paradigm in the field of cancer defines its origin from a small population of fast-growing cells known as cancer stem cells (CSCs), and they are mainly responsible for disease aggressiveness, drug resistance, and tumor relapse. The existence of CSCs has been proven in different types of cancer and possesses characteristic expression of a wide array of cell surface markers specific to the type of cancer. CSCs have been isolated and enriched using several surface markers in different cancer types. Self-renewal, drug resistance, and the ability to transition from epithelial to mesenchymal phenotype are the major features attributed to this fraction of mutated stem cells. The CSC hypothesis proposes that these CSCs mimic stem cells by sharing similar pathways, such as Wnt, SHH, Notch, and others. Further, the niche, which in this case is the tumor microenvironment, plays a very important role in the maintenance of CSCs. Altogether, this emerging field of research on CSCs is expected to unveil answers to the most difficult issues of one of the most dreadful diseases called cancer.

Keywords

Cancer stem cells Drug resistance CSC markers Therapy targets 

Notes

Acknowledgments

The authors on this article were supported by grants from the National Institutes of Health (RO1 CA138791, EDRN UO1CA111294, SPORE P50CA127297, and TMEN U54CA163120). The authors acknowledge the invaluable support from Mrs. Kavita Mallya.

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62(1):10–29.PubMedCrossRefGoogle Scholar
  2. 2.
    Stevens LC. Genetic influences on teratocarcinogenesis and parthenogenesis. Prog Clin Biol Res. 1981;45:93–104.PubMedGoogle Scholar
  3. 3.
    Donovan PJ, de Miguel MP. Turning germ cells into stem cells. Curr Opin Genet Dev. 2003;13(5):463–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Kleinsmith LJ, Pierce Jr GB. Multipotentiality of single embryonal carcinoma cells. Cancer Res. 1964;24:1544–51.PubMedGoogle Scholar
  5. 5.
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 1997;3(7):730–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Al-Hajj M, Wicha MS, Ito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A. 2003;100(7):3983–8.PubMedCrossRefGoogle Scholar
  7. 7.
    Ponnusamy MP, Batra SK. Ovarian cancer: emerging concept on cancer stem cells. J Ovarian Res. 2008;1(1):4.PubMedCrossRefGoogle Scholar
  8. 8.
    Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, et al. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian inhibiting substance responsiveness. Proc Natl Acad Sci U S A. 2006;103(30):11154–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Cammareri P, Lombardo Y, Francipane MG, Bonventre S, Todaro M, Stassi G. Isolation and culture of colon cancer stem cells. Methods Cell Biol. 2008;86:311–24.PubMedCrossRefGoogle Scholar
  10. 10.
    Charafe-Jauffret E, Ginestier C, Birnbaum D. Breast cancer stem cells: tools and models to rely on. BMC Cancer. 2009;9:202.PubMedCrossRefGoogle Scholar
  11. 11.
    Lee CJ, Dosch J, Simeone DM. Pancreatic cancer stem cells. J Clin Oncol. 2008;26(17):2806–12.PubMedCrossRefGoogle Scholar
  12. 12.
    Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V, et al. Identification of pancreatic cancer stem cells. Cancer Res. 2007;67(3):1030–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Li C, Lee CJ, Simeone DM. Identification of human pancreatic cancer stem cells. Methods Mol Biol. 2009;568:161–73.PubMedCrossRefGoogle Scholar
  14. 14.
    Hermann PC, Huber SL, Herrler T, Aicher A, Ellwart JW, Guba M, et al. Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell. 2007;1(3):313–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Roskams TA, Theise ND, Balabaud C, Bhagat G, Bhathal PS, Bioulac-Sage P, et al. Nomenclature of the finer branches of the biliary tree: canals, ductules, and ductular reactions in human livers. Hepatology. 2004;39(6):1739–45.PubMedCrossRefGoogle Scholar
  16. 16.
    Roskams T. Liver stem cells and their implication in hepatocellular and cholangiocarcinoma. Oncogene. 2006;25(27):3818–22.PubMedCrossRefGoogle Scholar
  17. 17.
    Burke ZD, Thowfeequ S, Peran M, Tosh D. Stem cells in the adult pancreas and liver. Biochem J. 2007;404(2):169–78.PubMedCrossRefGoogle Scholar
  18. 18.
    Ma S, Chan KW, Hu L, Lee TK, Wo JY, Ng IO, et al. Identification and characterization of tumorigenic liver cancer stem/progenitor cells. Gastroenterology. 2007;132(7):2542–56.PubMedCrossRefGoogle Scholar
  19. 19.
    Ma S, Lee TK, Zheng BJ, Chan KW, Guan XY. CD133+ HCC cancer stem cells confer chemoresistance by preferential expression of the Akt/PKB survival pathway. Oncogene. 2008;27(12):1749–58.PubMedCrossRefGoogle Scholar
  20. 20.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445(7123):111–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007;104(24):10158–63.PubMedCrossRefGoogle Scholar
  22. 22.
    Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, et al. Generation of a functional mammary gland from a single stem cell. Nature. 2006;439(7072):84–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Dontu G, Jackson KW, McNicholas E, Kawamura MJ, Abdallah WM, Wicha MS. Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res. 2004;6(6):R605–15.PubMedCrossRefGoogle Scholar
  24. 24.
    Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.PubMedCrossRefGoogle Scholar
  25. 25.
    Hatsell S, Frost AR. Hedgehog signaling in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia. 2007;12(2–3):163–73.PubMedCrossRefGoogle Scholar
  26. 26.
    Lindvall C, Bu W, Williams BO, Li Y. Wnt signaling, stem cells, and the cellular origin of breast cancer. Stem Cell Rev. 2007;3(2):157–68.PubMedCrossRefGoogle Scholar
  27. 27.
    Dontu G, Abdallah WM, Foley JM, Jackson KW, Clarke MF, Kawamura MJ, et al. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev. 2003;17(10):1253–70.PubMedCrossRefGoogle Scholar
  28. 28.
    Kritikou EA, Sharkey A, Abell K, Came PJ, Anderson E, Clarkson RW, et al. A dual, non-redundant, role for LIF as a regulator of development and STAT3-mediated cell death in mammary gland. Development. 2003;130(15):3459–68.PubMedCrossRefGoogle Scholar
  29. 29.
    Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L. Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 2008;10(1):R10.PubMedCrossRefGoogle Scholar
  30. 30.
    Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ. Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res. 2005;65(23):10946–51.PubMedCrossRefGoogle Scholar
  31. 31.
    Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, et al. Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer. 2008;18(3):506–14.PubMedCrossRefGoogle Scholar
  32. 32.
    Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Ten CB, de Bruyn M, Wei Y, Bremer E, Helfrich W. Targeted elimination of leukemia stem cells; a new therapeutic approach in hemato-oncology. Curr Drug Targets. 2010;11(1):95–110.CrossRefGoogle Scholar
  34. 34.
    Prince ME, Sivanandan R, Kaczorowski A, Wolf GT, Kaplan MJ, Dalerba P, et al. Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A. 2007;104(3):973–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer. 2005;5(4):275–84.PubMedCrossRefGoogle Scholar
  36. 36.
    Martelli AM, Chiarini F, Evangelisti C, Grimaldi C, Ognibene A, Manzoli L, et al. The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin signaling network and the control of normal myelopoiesis. Histol Histopathol. 2010;25(5):669–80.PubMedGoogle Scholar
  37. 37.
    Martelli AM, Evangelisti C, Chiarini F, Grimaldi C, Manzoli L, McCubrey JA. Targeting the PI3K/AKT/mTOR signaling network in acute myelogenous leukemia. Expert Opin Investig Drugs. 2009;18(9):1333–49.PubMedCrossRefGoogle Scholar
  38. 38.
    Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, et al. PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell. 2009;4(3):226–35.PubMedCrossRefGoogle Scholar
  39. 39.
    Von Hoff DD, LoRusso PM, Rudin CM, Reddy JC, Yauch RL, Tibes R, et al. Inhibition of the hedgehog pathway in advanced basal-cell carcinoma. N Engl J Med. 2009;361(12):1164–72.CrossRefGoogle Scholar
  40. 40.
    Hofmann I, Stover EH, Cullen DE, Mao J, Morgan KJ, Lee BH, et al. Hedgehog signaling is dispensable for adult murine hematopoietic stem cell function and hematopoiesis. Cell Stem Cell. 2009;4(6):559–67.PubMedCrossRefGoogle Scholar
  41. 41.
    Fang J, Seki T, Maeda H. Therapeutic strategies by modulating oxygen stress in cancer and inflammation. Adv Drug Deliv Rev. 2009;61(4):290–302.PubMedCrossRefGoogle Scholar
  42. 42.
    Balyasnikova IV, Ferguson SD, Sengupta S, Han Y, Lesniak MS. Mesenchymal stem cells modified with a single-chain antibody against EGFRvIII successfully inhibit the growth of human xenograft malignant glioma. PLoS One. 2010;5(3):e9750.PubMedCrossRefGoogle Scholar
  43. 43.
    Wei Z, Chen N, Guo H, Wang X, Xu F, Ren Q, et al. Bone marrow mesenchymal stem cells from leukemia patients inhibit growth and apoptosis in serum-deprived K562 cells. J Exp Clin Cancer Res. 2009;28:141.PubMedCrossRefGoogle Scholar
  44. 44.
    Ten CB, Bremer E, de Bruyn M, Bijma T, Samplonius D, Schwemmlein M, et al. A novel AML-selective TRAIL fusion protein that is superior to Gemtuzumab Ozogamicin in terms of in vitro selectivity, activity and stability. Leukemia. 2009;23(8):1389–97.CrossRefGoogle Scholar
  45. 45.
    Leith CP, Kopecky KJ, Godwin J, McConnell T, Slovak ML, Chen IM, et al. Acute myeloid leukemia in the elderly: assessment of multidrug resistance (MDR1) and cytogenetics distinguishes biologic subgroups with remarkably distinct responses to standard chemotherapy. A Southwest Oncology Group study. Blood. 1997;89(9):3323–9.PubMedGoogle Scholar
  46. 46.
    Clayton S, Mousa SA. Therapeutics formulated to target cancer stem cells: is it in our future? Cancer Cell Int. 2011;11:7.PubMedCrossRefGoogle Scholar
  47. 47.
    Kotamraju S, Williams CL, Kalyanaraman B. Statin-induced breast cancer cell death: role of inducible nitric oxide and arginase-dependent pathways. Cancer Res. 2007;67(15):7386–94.PubMedCrossRefGoogle Scholar
  48. 48.
    Stavrovskaya AA, Stromskaya TP. Transport proteins of the ABC family and multidrug resistance of tumor cells. Biochemistry (Mosc). 2008;73(5):592–604.CrossRefGoogle Scholar
  49. 49.
    Fletcher JI, Haber M, Henderson MJ, Norris MD. ABC transporters in cancer: more than just drug efflux pumps. Nat Rev Cancer. 2010;10(2):147–56.PubMedCrossRefGoogle Scholar
  50. 50.
    Lhommé C, Joly F, Walker JL, Lissoni AA, Nicoletto MO, Manikhas GM, et al. Phase III study of valspodar (PSC 833) combined with paclitaxel and carboplatin compared with paclitaxel and carboplatin alone in patients with stage IV or suboptimally debulked stage III epithelial ovarian cancer or primary peritoneal cancer. J Clin Oncol. 2008;26(16):2674–81.PubMedCrossRefGoogle Scholar
  51. 51.
    Ruff P, Vorobiof DA, Jordaan JP, Demetriou GS, Moodley SD, Nosworthy AL, et al. A randomized, placebo-controlled, double-blind phase 2 study of docetaxel compared to docetaxel plus zosuquidar (LY335979) in women with metastatic or locally recurrent breast cancer who have received one prior chemotherapy regimen. Cancer Chemother Pharmacol. 2009;64(4):763–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Li F, Tiede B, Massague J, Kang Y. Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res. 2007;17(1):3–14.PubMedCrossRefGoogle Scholar
  53. 53.
    Gupta PB, Mani S, Yang J, Hartwell K, Weinberg RA. The evolving portrait of cancer metastasis. Cold Spring Harb Symp Quant Biol. 2005;70:291–7.PubMedCrossRefGoogle Scholar
  54. 54.
    Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265–73.PubMedCrossRefGoogle Scholar
  55. 55.
    Cairns J. Mutation selection and the natural history of cancer. Nature. 1975;255(5505):197–200.PubMedCrossRefGoogle Scholar
  56. 56.
    Hellman S. Karnofsky Memorial Lecture. Natural history of small breast cancers. J Clin Oncol. 1994;12(10):2229–34.PubMedGoogle Scholar
  57. 57.
    Rhim AD, Mirek ET, Aiello NM, Maitra A, Bailey JM, McAllister F, et al. EMT and dissemination precede pancreatic tumor formation. Cell. 2012;148(1–2):349–61.PubMedCrossRefGoogle Scholar
  58. 58.
    Pang R, Law WL, Chu AC, Poon JT, Lam CS, Chow AK, et al. A subpopulation of CD26+ cancer stem cells with metastatic capacity in human colorectal cancer. Cell Stem Cell. 2010;6(6):603–15.PubMedCrossRefGoogle Scholar
  59. 59.
    Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–22.PubMedCrossRefGoogle Scholar
  60. 60.
    Ward RJ, Dirks PB. Cancer stem cells: at the headwaters of tumor development. Annu Rev Pathol. 2007;2:175–89.PubMedCrossRefGoogle Scholar
  61. 61.
    Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell. 2011;147(5):992–1009.PubMedCrossRefGoogle Scholar
  62. 62.
    LaBarge MA. The difficulty of targeting cancer stem cell niches. Clin Cancer Res. 2010;16(12):3121–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27(45):5904–12.PubMedCrossRefGoogle Scholar
  64. 64.
    Vera-Ramirez L, Sanchez-Rovira P, Ramirez-Tortosa CL, Quiles JL, Ramirez-Tortosa MC, Alvarez JC, et al. Gene-expression profiles, tumor microenvironment, and cancer stem cells in breast cancer: latest advances towards an integrated approach. Cancer Treat Rev. 2010;36(6):477–84.PubMedCrossRefGoogle Scholar
  65. 65.
    Jing Y, Han Z, Zhang S, Liu Y, Wei L. Epithelial-mesenchymal transition in tumor microenvironment. Cell Biosci. 2011;1:29.PubMedCrossRefGoogle Scholar
  66. 66.
    Pinto D, Clevers H. Wnt, stem cells and cancer in the intestine. Biol Cell. 2005;97(3):185–96.PubMedCrossRefGoogle Scholar
  67. 67.
    Polakis P. Wnt signaling and cancer. Genes Dev. 2000;14(15):1837–51.PubMedGoogle Scholar
  68. 68.
    Scoville DH, Sato T, He XC, Li L. Current view: intestinal stem cells and signaling. Gastroenterology. 2008;134(3):849–64.PubMedCrossRefGoogle Scholar
  69. 69.
    Su W, Meng F, Huang L, Zheng M, Liu W, Sun H. Sonic hedgehog maintains survival and growth of chronic myeloid leukemia progenitor cells through beta-catenin signaling. Exp Hematol. 2012;40(5):418–27.PubMedCrossRefGoogle Scholar
  70. 70.
    Lewis A, Segditsas S, Deheragoda M, Pollard P, Jeffery R, Nye E, et al. Severe polyposis in Apc(1322 T) mice is associated with submaximal Wnt signalling and increased expression of the stem cell marker Lgr5. Gut. 2010;59(12):1680–6.PubMedCrossRefGoogle Scholar
  71. 71.
    Zeilstra J, Joosten SP, Dokter M, Verwiel E, Spaargaren M, Pals ST. Deletion of the WNT target and cancer stem cell marker CD44 in Apc(Min/+) mice attenuates intestinal tumorigenesis. Cancer Res. 2008;68(10):3655–61.PubMedCrossRefGoogle Scholar
  72. 72.
    Allenspach EJ, Maillard I, Aster JC, Pear WS. Notch signaling in cancer. Cancer Biol Ther. 2002;1(5):466–76.PubMedCrossRefGoogle Scholar
  73. 73.
    Roy M, Pear WS, Aster JC. The multifaceted role of Notch in cancer. Curr Opin Genet Dev. 2007;17(1):52–9.PubMedCrossRefGoogle Scholar
  74. 74.
    Pajcini KV, Speck NA, Pear WS. Notch signaling in mammalian hematopoietic stem cells. Leukemia. 2011;25(10):1525–32.PubMedCrossRefGoogle Scholar
  75. 75.
    Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–11.PubMedCrossRefGoogle Scholar
  76. 76.
    Merchant AA, Matsui W. Targeting hedgehog–a cancer stem cell pathway. Clin Cancer Res. 2010;16(12):3130–40.PubMedCrossRefGoogle Scholar
  77. 77.
    Di Pasca MM, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer. 2003;3(12):903–11.CrossRefGoogle Scholar
  78. 78.
    Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, et al. Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells. 2007;25(10):2524–33.PubMedCrossRefGoogle Scholar
  79. 79.
    Clement V, Sanchez P, de Tribolet N, Radovanovic I, Altaba A. HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol. 2007;17(2):165–72.PubMedCrossRefGoogle Scholar
  80. 80.
    Godlewski J, Nowicki MO, Bronisz A, Williams S, Otsuki A, Nuovo G, et al. Targeting of the Bmi-1 oncogene/stem cell renewal factor by microRNA-128 inhibits glioma proliferation and self-renewal. Cancer Res. 2008;68(22):9125–30.PubMedCrossRefGoogle Scholar
  81. 81.
    Liu S, Dontu G, Mantle ID, Patel S, Ahn NS, Jackson KW, et al. Hedgehog signaling and Bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res. 2006;66(12):6063–71.PubMedCrossRefGoogle Scholar
  82. 82.
    Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ. Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature. 2003;425(6961):962–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, et al. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature. 2003;423(6937):302–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Lukacs RU, Memarzadeh S, Wu H, Witte ON. Bmi-1 is a crucial regulator of prostate stem cell self-renewal and malignant transformation. Cell Stem Cell. 2010;7(6):682–93.PubMedCrossRefGoogle Scholar
  85. 85.
    Mimeault M, Batra SK. Great promise of tissue-resident adult stem/progenitor cells in transplantation and cancer therapies. Adv Exp Med Biol. 2012;741:171–86.PubMedCrossRefGoogle Scholar
  86. 86.
    Mimeault M, Batra SK. Recent advancements on the identification of immature cancer cells with the stem cell-like properties in different aggressive and recurrent cancer types. Anticancer Agents Med Chem. 2010;10(2):103.PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2012

Authors and Affiliations

  • Arokia Priyanka Vaz
    • 1
  • Moorthy P. Ponnusamy
    • 1
  • Surinder K. Batra
    • 1
    • 2
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied DiseasesUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations