Advertisement

Drug Delivery and Translational Research

, Volume 2, Issue 5, pp 323–350 | Cite as

Advances in biomimetic regeneration of elastic matrix structures

  • Balakrishnan Sivaraman
  • Chris A. Bashur
  • Anand Ramamurthi
Review Article

Abstract

Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures.

Keywords

Elastin Elastic fibers Induced elastogenesis Extracellular matrix Matrix assembly Regenerative tissue repair 

Notes

Acknowledgments

Representative data from the Ramamurthi laboratory, included as illustrative examples in this manuscript, were generated with grant support from the National Institutes of Health [HL092051] awarded to Anand Ramamurthi.

References

  1. 1.
    Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3(1):1–5.PubMedCrossRefGoogle Scholar
  2. 2.
    Greenwood HL, Thorsteinsdottir H, Perry G, Renihan J, Singer PA, Daar AS. Regenerative medicine: new opportunities for developing countries. Int J Biotechnol. 2006;8(1–2):60–77.Google Scholar
  3. 3.
    Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8(55):153–70.PubMedCrossRefGoogle Scholar
  4. 4.
    Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech. 2005;23(1):47–55.CrossRefGoogle Scholar
  5. 5.
    Davis ME, Hsieh PCH, Grodzinsky AJ, Lee RT. Custom design of the cardiac microenvironment with biomaterials. Circ Res. 2005;97(1):8–15.PubMedCrossRefGoogle Scholar
  6. 6.
    DeWitt A, Iida T, Lam HY, Hill V, Wiley HS, Lauffenburger DA. Affinity regulates spatial range of EGF receptor autocrine ligand binding. Dev Biol. 2002;250(2):305–16.PubMedCrossRefGoogle Scholar
  7. 7.
    Fraidenraich D, Stillwell E, Romero E, Wilkes D, Manova K, Basson CT, et al. Rescue of cardiac defects in Id knockout embryos by injection of embryonic stem cells. Science. 2004;306(5694):247–52.PubMedCrossRefGoogle Scholar
  8. 8.
    Dai JP, Losy F, Guinault AM, Pages C, Anegon I, Desgranges P, et al. Overexpression of transforming growth factor-beta 1 stabilizes already-formed aortic aneurysms—a first approach to induction of functional healing by endovascular gene therapy. Circulation. 2005;112(7):1008–15.PubMedCrossRefGoogle Scholar
  9. 9.
    Kothapalli CR, Gacchina CE, Ramamurthi A. Utility of hyaluronan oligomers and transforming growth factor-beta1 factors for elastic matrix regeneration by aneurysmal rat aortic smooth muscle cells. Tissue Eng. 2009;15(11):3247–60.CrossRefGoogle Scholar
  10. 10.
    Kothapalli CR, Taylor PM, Smolenski RT, Yacoub MH, Ramamurthi A. Transforming growth factor beta 1 and hyaluronan oligomers synergistically enhance elastin matrix regeneration by vascular smooth muscle cells. Tissue Eng. 2009;15(3):501–11.Google Scholar
  11. 11.
    Losy F, Dai JP, Pages C, Ginat M, Muscatelli-Groux B, Guinault AM, et al. Paracrine secretion of transforming growth factor-beta(1) in aneurysm healing and stabilization with endovascular smooth muscle cell therapy. J Vasc Surg. 2003;37(6):1301–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Sales VL, Engelmayr GC, Mettler BA, Johnson JA, Sacks MS, Mayer JE. Transforming growth factor-beta 1 modulates extracellular matrix production, proliferation, and apoptosis of endothelial progenitor cells in tissue-engineering scaffolds. Circulation. 2006;114:I193–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Brown RA, Sethi KK, Gwanmesia I, Raemdonck D, Eastwood M, Mudera V. Enhanced fibroblast contraction of 3D collagen lattices and integrin expression by TGF-beta 1 and -beta 3: mechanoregulatory growth factors? Exp Cell Res. 2002;274(2):310–22.PubMedCrossRefGoogle Scholar
  14. 14.
    Simionescu A, Philips K, Vyavahare N. Elastin-derived peptides and TGF-beta 1 induce osteogenic responses in smooth muscle cells. Biochem Biophys Res Commun. 2005;334(2):524–32.PubMedCrossRefGoogle Scholar
  15. 15.
    Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401–16.PubMedCrossRefGoogle Scholar
  16. 16.
    Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51.PubMedCrossRefGoogle Scholar
  17. 17.
    Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.PubMedCrossRefGoogle Scholar
  18. 18.
    Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–79.PubMedCrossRefGoogle Scholar
  19. 19.
    Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21.PubMedCrossRefGoogle Scholar
  20. 20.
    Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3(2):232–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18(3):241–68.PubMedCrossRefGoogle Scholar
  22. 22.
    Kim SS, Park MS, Jeon O, Choi CY, Kim BS. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(8):1399–409.PubMedCrossRefGoogle Scholar
  23. 23.
    Anderson DG, Burdick JA, Langer R. Materials science—smart biomaterials. Science. 2004;305(5692):1923–4.PubMedCrossRefGoogle Scholar
  24. 24.
    Hubbell JA. Biomaterials in tissue engineering. Bio-Technol. 1995;13(6):565–76.Google Scholar
  25. 25.
    Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428(6982):487–92.PubMedCrossRefGoogle Scholar
  26. 26.
    Peppas NA, Langer R. New challenges in biomaterials. Science. 1994;263(5154):1715–20.PubMedCrossRefGoogle Scholar
  27. 27.
    Fernandes H, Moroni L, van Blitterswijk C, de Boer J. Extracellular matrix and tissue engineering applications. J Mater Chem. 2009;19(31):5474–84.CrossRefGoogle Scholar
  28. 28.
    Cannizzaro SM, Padera RF, Langer R, Rogers RA, Black FE, Davies MC, et al. A novel biotinylated degradable polymer for cell-interactive applications. Biotechnol Bioeng. 1998;58(5):529–35.PubMedCrossRefGoogle Scholar
  29. 29.
    Wang DA, Ji J, Sun YH, Shen JC, Feng LX, Elisseeff JH. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth. Biomacromolecules. 2002;3(6):1286–95.PubMedCrossRefGoogle Scholar
  30. 30.
    Kong HJ, Hsiong S, Mooney DJ. Nanoscale cell adhesion ligand presentation regulates nonviral gene delivery and expression. Nano Lett. 2007;7(1):161–6.PubMedCrossRefGoogle Scholar
  31. 31.
    Lateef SS, Boateng S, Hartman TJ, Crot CA, Russell B, Hanley L. GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion. Biomaterials. 2002;23(15):3159–68.PubMedCrossRefGoogle Scholar
  32. 32.
    Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.PubMedCrossRefGoogle Scholar
  33. 33.
    Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–47.PubMedCrossRefGoogle Scholar
  34. 34.
    Pitsillides CM, Joe EK, Wei XB, Anderson RR, Lin CP. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J. 2003;84(6):4023–32.PubMedCrossRefGoogle Scholar
  35. 35.
    Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat Mater. 2003;2(9):577–85.PubMedCrossRefGoogle Scholar
  36. 36.
    Chen RR, Silva EA, Yuen WW, Brock AA, Fischbach C, Lin AS, et al. Integrated approach to designing growth factor delivery systems. FASEB J. 2007;21(14):3896–903.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen RR, Silva EA, Yuen WW, Mooney DJ. Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res. 2007;24(2):258–64.PubMedCrossRefGoogle Scholar
  38. 38.
    Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23(22):4307–14.PubMedCrossRefGoogle Scholar
  39. 39.
    Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng. 2004;6:41–75.PubMedCrossRefGoogle Scholar
  40. 40.
    Silva EA, Mooney DJ. Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J Thromb Haemost. 2007;5(3):590–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Silva EA, Mooney DJ. Synthetic extracellular matrices for tissue engineering and regeneration. Curr Top Dev Biol. 2004;64:181–205.PubMedCrossRefGoogle Scholar
  42. 42.
    Freed LE, Vunjaknovakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, et al. Biodegradable polymer scaffolds for tissue engineering. Bio-Technol. 1994;12(7):689–93.Google Scholar
  43. 43.
    Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55(2):141–50.PubMedCrossRefGoogle Scholar
  44. 44.
    Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12(1):107–24.PubMedCrossRefGoogle Scholar
  45. 45.
    Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998;16(5):224–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005;26(6):599–609.PubMedCrossRefGoogle Scholar
  47. 47.
    Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanotibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25(5):877–86.PubMedCrossRefGoogle Scholar
  48. 48.
    Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.PubMedCrossRefGoogle Scholar
  49. 49.
    Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5–24.PubMedCrossRefGoogle Scholar
  50. 50.
    Chau Y, Tan FE, Langer R. Synthesis and characterization of dextran-peptide-methotrexate conjugates for tumor targeting via mediation by matrix metalloproteinase II and matrix metalloproteinase IX. Bioconjug Chem. 2004;15(4):931–41.PubMedCrossRefGoogle Scholar
  51. 51.
    Lutolf MR, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol. 2003;21(5):513–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS. Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug Chem. 2003;14(2):412–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Lee KY, Peters MC, Anderson KW, Mooney DJ. Controlled growth factor release from synthetic extracellular matrices. Nature. 2000;408(6815):998–1000.PubMedCrossRefGoogle Scholar
  54. 54.
    Faury G, Garnier S, Weiss AS, Wallach J, Fulop T, Jacob MP, et al. Action of tropoelastin and synthetic elastin sequences on vascular tone and on free Ca2+ level in human vascular endothelial cells. Circ Res. 1998;82(3):328–36.PubMedCrossRefGoogle Scholar
  55. 55.
    Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, et al. Elastin is an essential determinant of arterial morphogenesis. Nature. 1998;393(6682):276–80.PubMedCrossRefGoogle Scholar
  56. 56.
    Li DY, Faury G, Taylor DG, Davis EC, Boyle WA, Mecham RP, et al. Novel arterial pathology in mice and humans hemizygous for elastin. J Clin Invest. 1998;102(10):1783–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Robert L, Jacob MP, Fulop T. Elastin in blood vessels. Mol Biol Pathol Elastic Tissues. 1995;192:286–303.Google Scholar
  58. 58.
    Kielty CM, Sherratt MJ, Shuttleworth CA. Elastic fibres. J Cell Sci. 2002;115(14):2817–28.PubMedGoogle Scholar
  59. 59.
    Wognum S, Schmidt DE, Sacks MS. On the mechanical role of de novo synthesized elastin in the urinary bladder wall. J Biomech Eng. 2009;131(10):101018.PubMedCrossRefGoogle Scholar
  60. 60.
    Rahn DD, Acevedo JF, Word RA. Effect of vaginal distention on elastic fiber synthesis and matrix degradation in the vaginal wall: potential role in the pathogenesis of pelvic organ prolapse. Am J Physiol Regul Integr Comp Physiol. 2008;295(4):R1351–8.PubMedCrossRefGoogle Scholar
  61. 61.
    Berglund JD, Nerem RM, Sambanis A. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Eng. 2004;10(9–10):1526–35.PubMedGoogle Scholar
  62. 62.
    Buijtenhuijs P, Buttafoco L, Poot AA, Daamen WF, van Kuppevelt TH, Dijkstra PJ, et al. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds. Biotechnol Appl Biochem. 2004;39:141–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Daamen WF, van Moerkerk HTB, Hafmans T, Buttafoco L, Poot AA, Veerkamp JH, et al. Preparation and evaluation of molecularly-defined collagen-elastin-glycosaminoglycan scaffolds for tissue engineering. Biomaterials. 2003;24(22):4001–9.PubMedCrossRefGoogle Scholar
  64. 64.
    Daamen WF, Veerkamp JH, van Hest JCM, van Kuppevelt TH. Elastin as a biomaterial for tissue engineering. Biomaterials. 2007;28(30):4378–98.PubMedCrossRefGoogle Scholar
  65. 65.
    Leach JB, Wolinsky JB, Stone PJ, Wong JY. Crosslinked alpha-elastin biomaterials: towards a processable elastin mimetic scaffold. Acta Biomater. 2005;1(2):155–64.PubMedCrossRefGoogle Scholar
  66. 66.
    Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, et al. Elastin-based materials. Chem Soc Rev. 2010;39(9):3371–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Mithieux SM, Rasko JEJ, Weiss AS. Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials. 2004;25(20):4921–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Duca L, Floquet N, Alix AJP, Haye B, Debelle L. Elastin as a matrikine. Crit Rev Oncol Hematol. 2004;49(3):235–44.PubMedCrossRefGoogle Scholar
  69. 69.
    Bashur CA, Venkataraman L, Ramamurthi A. Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly tissue. Eng Part B Rev. 2012;18:203–17.Google Scholar
  70. 70.
    Karnik SK, Brooke BS, Bayes-Genis A, Sorensen L, Wythe JD, Schwartz RS, et al. A critical role for elastin signaling in vascular morphogenesis and disease. Development. 2003;130(2):411–23.PubMedCrossRefGoogle Scholar
  71. 71.
    Moore J, Thibeault S. Insights into the role of elastin in vocal fold health and disease. J Voice. 2011. doi: 10.1016/j.jvoice.2011.05.003:7.
  72. 72.
    Jones PA, Scottburden T, Gevers W. Glycoprotein, elastin, and collagen secretion by rat smooth muscle cells. Proc Natl Acad Sci USA. 1979;76(1):353–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Sephel GC, Davidson JM. Elastin production in human skin fibroblast cultures and its decline with age. J Invest Dermatol. 1986;86(3):279–85.PubMedCrossRefGoogle Scholar
  74. 74.
    Davidson JM. Smad about elastin regulation. Am J Respir Cell Mol Biol. 2002;26(2):164–6.PubMedGoogle Scholar
  75. 75.
    Suyama K, Nakamura F. Isolation and characterization of new cross-linking amino acid ‘allodesmosine’ from hydrolysate of elastin. Biochem Biophys Res Commun. 1990;170(2):713–8.PubMedCrossRefGoogle Scholar
  76. 76.
    Brown-Augsburger P, Tisdale C, Broekelmann T, Sloan C, Mecham RP. Identification of an elastin cross-linking domain that joins three peptide chains. Possible role in nucleated assembly. J Biol Chem. 1995;270(30):17778–83.PubMedCrossRefGoogle Scholar
  77. 77.
    Swee MH, Parks WC, Pierce RA. Developmental regulation of elastin production. Expression of tropoelastin pre-mRNA persists after down-regulation of steady-state mRNA levels. J Biol Chem. 1995;270(25):14899–906.PubMedCrossRefGoogle Scholar
  78. 78.
    Hinek A, Mecham RP, Keeley F, Rabinovitch M. Impaired elastin fiber assembly related to reduced 67-kD elastin-binding protein in fetal lamb ductus arteriosus and in cultured aortic smooth muscle cells treated with chondroitin sulfate. J Clin Invest. 1991;88(6):2083–94.PubMedCrossRefGoogle Scholar
  79. 79.
    Hinek A, Rabinovitch M. 67-kD Elastin-binding protein is a protective "companion" of extracellular insoluble elastin and intracellular tropoelastin. J Cell Biol. 1994;126(2):563–74.PubMedCrossRefGoogle Scholar
  80. 80.
    Clarke AW, Wise SG, Cain SA, Kielty CM, Weiss AS. Coacervation is promoted by molecular interactions between the PF2 segment of fibrillin-1 and the domain 4 region of tropoelastin. Biochemistry. 2005;44(30):10271–81.PubMedCrossRefGoogle Scholar
  81. 81.
    Kagan HM, Li WD. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem. 2003;88(4):660–72.PubMedCrossRefGoogle Scholar
  82. 82.
    Kothapalli CR, Ramamurthi A. Copper nanoparticle cues for biomimetic cellular assembly of crosslinked elastin fibers. Acta Biomater. 2009;5(2):541–53.PubMedCrossRefGoogle Scholar
  83. 83.
    Sherratt MJ. Tissue elasticity and the ageing elastic fibre. Age (Dordr). 2009;31(4):305–25.CrossRefGoogle Scholar
  84. 84.
    Sokolis DP. Passive mechanical properties and structure of the aorta: segmental analysis. Acta Physiol (Oxf). 2007;190(4):277–89.CrossRefGoogle Scholar
  85. 85.
    Armentano RL, Levenson J, Barra JG, Fischer EI, Breitbart GJ, Pichel RH, et al. Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. Am J Physiol. 1991;260(6 Pt 2):H1870–7.PubMedGoogle Scholar
  86. 86.
    Kaartinen V, Warburton D. Fibrillin controls TGF-beta activation. Nat Genet. 2003;33(3):331–2.PubMedCrossRefGoogle Scholar
  87. 87.
    Ono RN, Sengle G, Charbonneau NL, Carlberg V, Bachinger HP, Sasaki T, et al. Latent transforming growth factor beta-binding proteins and fibulins compete for fibrillin-1 and exhibit exquisite specificities in binding sites. J Biol Chem. 2009;284(25):16872–81.PubMedCrossRefGoogle Scholar
  88. 88.
    Ruiz-Ortega M, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-beta signaling in vascular fibrosis. Cardiovasc Res. 2007;74(2):196–206.PubMedCrossRefGoogle Scholar
  89. 89.
    Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, et al. Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci. 2007;120(8):1383–92.PubMedCrossRefGoogle Scholar
  90. 90.
    Gibson MA. Microfibril-associated glycoprotein-1 (MAGP-1) and other non-fibrillin macromolecules which may possess a functional association with the 10nm microfibrils. Madame Curie Bioscience database. Austin TX: Landes Bioscience; 2000.Google Scholar
  91. 91.
    Yanagisawa H, Davis EC. Unraveling the mechanism of elastic fiber assembly: the roles of short fibulins. Int J Biochem Cell Biol. 2010;42(7):1084–93.PubMedCrossRefGoogle Scholar
  92. 92.
    Charbonneau NL, Ono RN, Corson GM, Keene DR, Sakai LY. Fine tuning of growth factor signals depends on fibrillin microfibril networks. Birth Defects Res C Embryo Today. 2004;72(1):37–50.PubMedCrossRefGoogle Scholar
  93. 93.
    Chaudhry SS, Cain SA, Morgan A, Dallas SL, Shuttleworth CA, Kielty CM. Fibrillin-1 regulates the bioavailability of TGF beta 1. J Cell Biol. 2007;176(3):355–67.PubMedCrossRefGoogle Scholar
  94. 94.
    Isogai Z, Aspberg A, Keene DR, Ono RN, Reinhardt DP, Sakai LY. Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. J Biol Chem. 2002;277(6):4565–72.PubMedCrossRefGoogle Scholar
  95. 95.
    Kielty CM, Stephan S, Sherratt MJ, Williamson M, Shuttleworth CA. Applying elastic fibre biology in vascular tissue engineering. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1293–312.PubMedCrossRefGoogle Scholar
  96. 96.
    Charbonneau NL, Dzamba BJ, Ono RN, Keene DR, Corson GM, Reinhardt DP, et al. Fibrillins can co-assemble in fibrils, but fibrillin fibril composition displays cell-specific differences. J Biol Chem. 2003;278(4):2740–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Berk JL, Hatch CA, Morris SM, Stone PJ, Goldstein RH. Hypoxia suppresses elastin repair by rat lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2005;289(6):L931–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Gacchina CE, Ramamurthi A. Impact of pre-existing elastic matrix on TGFβ1 and HA oligomer-induced regenerative elastin repair by rat aortic smooth muscle cells. J Tissue Eng Regen Med. 2011;5(2):85–96.PubMedCrossRefGoogle Scholar
  99. 99.
    Beamish JA, He P, Kottke-Marchant K, Marchant RE. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng Part B Rev. 2010;16(5):467–91.PubMedCrossRefGoogle Scholar
  100. 100.
    Kolodgie FD, Burke AP, Farb A, Weber DK, Kutys R, Wight TN, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol. 2002;22(10):1642–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Daugherty A, Cassis LA. Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2004;24(3):429–34.PubMedCrossRefGoogle Scholar
  102. 102.
    Wight TN. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol. 2002;14(5):617–23.PubMedCrossRefGoogle Scholar
  103. 103.
    Lau AC, Duong TT, Ito S, Yeung RS. Matrix metalloproteinase 9 activity leads to elastin breakdown in an animal model of Kawasaki disease. Arthritis Rheum. 2008;58(3):854–63.PubMedCrossRefGoogle Scholar
  104. 104.
    Chetty A, Cao GJ, Severgnini M, Simon A, Warburton R, Nielsen HC. Role of matrix metalloprotease-9 in hyperoxic injury in developing lung. Am J Physiol Lung Cell Mol Physiol. 2008;295(4):L584–92.PubMedCrossRefGoogle Scholar
  105. 105.
    Bressan GM, Pasqualironchetti I, Fornieri C, Mattioli F, Castellani I, Volpin D. Relevance of aggregation properties of tropoelastin to the assembly and structure of elastic fibers. J Ultrastruct Mol Struct Res. 1986;94(3):209–16.PubMedCrossRefGoogle Scholar
  106. 106.
    Aikawa E, Aikawa M, Libby P, Figueiredo JL, Rusanescu G, Iwamoto Y, et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation. 2009;119(13):1785–94.PubMedCrossRefGoogle Scholar
  107. 107.
    Senior RM, Griffin GL, Mecham RP. Chemotactic activity of elastin-derived peptides. J Clin Invest. 1980;66(4):859–62.PubMedCrossRefGoogle Scholar
  108. 108.
    Debelle L, Tamburro AM. Elastin: molecular description and function. Int J Biochem Cell Biol. 1999;31(2):261–72.PubMedCrossRefGoogle Scholar
  109. 109.
    Patel A, Fine B, Sandig M, Mequanint K. Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc Res. 2006;71(1):40–9.PubMedCrossRefGoogle Scholar
  110. 110.
    Wolfe BL, Rich CB, Goud HD, Terpstra AJ, Bashir M, Rosenbloom J, et al. Insulin-like growth factor-I regulates transcription of the elastin gene. J Biol Chem. 1993;268(17):12418–26.PubMedGoogle Scholar
  111. 111.
    Zimmermann DR, Dourszimmerman MT, Brucknertuderman L, Schubert M. Versican is expressed in the proliferating zone in the epidermis and in association with the elastic network of the dermis. J Cell Biol. 1994;124(5):817–25.PubMedCrossRefGoogle Scholar
  112. 112.
    Joddar B, Ibrahim S, Ramamurthi A. Impact of delivery mode of hyaluronan oligomers on elastogenic responses of adult vascular smooth muscle cells. Biomaterials. 2007;28(27):3918–27.PubMedCrossRefGoogle Scholar
  113. 113.
    Joddar B, Ramamurthi A. Fragment size- and dose-specific effects of hyaluronan on matrix synthesis by vascular smooth muscle cells. Biomaterials. 2006;27(15):2994–3004.PubMedCrossRefGoogle Scholar
  114. 114.
    Joddar B, Ramamurthi A. Elastogenic effects of exogenous hyaluronan oligosaccharides on vascular smooth muscle cells. Biomaterials. 2006;27(33):5698–707.PubMedCrossRefGoogle Scholar
  115. 115.
    Kothapalli CR, Ramamurthi A. Benefits of concurrent delivery of hyaluronan and IGF-1 cues to regeneration of crosslinked elastin matrices by adult rat vascular cells. J Tissue Eng Regen Med. 2008;2(2–3):106–16.PubMedCrossRefGoogle Scholar
  116. 116.
    Kothapalli CR, Ramamurthi A. Biomimetic regeneration of elastin matrices using hyaluronan and copper ion cues. Tissue Eng Part A. 2009;15(1):103–13.PubMedCrossRefGoogle Scholar
  117. 117.
    Bashur CA, Ramamurthi A. Aligned electrospun scaffolds and elastogenic factors for vascular cell-mediated elastic matrix assembly. J Tissue Eng Regen Med. 2012. doi: 10.1002/term.470.
  118. 118.
    Rucker RB, Kosonen T, Clegg MS, Mitchell AE, Rucker BR, Uriu-Hare JY, et al. Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am J Clin Nutr. 1998;67(5):996S–1002S.PubMedGoogle Scholar
  119. 119.
    Kothapalli CR, Ramamurthi A. Lysyl oxidase enhances elastin synthesis and matrix formation by vascular smooth muscle cells. J Tissue Eng Regen Med. 2009;3(8):655–61.PubMedCrossRefGoogle Scholar
  120. 120.
    Barone LM, Faris B, Chipman SD, Toselli P, Oakes BW, Franzblau C. Alteration of the extracellular matrix of smooth muscle cells by ascorbate treatment. Biochim Biophys Acta. 1985;840(2):245–54.PubMedCrossRefGoogle Scholar
  121. 121.
    Bergethon PR, Mogayzel PJ, Franzblau C. Effect of the reducing environment on the accumulation of elastin and collagen in cultured smooth-muscle cells. Biochem J. 1989;258(1):279–84.PubMedGoogle Scholar
  122. 122.
    Davidson JM, LuValle PA, Zoia O, Quaglino D, Giro MG. Ascorbate differentially regulates elastin and collagen biosynthesis in vascular smooth muscle cells and skin fibroblasts by pretranslational mechanisms. J Biol Chem. 1997;272(1):345–52.PubMedCrossRefGoogle Scholar
  123. 123.
    Dunn DM, Franzblau C. Effects of ascorbate on insoluble elastin accumulation and cross-link formation in rabbit pulmonary artery smooth muscle cultures. Biochemistry. 1982;21(18):4195–202.PubMedCrossRefGoogle Scholar
  124. 124.
    Faris B, Ferrera R, Toselli P, Nambu J, Gonnerman WA, Franzblau C. Effect of varying amounts of ascorbate on collagen, elastin and lysyl oxidase synthesis in aortic smooth muscle cell cultures. Biochim Biophys Acta. 1984;797(1):71–5.PubMedCrossRefGoogle Scholar
  125. 125.
    Keire PA, L'Heureux N, Vernon RB, Merrilees MJ, Starcher B, Okon E, et al. Expression of versican isoform V3 in the absence of ascorbate improves elastogenesis in engineered vascular constructs. Tissue Eng Part A. 2010;16(2):501–12.PubMedCrossRefGoogle Scholar
  126. 126.
    Mitts TF, Bunda S, Wang Y, Hinek A. Aldosterone and mineralocorticoid receptor antagonists modulate elastin and collagen deposition in human skin. J Invest Dermatol. 2010;130(10):2396–406.PubMedCrossRefGoogle Scholar
  127. 127.
    Coussens LM, Fingleton B, Matrisian LM. Cancer therapy—matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295(5564):2387–92.PubMedCrossRefGoogle Scholar
  128. 128.
    Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, van Westrum SS, et al. The TIMP2 membrane type 1 metalloproteinase "receptor" regulates the concentration and efficient activation of progelatinase A—a kinetic study. J Biol Chem. 1998;273(2):871–80.PubMedCrossRefGoogle Scholar
  129. 129.
    Baker AH, Zaltsman AB, George SJ, Newby AC. Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or −3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro—TIMP-3 promotes apoptosis. J Clin Invest. 1998;101(6):1478–87.PubMedCrossRefGoogle Scholar
  130. 130.
    Clutterbuck AL, Asplin KE, Harris P, Allaway D, Mobasheri A. Targeting matrix metalloproteinases in inflammatory conditions. Curr Drug Targets. 2009;10(12):1245–54.PubMedCrossRefGoogle Scholar
  131. 131.
    Baxter BT, Pearce WH, Waltke EA, Littooy FN, Hallett JW, Kent KC, et al. Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (phase II) multicenter study. J Vasc Surg. 2002;36(1):1–12.PubMedCrossRefGoogle Scholar
  132. 132.
    Bendeck MP, Conte M, Zhang MY, Nili N, Strauss BH, Farwell SM. Doxycycline modulates smooth muscle cell growth, migration, and matrix remodeling after arterial injury. Am J Pathol. 2002;160(3):1089–95.PubMedCrossRefGoogle Scholar
  133. 133.
    Maegdefessel L, Azuma J, Toh R, Merk DR, Deng A, Chin JT, et al. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest. 2012;122(2):497–506.PubMedCrossRefGoogle Scholar
  134. 134.
    Zhang P, Huang A, Ferruzzi J, Mecham RP, Starcher BC, Tellides G, et al. Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels—brief report. Arterioscler Thromb Vasc Biol. 2012;32(3):756–U501.PubMedCrossRefGoogle Scholar
  135. 135.
    Maegdefessel L, Azuma J, Toh R, Deng A, Merk DR, Raiesdana A, et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med. 2012;4(122):122ra22.PubMedCrossRefGoogle Scholar
  136. 136.
    Safran SA, Gov N, Nicolas A, Schwarz US, Tlusty T. Physics of cell elasticity, shape and adhesion. Physica a-Stat Mech Applic. 2005;352(1):171–201.CrossRefGoogle Scholar
  137. 137.
    Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20(6):573–88.PubMedCrossRefGoogle Scholar
  138. 138.
    Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 2008;14(11):1835–42.PubMedCrossRefGoogle Scholar
  139. 139.
    Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–98.CrossRefGoogle Scholar
  140. 140.
    Ju YM, Choi JS, Atala A, Yoo JJ, Lee SJ. Bilayered scaffold for engineering cellularized blood vessels. Biomaterials. 2010;31(15):4313–21.PubMedCrossRefGoogle Scholar
  141. 141.
    Mark Saltzman W, Baldwin SP. Materials for protein delivery in tissue engineering. Adv Drug Deliv Rev. 1998;33(1–2):71–86.PubMedGoogle Scholar
  142. 142.
    Masters KS. Covalent growth factor immobilization strategies for tissue repair and regeneration. Macromol Biosci. 2011;11(9):1149–63.PubMedCrossRefGoogle Scholar
  143. 143.
    Zeugolis DI, Khew ST, Yew ESY, Ekaputra AK, Tong YW, Yung LYL, et al. Electro-spinning of pure collagen nano-fibres—just an expensive way to make gelatin? Biomaterials. 2008;29(15):2293–305.PubMedCrossRefGoogle Scholar
  144. 144.
    Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev 2009; 61:1007-19Google Scholar
  145. 145.
    Ji W, Sun Y, Yang F, van den Beucken JJ, Fan M, Chen Z, et al. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res. 2011;28(6):1259–72.PubMedCrossRefGoogle Scholar
  146. 146.
    Sahoo S, Ang LT, Goh JC, Toh SL. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A. 2010;93(4):1539–50.PubMedGoogle Scholar
  147. 147.
    Chaikof EL, Matthew H, Kohn J, Mikos AG, Prestwich GD, Yip CM. Biomaterials and scaffolds in reparative medicine. Ann N Y Acad Sci. 2002;961:96–105.Google Scholar
  148. 148.
    Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Science. 2002;295(5557):1009–14.PubMedCrossRefGoogle Scholar
  149. 149.
    Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature. 2009;462(7272):426–32.PubMedCrossRefGoogle Scholar
  150. 150.
    Lue J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325–41.CrossRefGoogle Scholar
  151. 151.
    Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.PubMedCrossRefGoogle Scholar
  152. 152.
    Kamaly N, Xiao ZY, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971–3010.PubMedCrossRefGoogle Scholar
  153. 153.
    Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther. 2008;8(8):1063–70.PubMedCrossRefGoogle Scholar
  154. 154.
    Nguyen KT, Shukla KP, Moctezuma M, Braden ARC, Zhou J, Hu ZB, et al. Studies of the cellular uptake of hydrogel nanospheres and microspheres by phagocytes, vascular endothelial cells, and smooth muscle cells. J Biomed Mater Res. 2009;88A(4):1022–30.CrossRefGoogle Scholar
  155. 155.
    Fahmy TM, Demento SL, Caplan MJ, Mellman I, Saltzman WM. Design opportunities for actively targeted nanoparticle vaccines. Nanomedicine. 2008;3(3):343–55.PubMedCrossRefGoogle Scholar
  156. 156.
    Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ, et al. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release. 1997;43(2–3):197–212.CrossRefGoogle Scholar
  157. 157.
    Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 2002;16(10):1217–26.Google Scholar
  158. 158.
    Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, et al. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 2010;10(7):2543–8.PubMedCrossRefGoogle Scholar
  159. 159.
    De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3(2):133–49.CrossRefGoogle Scholar
  160. 160.
    Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, et al. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomed. 2011;6:2591–605.Google Scholar
  161. 161.
    Cu Y, Saltzman WM. Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus. Mol Pharm. 2009;6(1):173–81.PubMedCrossRefGoogle Scholar
  162. 162.
    Cu Y, Saltzman WM. Drug delivery—stealth particles give mucus the slip. Nat Mater. 2009;8(1):11–3.PubMedCrossRefGoogle Scholar
  163. 163.
    Nair LS, Laurencin CT. Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Engin/Biotechnol. 2006;102:47–90.Google Scholar
  164. 164.
    Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng. 2001;7(6):679–89.PubMedCrossRefGoogle Scholar
  165. 165.
    Sarkar S, Lee GY, Wong JY, Desai TA. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Biomaterials. 2006;27(27):4775–82.PubMedCrossRefGoogle Scholar
  166. 166.
    Ahmann KA, Weinbaum JS, Johnson SL, Tranquillo RT. Fibrin degradation enhances vascular smooth muscle cell proliferation and matrix deposition in fibrin-based tissue constructs fabricated in vitro. Tissue Eng Part A. 2010;16(10):3261–70.PubMedCrossRefGoogle Scholar
  167. 167.
    Adair-Kirk TL, Senior RM. Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol. 2008;40(6–7):1101–10.PubMedCrossRefGoogle Scholar
  168. 168.
    Martinon F. Signaling by ROS drives inflammasome activation. Eur J Immunol. 2010;40(3):616–9.PubMedCrossRefGoogle Scholar
  169. 169.
    Silva AKA, Richard C, Bessodes M, Scherman D, Merten OW. Growth factor delivery approaches in hydrogels. Biomacromolecules. 2009;10(1):9–18.PubMedCrossRefGoogle Scholar
  170. 170.
    Nuttelman CR, Tripodi MC, Anseth KS. Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs. J Biomed Mater Res. 2006;76A(1):183–95.CrossRefGoogle Scholar
  171. 171.
    Ibrahim S, Kothapalli CR, Kang QK, Ramamurthi A. Characterization of glycidyl methacrylate—crosslinked hyaluronan hydrogel scaffolds incorporating elastogenic hyaluronan oligomers. Acta Biomater. 2011;7(2):653–65.PubMedCrossRefGoogle Scholar
  172. 172.
    Murphy WL, Peters MC, Kohn DH, Mooney DJ. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 2000;21(24):2521–7.PubMedCrossRefGoogle Scholar
  173. 173.
    Hinek A, Wang Y, Liu K, Mitts TF, Jimenez F. Proteolytic digest derived from bovine ligamentum nuchae stimulates deposition of new elastin-enriched matrix in cultures and transplants of human dermal fibroblasts. J Dermatol Sci. 2005;39(3):155–66.PubMedCrossRefGoogle Scholar
  174. 174.
    Daamen WF, Nillesen STM, Wismans RG, Reinhardt DP, Hafmans T, Veerkamp JH, et al. A biomaterial composed of collagen and solubilized elastin enhances angiogenesis and elastic fiber formation without calcification. Tissue Eng Part A. 2008;14(3):349–60.PubMedCrossRefGoogle Scholar
  175. 175.
    Li M, Mondrinos MJ, Chen X, Gandhi MR, Ko FK, Lelkes PI. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J Biomed Mater Res. 2006;79A(4):963–73.CrossRefGoogle Scholar
  176. 176.
    Stitzel J, Liu L, Lee SJ, Komura M, Berry J, Soker S, et al. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006;27(7):1088–94.PubMedCrossRefGoogle Scholar
  177. 177.
    Ito S, Ishimaru S, Wilson SE. Effect of coacervated alpha-elastin on proliferation of vascular smooth muscle and endothelial cells. Angiology. 1998;49(4):289–97.PubMedCrossRefGoogle Scholar
  178. 178.
    Ito S, Ishimaru S, Wilson SE. Inhibitory effect of type 1 collagen gel containing α-elastin on proliferation and migration of vascular smooth muscle and endothelial cells. Cardiovasc Surg. 1997;5(2):176–83.PubMedCrossRefGoogle Scholar
  179. 179.
    Miyamoto K, Atarashi M, Kadozono H, Shibata M, Koyama Y, Okai M, et al. Creation of cross-linked electrospun isotypic-elastin fibers controlled cell-differentiation with new cross-linker. Int J Biol Macromol. 2009;45(1):33–41.PubMedCrossRefGoogle Scholar
  180. 180.
    Fulop T, Khalil A, Larbi A. The role of elastin peptides in modulating the immune response in aging and age-related diseases. Pathol Biol. 2012;60(1):28–33.PubMedCrossRefGoogle Scholar
  181. 181.
    Stephan S, Ball SG, Williamson M, Bax DV, Lomas A, Shuttleworth CA, et al. Cell-matrix biology in vascular tissue engineering. J Anat. 2006;209(4):495–502.PubMedCrossRefGoogle Scholar
  182. 182.
    Sherratt MJ, Bax DV, Chaudhry SS, Hodson N, Lu JR, Saravanapavan P, et al. Substrate chemistry influences the morphology and biological function of adsorbed extracellular matrix assemblies. Biomaterials. 2005;26(34):7192–206.PubMedCrossRefGoogle Scholar
  183. 183.
    Sherratt MJ, Holmes DF, Shuttleworth CA, Kielty CM. Substrate-dependent morphology of supramolecular assemblies: fibrillin and type-VI collagen microfibrils. Biophys J. 2004;86(5):3211–22.PubMedCrossRefGoogle Scholar
  184. 184.
    Miao M, Cirulis JT, Lee S, Keeley FW. Structural determinants of cross-linking and hydrophobic domains for self-assembly of elastin-like polypeptides. Biochemistry. 2005;44(43):14367–75.PubMedCrossRefGoogle Scholar
  185. 185.
    Yang GC, Woodhouse KA, Yip CM. Substrate-facilitated assembly of elastin-like peptides: studies by variable-temperature in situ atomic force microscopy. J Am Chem Soc. 2002;124(36):10648–9.PubMedCrossRefGoogle Scholar
  186. 186.
    Michael KE, Vernekar VN, Keselowsky BG, Meredith JC, Latour RA, Garcia AJ. Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir. 2003;19(19):8033–40.CrossRefGoogle Scholar
  187. 187.
    Mitsi M, Hong Z, Costello CE, Nugent MA. Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites. Biochemistry. 2006;45(34):10319–28.PubMedCrossRefGoogle Scholar
  188. 188.
    Ma Z, Mao Z, Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B Biointerfaces. 2007;60(2):137–57.PubMedCrossRefGoogle Scholar
  189. 189.
    Mann BK, Schmedlen RH, West JL. Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials. 2001;22(5):439–44.PubMedCrossRefGoogle Scholar
  190. 190.
    Solorio LD, Fu AS, Hernandez-Irizarry R, Alsberg E. Chondrogenic differentiation of human mesenchymal stem cell aggregates via controlled release of TGF-beta 1 from incorporated polymer microspheres. J Biomed Mater Res. 2010;92A(3):1139–44.Google Scholar
  191. 191.
    Lu L, Stamatas GN, Mikos AG. Controlled release of transforming growth factor beta 1 from biodegradable polymer microparticles. J Biomed Mater Res. 2000;50(3):440–51.PubMedCrossRefGoogle Scholar
  192. 192.
    Lu LC, Yaszemski MJ, Mikos AG. TGF-beta 1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. J Bone Joint Surg Am. 2001;83A:S82–91.Google Scholar
  193. 193.
    Peter SJ, Lu L, Kim DJ, Stamatas GN, Miller MJ, Yaszemski MJ, et al. Effects of transforming growth factor beta 1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J Biomed Mater Res. 2000;50(3):452–62.PubMedCrossRefGoogle Scholar
  194. 194.
    Tanaka H, Sugita T, Yasunaga Y, Shimose S, Deie M, Kubo T, et al. Efficiency of magnetic liposomal transforming growth factor-beta 1 in the repair of articular cartilage defects in a rabbit model. J Biomed Mater Res. 2005;73A(3):255–63.CrossRefGoogle Scholar
  195. 195.
    Gacchina CE, Deb PP, Barth JL, Ramamurthi A. Elastogenic inductability of smooth muscle cells from a rat model of late stage abdominal aortic aneurysms. Tissue Eng. 2011;17(13–14):1699–711.Google Scholar
  196. 196.
    Venkataraman L, Ramamurthi A. Induced elastin matrix generation within 3-dimensional collagen scaffolds. Tissue Eng Part A. 2011;17:2879–89.PubMedCrossRefGoogle Scholar
  197. 197.
    Eley JG, Mathew P. Preparation and release characteristics of insulin and insulin-like growth factor-one from polymer nanoparticles. J Microencapsul. 2007;24(3):225–34.PubMedCrossRefGoogle Scholar
  198. 198.
    Meinel L, Zoidis E, Zapf J, Hassa P, Hottiger MO, Auer JA, et al. Localized insulin-like growth factor I delivery to enhance new bone formation. Bone. 2003;33(4):660–72.PubMedCrossRefGoogle Scholar
  199. 199.
    Hedberg EL, Shih CK, Solchaga LA, Caplan AI, Mikos AG. Controlled release of hyaluronan oligomers from biodegradable polymeric microparticle carriers. J Control Release. 2004;100(2):257–66.PubMedCrossRefGoogle Scholar
  200. 200.
    Mehta K, Sadeghi T, McQueen T, Lopez-Berestein G. Liposome encapsulation circumvents the hepatic clearance mechanisms of all-trans-retinoic acid. Leuk Res. 1994;18(8):587–96.PubMedCrossRefGoogle Scholar
  201. 201.
    Parthasarathy R, Mehta K. Altered metabolism of all-trans-retinoic acid in liposome-encapsulated form. Cancer Lett. 1998;134(2):121–8.PubMedCrossRefGoogle Scholar
  202. 202.
    Patel P, Mundargi RC, Babu VR, Jain D, Rangaswamy V, Aminabhavi TM. Microencapsulation of doxycycline into poly(lactide-co-glycolide) by spray drying technique: effect of polymer molecular weight on process parameters. J Appl Polym Sci. 2008;108(6):4038–46.CrossRefGoogle Scholar
  203. 203.
    Patel RS, Cho DY, Tian C, Chang A, Estrellas KM, Lavin D, et al. Doxycycline delivery from PLGA microspheres prepared by a modified solvent removal method. J Microencapsul. 2012. doi: 10.3109/02652048.2011.651499.
  204. 204.
    Wang X, Xu H, Zhao Y, Wang S, Abe H, Naito M, et al. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline. Mater Sci Eng B. 2012;177(4):367–72.CrossRefGoogle Scholar
  205. 205.
    Mundargi RC, Srirangarajan S, Agnihotri SA, Patil SA, Ravindra S, Setty SB, et al. Development and evaluation of novel biodegradable microspheres based on poly(d, l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies. J Control Release. 2007;119(1):59–68.PubMedCrossRefGoogle Scholar
  206. 206.
    Sangare L, Morisset R, Gaboury L, Ravaoarinoro M. Effects of cationic liposome-encapsulated doxycycline on experimental Chlamydia trachomatis genital infection in mice. J Antimicrob Chemother. 2001;47(3):323–31.PubMedCrossRefGoogle Scholar
  207. 207.
    Davies SR, Cole AA, Schmid TM. Doxycycline inhibits type X collagen synthesis in avian hypertrophic chondrocyte cultures. J Biol Chem. 1996;271(42):25966–70.PubMedCrossRefGoogle Scholar
  208. 208.
    TeKoppele JM, Beekman B, Verzijl N, Koopman JL, DeGroot J, Bank RA. Doxycycline inhibits collagen synthesis by differentiated articular chondrocytes. Adv Dent Res. 1998;12(2):63–7.PubMedCrossRefGoogle Scholar
  209. 209.
    Ding R, McGuinness CL, Burnand KG, Sullivan E, Smith A. Matrix metalloproteinases in the aneurysm wall of patients treated with low-dose doxycycline. Vascular. 2005;13(5):290–7.PubMedGoogle Scholar
  210. 210.
    Prall AK, Longo GM, Mayhan WG, Waltke EA, Fleckten B, Thompson RW, et al. Doxycycline in patients with abdominal aortic aneurysms and in mice: comparison of serum levels and effect on aneurysm growth in mice. J Vasc Surg. 2002;35(5):923–8.PubMedCrossRefGoogle Scholar
  211. 211.
    Curci JA, Mao DL, Bohner DG, Allen BT, Rubin BG, Reilly JM, et al. Preoperative treatment with doxycycline reduces aortic wall expression and activation of matrix metalloproteinases in patients with abdominal aortic aneurysms. J Vasc Surg. 2000;31(2):325–41.PubMedCrossRefGoogle Scholar
  212. 212.
    Curci JA, Petrinec D, Liao SX, Golub LM, Thompson RW. Pharmacologic suppression of experimental abdominal aortic aneurysms: a comparison of doxycycline and four chemically modified tetracyclines. J Vasc Surg. 1998;28(6):1082–93.PubMedCrossRefGoogle Scholar
  213. 213.
    Piette M, Castagne D, Delattre L, Piel G. Preparation and evaluation of liposomes encapsulating synthetic MMP inhibitor (Ro 28–2653)—cyclodextrin complexes. J Incl Phenom Macrocycl Chem. 2007;57(1–4):101–3.CrossRefGoogle Scholar
  214. 214.
    Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med. 2010;16(8):909–14.PubMedCrossRefGoogle Scholar
  215. 215.
    Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18(9):1650–6.PubMedCrossRefGoogle Scholar
  216. 216.
    Hickey T, Kreutzer D, Burgess DJ, Moussy F. In vivo evaluation of a dexamethasone/PLGA microsphere system designed to suppress the inflammatory tissue response to implantable medical devices. J Biomed Mater Res. 2002;61(2):180–7.PubMedCrossRefGoogle Scholar
  217. 217.
    Hickey T, Kreutzer D, Burgess DJ, Moussy F. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. Biomaterials. 2002;23(7):1649–56.PubMedCrossRefGoogle Scholar
  218. 218.
    Gómez-Gaete C, Fattal E, Silva L, Besnard M, Tsapis N. Dexamethasone acetate encapsulation into Trojan particles. J Control Release. 2008;128(1):41–9.PubMedCrossRefGoogle Scholar
  219. 219.
    Gómez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E. Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm. 2007;331(2):153–9.PubMedCrossRefGoogle Scholar
  220. 220.
    Hegeman MA, Cobelens PM, Kamps JAAM, Hennus MP, Jansen NJG, Schultz MJ, et al. Liposome-encapsulated dexamethasone attenuates ventilator-induced lung inflammation. Br J Pharmacol. 2011;163(5):1048–58.PubMedCrossRefGoogle Scholar
  221. 221.
    Jordan RE, Hewitt N, Lewis W, Kagan H, Franzbla C. Regulation of elastase-catalyzed hydrolysis of insoluble elastin by synthetic and naturally occurring hydrophobic ligands. Biochemistry. 1974;13(17):3497–503.PubMedCrossRefGoogle Scholar
  222. 222.
    Kagan HM, Jordan RE, Crombie GD, Lewis W, Franzbla C. Proteolysis of elastin–ligand complexes. Stimulation of elastase digestion of insoluble elastin by sodium dodecyl sulfate. Biochemistry. 1972;11(18):3412–8.PubMedCrossRefGoogle Scholar
  223. 223.
    Gertler A. The non-specific electrostatic nature of the adsorption of elastase and other basic proteins on elastin. Eur J Biochem. 1971;20(4):541–6.PubMedCrossRefGoogle Scholar
  224. 224.
    Kagan HM, Simpson DE, Tseng L. Substrate-directed modulation of elastin oxidation by lysyl oxidase. Connect Tissue Res. 1981;8(3–4):213–7.PubMedCrossRefGoogle Scholar
  225. 225.
    Kagan HM, Tseng L, Simpson DE. Control of elastin metabolism by elastin ligands. Reciprocal effects on lysyl oxidase activity. J Biol Chem. 1981;256(11):5417–21.PubMedGoogle Scholar
  226. 226.
    Kagan HM, Sullivan KA, Olsson TA, Cronlund AL. Purification and properties of four species of lysyl oxidase from bovine aorta. Biochem J. 1979;177(1):203–14.PubMedGoogle Scholar
  227. 227.
    Buck CA, Horwitz AF. Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol. 1987;3:179–205.PubMedCrossRefGoogle Scholar
  228. 228.
    Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24(24):4385–415.PubMedCrossRefGoogle Scholar
  229. 229.
    Ohta K, Yamaguchi J, Akimoto M, Fukushima K, Suwa T, Awazu S. Retention mechanism of imidazoles in connective tissue. 1. Binding to elastin. Drug Metab Dispos. 1996;24(12):1291–7.PubMedGoogle Scholar
  230. 230.
    Oitate M, Hirota T, Murai T, Miura S-i, Ikeda T. Covalent binding of rofecoxib, but not other cyclooxygenase-2 inhibitors, to allysine aldehyde in elastin of human aorta. Drug Metab Dispos. 2007;35(10):1846–52.PubMedCrossRefGoogle Scholar
  231. 231.
    Oitate M, Hirota T, Takahashi M, Murai T, Miura S-i, Senoo A, et al. Mechanism for covalent binding of rofecoxib to elastin of rat aorta. J Pharmacol Exp Ther. 2007;320(3):1195–203.PubMedCrossRefGoogle Scholar
  232. 232.
    Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA. 2003;100(9):5413–8.PubMedCrossRefGoogle Scholar
  233. 233.
    Seliktar D, Zisch AH, Lutolf MP, Wrana JL, Hubbell JA. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res. 2004;68A(4):704–16.CrossRefGoogle Scholar
  234. 234.
    Banerjee J, Hanson AJ, Gadam B, Elegbede AI, Tobwala S, Ganguly B, et al. Release of liposomal contents by cell-secreted matrix metalloproteinase-9. Bioconjug Chem. 2009;20(7):1332–9.PubMedCrossRefGoogle Scholar
  235. 235.
    Elegbede AI, Banerjee J, Hanson AJ, Tobwala S, Ganguli B, Wang R, et al. Mechanistic studies of the triggered release of liposomal contents by matrix metalloproteinase-9. J Am Chem Soc. 2008;130(32):10633–42.PubMedCrossRefGoogle Scholar
  236. 236.
    Hatakeyama H, Akita H, Ishida E, Hashimoto K, Kobayashi H, Aoki T, et al. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm. 2007;342(1–2):194–200.PubMedCrossRefGoogle Scholar
  237. 237.
    Hatakeyama H, Akita H, Kogure K, Oishi M, Nagasaki Y, Kihira Y, et al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 2007;14(1):68–77.PubMedCrossRefGoogle Scholar
  238. 238.
    Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M. Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release. 2006;111(3):333–42.PubMedCrossRefGoogle Scholar
  239. 239.
    D'Armiento J. Decreased elastin in vessel walls puts the pressure on. J Clin Invest. 2003;112(9):1308–10.PubMedCrossRefGoogle Scholar
  240. 240.
    Davis EC. Smooth muscle cell to elastic lamina connections in developing mouse aorta: role in aortic medial organization. Lab Invest. 1993;68(1):89–99.PubMedGoogle Scholar
  241. 241.
    Gacchina CE, Brothers TE, Ramamurthi A. Evaluating smooth muscle cells from CaCl2-induced rat aortal expansions as a surrogate culture model for study of elastogenic induction of human aneurysmal cells. Tissue Eng. 2011;17:1945–8.CrossRefGoogle Scholar
  242. 242.
    Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, et al. Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha(5)beta(1) and alpha(v)beta(3) integrins. J Biol Chem. 2003;278(36):34605–16.PubMedCrossRefGoogle Scholar
  243. 243.
    Lomas AC, Mellody KT, Freeman LJ, Bax DV, Shuttleworth CA, Kielty CM. Fibulin-5 binds human smooth-muscle cells through alpha 5 beta 1 and alpha 4 beta 1 integrins, but does not support receptor activation. Biochem J. 2007;405:417–28.PubMedCrossRefGoogle Scholar
  244. 244.
    Zhang Z, Wang ZX, Liu SQ, Kodama M. Pore size, tissue ingrowth, and endothelialization of small-diameter microporous polyurethane vascular prostheses. Biomaterials. 2004;25(1):177–87.PubMedCrossRefGoogle Scholar
  245. 245.
    Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM. Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater. 2005;74B(1):570–81.CrossRefGoogle Scholar
  246. 246.
    Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, et al. Functional arteries grown in vitro. Science. 1999;284(5413):489–93.PubMedCrossRefGoogle Scholar
  247. 247.
    Mitchell SL, Niklason LE. Requirements for growing tissue-engineered vascular grafts. Cardiovasc Pathol. 2003;12(2):59–64.PubMedCrossRefGoogle Scholar
  248. 248.
    L'Heureux N, Stoclet JC, Auger FA, Lagaud GJL, Germain L, Andriantsitohaina R. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J. 2001;15(2):515–24.PubMedCrossRefGoogle Scholar
  249. 249.
    L'Heureux N, Germain L, Labbe R, Auger FA. In vitro construction of a human blood vessel from cultured vascular cells. J Vasc Surg. 1993;17(3):499–509.PubMedCrossRefGoogle Scholar
  250. 250.
    Martin ND, Schaner PJ, Tulenko TN, Shapiro IM, DiMatteo CA, Williams TK, et al. In vivo behavior of decellularized vein allograft. J Surg Res. 2005;129(1):17–23.PubMedCrossRefGoogle Scholar
  251. 251.
    Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg. 2004;40(1):146–53.PubMedCrossRefGoogle Scholar
  252. 252.
    Faury G, Ristori MT, Verdetti J, Jacob MP, Robert L. Effect of elastin peptides on vascular tone. J Vasc Res. 1995;32(2):112–9.PubMedCrossRefGoogle Scholar
  253. 253.
    Robb BW, Wachi H, Schaub T, Mecham RP, Davis EC. Characterization of an in vitro model off elastic fiber assembly. Mol Biol Cell. 1999;10(11):3595–605.PubMedGoogle Scholar
  254. 254.
    Nivison-Smith L, Rnjak J, Weiss AS. Synthetic human elastin microfibers: stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. Acta Biomater. 2010;6(2):354–9.PubMedCrossRefGoogle Scholar
  255. 255.
    Nivison-Smith L, Weiss AS. Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers. J Biomed Mater Res. 2012;100A(1):155–61.CrossRefGoogle Scholar
  256. 256.
    Mann BK, West JL. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res. 2002;60(1):86–93.PubMedCrossRefGoogle Scholar
  257. 257.
    Haider M, Leung V, Ferrari F, Crissman J, Powell J, Cappello J, et al. Molecular engineering of silk-elastinlike polymers for matrix-mediated gene delivery: biosynthesis and characterization. Mol Pharm. 2005;2(2):139–50.PubMedCrossRefGoogle Scholar
  258. 258.
    Herrero-Vanrell R, Rincon AC, Alonso M, Reboto V, Molina-Martinez IT, Rodriguez-Cabello JC. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J Control Release. 2005;102(1):113–22.PubMedCrossRefGoogle Scholar
  259. 259.
    Ghosh J, Murphy MO, Turner N, Khwaja N, Halka A, Kielty CM, et al. The role of transforming growth factor beta(1) in the vascular system. Cardiovasc Pathol. 2005;14(1):28–36.PubMedCrossRefGoogle Scholar
  260. 260.
    Long JL, Tranquillo RT. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol. 2003;22(4):339–50.PubMedCrossRefGoogle Scholar
  261. 261.
    Swartz DD, Russell JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol. 2005;288(3):H1451–60.PubMedCrossRefGoogle Scholar
  262. 262.
    Labhasetwar V, Song CX, Humphrey W, Shebuski R, Levy RJ. Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J Pharm Sci. 1998;87(10):1229–34.PubMedCrossRefGoogle Scholar
  263. 263.
    Guzman LA, Labhasetwar V, Song CX, Jang YS, Lincoff AM, Levy R, et al. Local intraluminal infusion of biodegradable polymeric nanoparticles—a novel approach for prolonged drug delivery after balloon angioplasty. Circulation. 1996;94(6):1441–8.PubMedCrossRefGoogle Scholar
  264. 264.
    Starcher BC. Lung elastin and matrix. Chest. 2000;117(5):229S–34S.PubMedCrossRefGoogle Scholar
  265. 265.
    Wise SG, Mithieux SM, Weiss AS. Engineered tropoelastin and elastin-based biomaterials. In: McPherson A, editor. Advances in protein chemistry and structural biology, vol 78. Elsevier Books, San Diego; 2009. p. 1–24.Google Scholar
  266. 266.
    Pierce RA, Mariani TJ, Senior RM. Elastin in lung development and disease. In: Chadwick DJGJA, editor. Molecular biology and pathology of elastic tissues. Chichester, UK, Wiley; 1995. p. 199–214.Google Scholar
  267. 267.
    Greenlee KJ, Werb Z, Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev. 2007;87(1):69–98.PubMedCrossRefGoogle Scholar
  268. 268.
    Wood JR, Bellamy D, Child AH, Citron KM. Pulmonary disease in patients with Marfan syndrome. Thorax. 1984;39(10):780–4.PubMedCrossRefGoogle Scholar
  269. 269.
    Crouch E. Pathobiology of pulmonary fibrosis. Am J Physiol. 1990;259(4):L159–84.PubMedGoogle Scholar
  270. 270.
    Kuhn C. Repairing the cables of the lung. Am J Respir Cell Mol Biol. 1997;17(3):287–8.PubMedGoogle Scholar
  271. 271.
    Orens JB, Garrity Jr ER. General overview of lung transplantation and review of organ allocation. Proc Am Thorac Soc. 2009;6(1):13–9.PubMedCrossRefGoogle Scholar
  272. 272.
    Andrade CF, Wong AP, Waddell TK, Keshavjee S, Liu MY. Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol Physiol. 2007;292(2):L510–8.PubMedCrossRefGoogle Scholar
  273. 273.
    Cortiella J, Nichols JE, Kojima K, Bonassar LJ, Dargon P, Roy AK, et al. Tissue-engineered lung: an in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng. 2006;12(5):1213–25.PubMedCrossRefGoogle Scholar
  274. 274.
    Mondrinos MJ, Koutzaki S, Jiwanmall E, Li MY, Dechadarevian JP, Lelkes PI, et al. Engineering three-dimensional pulmonary tissue constructs. Tissue Eng. 2006;12(4):717–28.PubMedCrossRefGoogle Scholar
  275. 275.
    Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A. 2010;16(8):2581–91.PubMedCrossRefGoogle Scholar
  276. 276.
    Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329(5991):538–41.PubMedCrossRefGoogle Scholar
  277. 277.
    Rippon HJ, Lane S, Qin M, Ismail NS, Wilson MR, Takata M, et al. Embryonic stem cells as a source of pulmonary epithelium in vitro and in vivo. Proc Am Thorac Soc. 2008;5(6):717–22.PubMedCrossRefGoogle Scholar
  278. 278.
    Wang DC, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther. 2010;18(3):625–34.PubMedCrossRefGoogle Scholar
  279. 279.
    Yu JY, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.PubMedCrossRefGoogle Scholar
  280. 280.
    Nichols JE, Niles JA, Cortiella J. Design and development of tissue engineered lung: progress and challenges. Organogenesis. 2009;5(2):57–61.PubMedCrossRefGoogle Scholar
  281. 281.
    Lanone S, Zheng T, Zhu Z, Liu W, Lee CG, Ma B, et al. Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and-12 in IL-13-induced inflammation and remodeling. J Clin Invest. 2002;110(4):463–74.PubMedGoogle Scholar
  282. 282.
    Vandenbroucke RE, Dejonckheere E, Libert C. A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur Respir J. 2011;38(5):1200–14.PubMedCrossRefGoogle Scholar
  283. 283.
    Massaro GD, Massaro D. Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats. Am J Physiol Lung Cell Mol Physiol. 1996;270(2):L305–10.Google Scholar
  284. 284.
    Massaro GD, Massaro D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nat Med. 1997;3(6):675–7.PubMedCrossRefGoogle Scholar
  285. 285.
    Mariani TJ, Sandefur S, Pierce RA. Elastin in lung development. Exp Lung Res. 1997;23(2):131–45.PubMedCrossRefGoogle Scholar
  286. 286.
    Azarmi S, Roa WH, Loebenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev. 2008;60(8):863–75.PubMedCrossRefGoogle Scholar
  287. 287.
    Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev. 2009;29(1):196–212.PubMedCrossRefGoogle Scholar
  288. 288.
    Ely L, Roa W, Finlay WH, Lobenberg R. Effervescent dry powder for respiratory drug delivery. Eur J Pharm Biopharm. 2007;65(3):346–53.PubMedCrossRefGoogle Scholar
  289. 289.
    Mastrandrea LD, Quattrin T. Clinical evaluation of inhaled insulin. Adv Drug Deliv Rev. 2006;58(9–10):1061–75.PubMedCrossRefGoogle Scholar
  290. 290.
    Quattrin T. Inhaled insulin: recent advances in the therapy of type 1 and 2 diabetes. Expert Opin Pharmacother. 2004;5(12):2597–604.PubMedCrossRefGoogle Scholar
  291. 291.
    Bosquillon C, Lombry C, Préat V, Vanbever R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;70(3):329–39.PubMedCrossRefGoogle Scholar
  292. 292.
    Edwards DA, Hanes J, Caponetti G, Hrkach J, BenJebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276(5320):1868–71.PubMedCrossRefGoogle Scholar
  293. 293.
    Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA. 2002;99(19):12001–5.PubMedCrossRefGoogle Scholar
  294. 294.
    Moller W, Hofer T, Ziesenis A, Karg E, Heyder J. Ultrafine particles cause cytoskeletal dysfunctions in macrophages. Toxicol Appl Pharmacol. 2002;182(3):197–207.PubMedCrossRefGoogle Scholar
  295. 295.
    Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci. 2007;97(1):163–80.PubMedCrossRefGoogle Scholar
  296. 296.
    Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. Poly (dl-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother. 2003;52(6):981–6.PubMedCrossRefGoogle Scholar
  297. 297.
    Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother. 2004;54(4):761–6.PubMedCrossRefGoogle Scholar
  298. 298.
    Foster KA, Yazdanian M, Audus KL. Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium. J Pharm Pharmacol. 2001;53(1):57–66.PubMedCrossRefGoogle Scholar
  299. 299.
    Fink TL, Klepcyk PJ, Oette S, Gedeon CR, Hyatt SL, Kowalczyk TH, et al. Plasmid size up to 20 kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Gene Ther. 2006;13(13):1048–51.PubMedCrossRefGoogle Scholar
  300. 300.
    Fenner DE, Hsu Y. Pathophysiology of the pelvic floor: basic physiology, effects of ageing, and menopausal changes pelvic floor disorders. In: Santoro GA, Wieczorek AP, Bartram CI, editors. Springer, Milan; 2010. p. 25–32.Google Scholar
  301. 301.
    Drewes PG, Yanagisawa H, Starcher B, Hornstra I, Csiszar K, Marinis SI, et al. Pelvic organ prolapse in fibulin-5 knockout mice—pregnancy-induced changes in elastic fiber homeostasis in mouse vagina. Am J Pathol. 2007;170(2):578–89.PubMedCrossRefGoogle Scholar
  302. 302.
    Weber AM, Richter HE. Pelvic organ prolapse. Obstet Gynecol. 2005;106(3):615–34.PubMedCrossRefGoogle Scholar
  303. 303.
    Jelovsek JE, Barber MD, Paraiso MFR, Walters MD. Functional bowel and anorectal disorders in patients with pelvic organ prolapse and incontinence. Am J Obstet Gynecol. 2005;193(6):2105–11.PubMedCrossRefGoogle Scholar
  304. 304.
    Bump RC, Norton PA. Epidemiology and natural history of pelvic floor dysfunction. Obstet Gynecol Clin North Am. 1998;25(4):723.PubMedCrossRefGoogle Scholar
  305. 305.
    Liu XQ, Zhao Y, Gao JG, Pawlyk B, Starcher B, Spencer JA, et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 2004;36(2):178–82.PubMedCrossRefGoogle Scholar
  306. 306.
    Liu XQ, Zhao Y, Pawlyk B, Damaser M, Li TS. Failure of elastic fiber homeostasis leads to pelvic floor disorders. Am J Pathol. 2006;168(2):519–28.PubMedCrossRefGoogle Scholar
  307. 307.
    Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, et al. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature. 2002;415(6868):171–5.PubMedCrossRefGoogle Scholar
  308. 308.
    Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA, et al. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature. 2002;415(6868):168–71.PubMedCrossRefGoogle Scholar
  309. 309.
    Mallipeddi R, Rohan LC. Nanoparticle-based vaginal drug delivery systems for HIV prevention. Expert Opin Drug Deliv. 2010;7(1):37–48.PubMedCrossRefGoogle Scholar
  310. 310.
    Lai SK, O'Hanlon DE, Harrold S, Man ST, Wang Y-Y, Cone R, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA. 2007;104(5):1482–7.PubMedCrossRefGoogle Scholar
  311. 311.
    Lai SK, Wang Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.PubMedCrossRefGoogle Scholar
  312. 312.
    Gray SD, Titze IR, Alipour F, Hammond TH. Biomechanical and histologic observations of vocal fold fibrous proteins. Ann Otol Rhinol Laryngol. 2000;109(1):77–85.PubMedGoogle Scholar
  313. 313.
    Hirano M. Structure of the vocal fold in normal and disease states. Anatomical and physical study. ASHA Rep. 1981;11:11–30.Google Scholar
  314. 314.
    Hahn MS, Kobler JB, Starcher BC, Zeitels SM, Langer R. Quantitative and comparative studies of the vocal fold extracellular matrix- I: elastic fibers and hyaluronic acid. Ann Otol Rhinol Laryngol. 2006;115(2):156–64.PubMedGoogle Scholar
  315. 315.
    Sato K, Hirano M. Age-related changes of the macula flava of the human vocal fold. Ann Otol Rhinol Laryngol. 1995;104(11):839–44.PubMedGoogle Scholar
  316. 316.
    Sato K, Hirano M. Histologic investigation of the macula flava of the human vocal fold. Ann Otol Rhinol Laryngol. 1995;104(2):138–43.PubMedGoogle Scholar
  317. 317.
    Ding H, Gray SD. Senescent expression of genes coding tropoelastin, elastase, lysyl oxidase, and tissue inhibitors of metalloproteinases in rat vocal folds: comparison with skin and lungs. J Speech Lang Hear Res. 2001;44(2):317–26.PubMedCrossRefGoogle Scholar
  318. 318.
    Rousseau B, Hirano S, Scheidt TD, Welham NV, Thibeault SL, Chan RW, et al. Characterization of vocal fold scarring in a canine model. Laryngoscope. 2003;113(4):620–7.PubMedCrossRefGoogle Scholar
  319. 319.
    Thibeault SL, Gray SD, Bless DM, Chan RW, Ford CN. Histologic and rheologic characterization of vocal fold scarring. J Voice. 2002;16(1):96–104.PubMedCrossRefGoogle Scholar
  320. 320.
    Hirano S. Current treatment of vocal fold scarring. Curr Opin Otolaryngol Head Neck Surg. 2005;13(3):143–7.PubMedCrossRefGoogle Scholar
  321. 321.
    Zeitels SM, Hillman RE, Mauri M, Desloge R, Doyle PB. Phonomicrosurgery in singers and performing artists: treatment outcomes, management theories, and future directions. Ann Otol Rhinol Laryngol. 2002;111(12):21–40.Google Scholar
  322. 322.
    Chhetri DK, Head C, Revazova E, Hart S, Bhuta S, Berke GS. Lamina propria replacement therapy with cultured autologous fibroblasts for vocal fold scars. Otolaryngol Head Neck Surg. 2004;131(6):864–70.PubMedCrossRefGoogle Scholar
  323. 323.
    Kolachala VL, Henriquez OA, Shams S, Golub JS, Kim Y-t, Laroui H, et al. Slow-release nanoparticle-encapsulated delivery system for laryngeal injection. Laryngoscope. 2010;120(5):988–94.PubMedGoogle Scholar
  324. 324.
    Mortensen M, Woo P. Office steroid injections of the larynx. Laryngoscope. 2006;116(10):1735–9.PubMedCrossRefGoogle Scholar
  325. 325.
    Hirano S, Thibeault S, Bless DM, Ford CN, Kanemaru SI. Hepatocyte growth factor and its receptor c-Met in rat and rabbit vocal folds. Ann Otol Rhinol Laryngol. 2002;111(8):661–6.PubMedGoogle Scholar
  326. 326.
    Hirano S, Bless DM, Heisey D, Ford CN. Effect of growth factors on hyaluronan production by canine vocal fold fibroblasts. Ann Otol Rhinol Laryngol. 2003;112(7):617–24.PubMedGoogle Scholar
  327. 327.
    Hirano S, Bless D, Heisey D, Ford C. Roles of hepatocyte growth factor and transforming growth factor beta 1 in production of extracellular matrix by canine vocal fold fibroblasts. Laryngoscope. 2003;113(1):144–8.PubMedCrossRefGoogle Scholar
  328. 328.
    Hirano S, Bless DM, Massey RJ, Hartig GK, Ford CN. Morphological and functional changes of human vocal fold fibroblasts with hepatocyte growth factor. Ann Otol Rhinol Laryngol. 2003;112(12):1026–33.PubMedGoogle Scholar
  329. 329.
    Luo Y, Kobler JB, Zeitels SM, Langer R. Effects of growth factors on extracellular matrix production by vocal fold fibroblasts in 3-dimensional culture. Tissue Eng. 2006;12(12):3365–74.PubMedCrossRefGoogle Scholar
  330. 330.
    Hirano S, Bless DM, Rousseau B, Welham N, Montequin D, Chan RW, et al. Prevention of vocal fold scarring by topical injection of hepatocyte growth factor in a rabbit model. Laryngoscope. 2004;114(3):548–56.PubMedCrossRefGoogle Scholar
  331. 331.
    Duflo S, Thibeault SL, Li W, Shu XZ, Prestwich GD. Vocal fold tissue repair in vivo using a synthetic extracellular matrix. Tissue Eng. 2006;12(8):2171–80.PubMedCrossRefGoogle Scholar
  332. 332.
    Grieshaber SE, Farran AJE, Lin-Gibson S, Kiick KL, Jia X. Synthesis and characterization of elastin-mimetic hybrid polymers with multiblock, alternating molecular architecture and elastomeric properties. Macromolecules. 2009;42(7):2532–41.PubMedCrossRefGoogle Scholar
  333. 333.
    Long JL, Neubauer J, Zhang Z, Zuk P, Berke GS, Chhetri DK. Functional testing of a tissue-engineered vocal fold cover replacement. Otolaryngol Head Neck Surg. 2010;142(3):438–40.PubMedCrossRefGoogle Scholar
  334. 334.
    Park H, Karajanagi S, Wolak K, Aanestad J, Daheron L, Kobler JB, et al. Three-dimensional hydrogel model using adipose-derived stem cells for vocal fold augmentation. Tissue Eng Part A. 2010;16(2):535–43.PubMedCrossRefGoogle Scholar
  335. 335.
    Taipale J, Saharinen J, Hedman K, KeskiOja J. Latent transforming growth factor-beta 1 and its binding protein are components of extracellular matrix microfibrils. J Histochem Cytochem. 1996;44(8):875–89.PubMedCrossRefGoogle Scholar
  336. 336.
    Reinhardt DP, Sasaki T, Dzamba BJ, Keene DR, Chu ML, Gohring W, et al. Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem. 1996;271(32):19489–96.PubMedCrossRefGoogle Scholar
  337. 337.
    Abrams WR, Ma RI, Kucich U, Bashir MM, Decker S, Tsipouras P, et al. Molecular cloning of the microfibrillar protein MFAP3 and assignment of the gene to human chromosome 5q32-q33.2. Genomics. 1995;26(1):47–54.PubMedCrossRefGoogle Scholar
  338. 338.
    Hirano E, Fujimoto N, Tajima S, Akiyama M, Ishibashi A, Kobayashi R, et al. Expression of 36-kDa microfibril-associated glycoprotein (MAGP-36) in human keratinocytes and its localization in skin. J Dermatol Sci. 2002;28(1):60–7.PubMedCrossRefGoogle Scholar
  339. 339.
    Horrigan SK, Rich CB, Streeten BW, Li ZY, Foster JA. Characterization of an associated microfibril protein through recombinant DNA techniques. J Biol Chem. 1992;267(14):10087–95.PubMedGoogle Scholar
  340. 340.
    Lausen M, Lynch N, Schlosser A, Tornoe I, Saekmose SG, Teisner B, et al. Microfibril-associated protein 4 is present in lung washings and binds to the collagen region of lung surfactant protein D. J Biol Chem. 1999;274(45):32234–40.PubMedCrossRefGoogle Scholar
  341. 341.
    Liu WG, Faraco J, Qian CP, Francke U. The gene for microfibril-associated protein-1 (MFAP1) is located several megabases centromeric to FBN1 and is not mutated in Marfan syndrome. Hum Genet. 1997;99(5):578–84.PubMedCrossRefGoogle Scholar
  342. 342.
    Toyoshima T, Yamashita K, Furuichi H, Shishibori T, Itano T, Kobayashi R. Ultrastructural distribution of 36-kD microfibril-associated glycoprotein (MAGP-36) in human and bovine tissues. J Histochem Cytochem. 1999;47(8):1049–56.PubMedCrossRefGoogle Scholar
  343. 343.
    Clark R, Singer A. Wound repair: basic biology to tissue engineering. In: Lanza R, Langer R, Vacanti JP, editors. Principles of tissue engineering 2. San Diego: Academic Press; 2000. p. 855–78.Google Scholar
  344. 344.
    Parenteau N, Hardin-Young J, Ross R. Skin. In: Lanza R, Langer R, Vacanti JP, editors. Principles of tissue engineering 2. San Diego: Academic Press; 2000. p. 879–87.CrossRefGoogle Scholar
  345. 345.
    Amadeu TP, Braune AS, Porto LC, Desmouliere A, Costa AMA. Fibrillin-1 and elastin are differentially expressed in hypertrophic scars and keloids. Wound Repair Regen. 2004;12(2):169–74.PubMedCrossRefGoogle Scholar
  346. 346.
    Roten SV, Bhat S, Bhawan J. Elastic fibers in scar tissue. J Cutan Pathol. 1996;23(1):37–42.PubMedCrossRefGoogle Scholar
  347. 347.
    Chen G, Chen J, Zhuo S, Xiong S, Zeng H, Jiang X, et al. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation. Br J Dermatol. 2009;161(1):48–55.PubMedCrossRefGoogle Scholar
  348. 348.
    Tsuji T, Sawabe M. Elastic fibers in scar tissue: scanning and transmission electron microscopic studies. J Cutan Pathol. 1987;14(2):106–13.PubMedCrossRefGoogle Scholar
  349. 349.
    Giro MG, Oikarinen AI, Oikarinen H, Sephel G, Uitto J, Davidson JM. Demonstration of elastin gene expression in human skin fibroblast cultures and reduced tropoelastin production by cells from a patient with atrophoderma. J Clin Invest. 1985;75(2):672–8.PubMedCrossRefGoogle Scholar
  350. 350.
    Lamme EN, van Leeuwen RTJ, Jonker A, van Marle J, Middelkoop E. Living skin substitutes: survival and function of fibroblasts seeded in a dermal substitute in experimental wounds. J Invest Dermatol. 1998;111(6):989–95.PubMedCrossRefGoogle Scholar
  351. 351.
    Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg. 2002;55(3):185–93.PubMedCrossRefGoogle Scholar
  352. 352.
    Casasco M, Casasco A, Comaglia AI, Farina A, Calligaro A. Differential distribution of elastic tissue in human natural skin and tissue-engineered skin. J Mol Histol. 2004;35(4):421–8.PubMedCrossRefGoogle Scholar
  353. 353.
    Rnjak J, Wise SG, Mithieux SM, Weiss AS. Severe burn injuries and the role of elastin in the design of dermal substitutes. Tissue Eng Part B Rev. 2011;17(2):81–91.PubMedCrossRefGoogle Scholar
  354. 354.
    Devries HJC, Zeegelaar JE, Middelkoop E, Gijsbers G, Vanmarle J, Wildevuur CHR, et al. Reduced wound contraction and scar formation in punch biopsy wounds. Native collagen dermal substitutes. A clinical study. Br J Dermatol. 1995;132(5):690–7.Google Scholar
  355. 355.
    Lamme EN, de Vries HJC, van Veen H, Gabbiani G, Westerhof W, Middelkoop E. Extracellular matrix characterization during healing of full-thickness wounds treated with a collagen/elastin dermal substitute shows improved skin regeneration in pigs. J Histochem Cytochem. 1996;44(11):1311–22.PubMedCrossRefGoogle Scholar
  356. 356.
    de Vries HJ, Middelkoop E, Mekkes JR, Dutrieux RP, Wildevuur CH, Westerhof H. Dermal regeneration in native non-cross-linked collagen sponges with different extracellular matrix molecules. Wound Repair Regen. 1994;2(1):37–47.PubMedCrossRefGoogle Scholar
  357. 357.
    Raghunath M, Bachi T, Meuli M, Altermatt S, Gobet R, BrucknerTuderman L, et al. Fibrillin and elastin expression in skin regenerating from cultured keratinocyte autografts: morphogenesis of microfibrils begins at the dermo-epidermal junction and precedes elastic fiber formation. J Invest Dermatol. 1996;106(5):1090–5.PubMedCrossRefGoogle Scholar
  358. 358.
    van Zuijlen PPM, van Trier AJM, Vloemans J, Groenevelt F, Kreis RW, Middelkoop E. Graft survival and effectiveness of dermal substitution in burns and reconstructive surgery in a one-stage grafting model. Plast Reconstr Surg. 2000;106(3):615–23.PubMedCrossRefGoogle Scholar
  359. 359.
    Haslik W, Kamolz LP, Nathschlaeger G, Andel H, Meissl G, Frey M. First experiences with the collagen-elastin matrix Matriderm((R)) as a dermal substitute in severe burn injuries of the hand. Burns. 2007;33(3):364–8.PubMedCrossRefGoogle Scholar
  360. 360.
    Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63(6):470–91.PubMedCrossRefGoogle Scholar
  361. 361.
    Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm. 2007;328(2):191–5.PubMedCrossRefGoogle Scholar
  362. 362.
    Maia CS, Mehnert W, Schaller M, Korting HC, Gysler A, Haberland A, et al. Drug targeting by solid lipid nanoparticles for dermal use. J Drug Target. 2002;10(6):489–95.CrossRefGoogle Scholar
  363. 363.
    Chen HB, Chang XL, Du DR, Liu W, Liu J, Weng T, et al. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release. 2006;110(2):296–306.PubMedCrossRefGoogle Scholar
  364. 364.
    Kuntsche J, Bunjes H, Fahr A, Pappinen S, Rönkkö S, Suhonen M, et al. Interaction of lipid nanoparticles with human epidermis and an organotypic cell culture model. Int J Pharm. 2008;354(1–2):180–95.PubMedCrossRefGoogle Scholar
  365. 365.
    Castro GA, Coelho ALLR, Oliveira CA, Mahecha GAB, Oréfice RL, Ferreira LAM. Formation of ion pairing as an alternative to improve encapsulation and stability and to reduce skin irritation of retinoic acid loaded in solid lipid nanoparticles. Int J Pharm. 2009;381(1):77–83.PubMedCrossRefGoogle Scholar
  366. 366.
    Mandawgade SD, Patravale VB. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharm. 2008;363(1–2):132–8.PubMedCrossRefGoogle Scholar
  367. 367.
    Shah KA, Date AA, Joshi MD, Patravale VB. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm. 2007;345(1–2):163–71.PubMedCrossRefGoogle Scholar
  368. 368.
    Aitken KJ, Bagli DJ. The bladder extracellular matrix. Part I: architecture, development and disease. Nat Rev Urol. 2009;6(11):596–611.PubMedCrossRefGoogle Scholar
  369. 369.
    Aitken KJ, Bagli DJ. The bladder extracellular matrix. Part II: regenerative applications. Nat Rev Urol. 2009;6(11):612–21.PubMedCrossRefGoogle Scholar
  370. 370.
    Murakumo M, Ushiki T, Abe K, Matsumura K, Shinno Y, Koyanagi T. Three-dimensional arrangement of collagen and elastin fibers in the human urinary bladder: a scanning electron microscopic study. J Urol. 1995;154(1):251–6.PubMedCrossRefGoogle Scholar
  371. 371.
    Korossis S, Bolland F, Ingham E, Fisher J, Kearney J, Southgate J. Tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction. Tissue Eng. 2006;12(4):635–44.PubMedCrossRefGoogle Scholar
  372. 372.
    Cortivo R, Pagano F, Passerini G, Abatangelo G, Castellani I. Elastin and collagen in the normal and obstructed urinary bladder. Br J Urol. 1981;53(2):134–7.PubMedCrossRefGoogle Scholar
  373. 373.
    Lemack GE, Szabo Z, Urban Z, Boyd CD, Csiszar K, Vaughan ED, et al. Altered bladder function in transgenic mice expressing rat elastin. Neurourol Urodyn. 1999;18(1):55–68.PubMedCrossRefGoogle Scholar
  374. 374.
    Hinek A, Smith AC, Cutiongco EM, Callahan JW, Gripp KW, Weksberg R. Decreased elastin deposition and high proliferation of fibroblasts from Costello syndrome are related to functional deficiency in the 67-kD elastin-binding protein. Am J Hum Genet. 2000;66(3):859–72.PubMedCrossRefGoogle Scholar
  375. 375.
    Hinek A, Wilson SE. Impaired elastogenesis in Hurler disease—dermatan sulfate accumulation linked to deficiency in elastin-binding protein and elastic fiber assembly. Am J Pathol. 2000;156(3):925–38.PubMedCrossRefGoogle Scholar
  376. 376.
    Sutherland RS, Baskin LS, Elfman F, Hayward SW, Cunha GR. The role of type IV collagenases in rat bladder development and obstruction. Pediatr Res. 1997;41(3):430–4.PubMedCrossRefGoogle Scholar
  377. 377.
    Aitken KJ, Block G, Lorenzo A, Herz D, Sabha N, Dessouki O, et al. Mechanotransduction of extracellular signal-regulated kinases 1 and 2 mitogen-activated protein kinase activity in smooth muscle is dependent on the extracellular matrix and regulated by matrix metalloproteinases. Am J Pathol. 2006;169(2):459–70.PubMedCrossRefGoogle Scholar
  378. 378.
    Pattison MA, Wurster S, Webster TJ, Haberstroh KM. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials. 2005;26(15):2491–500.PubMedCrossRefGoogle Scholar
  379. 379.
    Nagatomi J, DeMiguel F, Torimoto K, Chancellor MB, Getzenberg RH, Sacks MS. Early molecular-level changes in rat bladder wall tissue following spinal cord injury. Biochem Biophys Res Commun. 2005;334(4):1159–64.PubMedCrossRefGoogle Scholar
  380. 380.
    Parekh A, Long RA, Chancellor MB, Sacks MS. Assessing the effects of transforming growth factor-β1 on bladder smooth muscle cell phenotype. II. Modulation of collagen organization. J Urol. 2009;182(3):1216–21.PubMedCrossRefGoogle Scholar
  381. 381.
    Parekh A, Long RA, Iannone EC, Chancellor MB, Sacks MS. Assessing the effects of transforming growth factor-β1 on bladder smooth muscle cell phenotype. I. Modulation of in vitro contractility. J Urol. 2009;182(3):1210–5.PubMedCrossRefGoogle Scholar
  382. 382.
    Heise RL, Ivanova J, Parekh A, Sacks MS. Generating elastin-rich small intestinal submucosa-based smooth muscle constructs utilizing exogenous growth factors and cyclic mechanical stimulation. Tissue Eng Part A. 2009;15(12):3951–60.PubMedCrossRefGoogle Scholar
  383. 383.
    Carreras I, Rich CB, Panchenko MP, Foster JA. Basic fibroblast growth factor decreases elastin gene transcription in aortic smooth muscle cells. J Cell Biochem. 2002;85(3):592–600.PubMedCrossRefGoogle Scholar
  384. 384.
    Erdoğar N, İskit AB, Mungan NA, Bilensoy E. Prolonged retention and in vivo evaluation of cationic nanoparticles loaded with Mitomycin C designed for intravesical chemotherapy of bladder tumours. J Microencapsul. 2012. doi: 10.3109/02652048.2012.668957.Google Scholar
  385. 385.
    Lu Z, Yeh TK, Tsai M, Au JLS, Wientjes MG. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin Cancer Res. 2004;10(22):7677–84.PubMedCrossRefGoogle Scholar
  386. 386.
    Bilensoy E, Sarisozen C, Esendağlı G, Doğan AL, Aktaş Y, Şen M, et al. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of mitomycin C to bladder tumors. Int J Pharm. 2009;371(1–2):170–6.PubMedCrossRefGoogle Scholar
  387. 387.
    Roth CC, Mondalek FG, Kibar Y, Ashley RA, Bell CH, Califano JA, et al. Bladder regeneration in a canine model using hyaluronic acid-poly(lactic-co-glycolic-acid) nanoparticle modified porcine small intestinal submucosa. BJU Int. 2011;108(1):148–55.PubMedCrossRefGoogle Scholar
  388. 388.
    Mondalek FG, Lawrence BJ, Kropp BP, Grady BP, Fung KM, Madihally SV, et al. The incorporation of poly (lactic-co-glycolic) acid nanoparticles into porcine small intestinal submucosa biomaterials. Biomaterials. 2008;29(9):1159–66.PubMedCrossRefGoogle Scholar
  389. 389.
    Roth CC. Urologic tissue engineering in pediatrics: from nanostructures to bladders. Pediatr Res. 2010;67(5):509–13.PubMedCrossRefGoogle Scholar
  390. 390.
    Mecham RP, Levy BD, Morris SL, Madaras JG, Wrenn DS. Increased cyclic GMP levels lead to a stimulation of elastin production in ligament fibroblasts that is reversed by cyclic AMP. J Biol Chem. 1985;260(6):3255–8.PubMedGoogle Scholar
  391. 391.
    Mecham RP, Lange G, Madaras J, Starcher B. Elastin synthesis by ligamentum nuchae fibroblasts: effects of culture conditions and extracellular matrix on elastin production. J Cell Biol. 1981;90(2):332–8.PubMedCrossRefGoogle Scholar
  392. 392.
    Rich CB, Goud HD, Bashir M, Rosenbloom J, Foster JA. Developmental regulation of aortic elastin gene expression involves disruption of an IGF-I sensitive repressor complex. Biochem Biophys Res Commun. 1993;196(3):1316–22.PubMedCrossRefGoogle Scholar
  393. 393.
    Brettell LM, McGowan SE. Basic fibroblast growth factor decreases elastin production by neonatal rat lung fibroblasts. Am J Respir Cell Mol Biol. 1994;10(3):306–15.PubMedGoogle Scholar
  394. 394.
    Davis EC, Mecham RP. Intracellular trafficking of tropoelastin. Matrix Biol. 1998;17(4):245–54.PubMedCrossRefGoogle Scholar
  395. 395.
    Frisch SM, Davidson JM, Werb Z. Blockage of tropoelastin secretion by monensin represses tropoelastin synthesis at a pretranslational level in rat smooth muscle cells. Mol Cell Biol. 1985;5(1):253–8.PubMedGoogle Scholar
  396. 396.
    Cortizo MC, De Mele MFL. Cytotoxicity of copper ions released from metal—variation with the exposure period and concentration gradients. Biol Trace Elem Res. 2004;102(1–3):129–41.PubMedCrossRefGoogle Scholar
  397. 397.
    Hayashi A, Suzuki T, Tajima S. Modulations of elastin expression and cell proliferation by retinoids in cultured vascular smooth muscle cells. J Biochem. 1995;117(1):132–6.PubMedGoogle Scholar
  398. 398.
    Tajima S, Hayashi A, Suzuki T. Elastin expression is up-regulated by retinoic acid but not by retinol in chick embryonic skin fibroblasts. J Dermatol Sci. 1997;15(3):166–72.PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2012

Authors and Affiliations

  • Balakrishnan Sivaraman
    • 1
  • Chris A. Bashur
    • 1
  • Anand Ramamurthi
    • 1
  1. 1.Department of Biomedical EngineeringThe Cleveland ClinicClevelandUSA

Personalised recommendations