Skip to main content

Advertisement

Log in

Advances in biomimetic regeneration of elastic matrix structures

  • Review Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Elastin is a vital component of the extracellular matrix, providing soft connective tissues with the property of elastic recoil following deformation and regulating the cellular response via biomechanical transduction to maintain tissue homeostasis. The limited ability of most adult cells to synthesize elastin precursors and assemble them into mature crosslinked structures has hindered the development of functional tissue-engineered constructs that exhibit the structure and biomechanics of normal native elastic tissues in the body. In diseased tissues, the chronic overexpression of proteolytic enzymes can cause significant matrix degradation, to further limit the accumulation and quality (e.g., fiber formation) of newly deposited elastic matrix. This review provides an overview of the role and importance of elastin and elastic matrix in soft tissues, the challenges to elastic matrix generation in vitro and to regenerative elastic matrix repair in vivo, current biomolecular strategies to enhance elastin deposition and matrix assembly, and the need to concurrently inhibit proteolytic matrix disruption for improving the quantity and quality of elastogenesis. The review further presents biomaterial-based options using scaffolds and nanocarriers for spatio-temporal control over the presentation and release of these biomolecules, to enable biomimetic assembly of clinically relevant native elastic matrix-like superstructures. Finally, this review provides an overview of recent advances and prospects for the application of these strategies to regenerating tissue-type specific elastic matrix structures and superstructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mason C, Dunnill P. A brief definition of regenerative medicine. Regen Med. 2008;3(1):1–5.

    Article  PubMed  Google Scholar 

  2. Greenwood HL, Thorsteinsdottir H, Perry G, Renihan J, Singer PA, Daar AS. Regenerative medicine: new opportunities for developing countries. Int J Biotechnol. 2006;8(1–2):60–77.

    Google Scholar 

  3. Lee K, Silva EA, Mooney DJ. Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface. 2011;8(55):153–70.

    Article  PubMed  CAS  Google Scholar 

  4. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotech. 2005;23(1):47–55.

    Article  CAS  Google Scholar 

  5. Davis ME, Hsieh PCH, Grodzinsky AJ, Lee RT. Custom design of the cardiac microenvironment with biomaterials. Circ Res. 2005;97(1):8–15.

    Article  PubMed  CAS  Google Scholar 

  6. DeWitt A, Iida T, Lam HY, Hill V, Wiley HS, Lauffenburger DA. Affinity regulates spatial range of EGF receptor autocrine ligand binding. Dev Biol. 2002;250(2):305–16.

    Article  PubMed  CAS  Google Scholar 

  7. Fraidenraich D, Stillwell E, Romero E, Wilkes D, Manova K, Basson CT, et al. Rescue of cardiac defects in Id knockout embryos by injection of embryonic stem cells. Science. 2004;306(5694):247–52.

    Article  PubMed  CAS  Google Scholar 

  8. Dai JP, Losy F, Guinault AM, Pages C, Anegon I, Desgranges P, et al. Overexpression of transforming growth factor-beta 1 stabilizes already-formed aortic aneurysms—a first approach to induction of functional healing by endovascular gene therapy. Circulation. 2005;112(7):1008–15.

    Article  PubMed  CAS  Google Scholar 

  9. Kothapalli CR, Gacchina CE, Ramamurthi A. Utility of hyaluronan oligomers and transforming growth factor-beta1 factors for elastic matrix regeneration by aneurysmal rat aortic smooth muscle cells. Tissue Eng. 2009;15(11):3247–60.

    Article  CAS  Google Scholar 

  10. Kothapalli CR, Taylor PM, Smolenski RT, Yacoub MH, Ramamurthi A. Transforming growth factor beta 1 and hyaluronan oligomers synergistically enhance elastin matrix regeneration by vascular smooth muscle cells. Tissue Eng. 2009;15(3):501–11.

    CAS  Google Scholar 

  11. Losy F, Dai JP, Pages C, Ginat M, Muscatelli-Groux B, Guinault AM, et al. Paracrine secretion of transforming growth factor-beta(1) in aneurysm healing and stabilization with endovascular smooth muscle cell therapy. J Vasc Surg. 2003;37(6):1301–9.

    Article  PubMed  Google Scholar 

  12. Sales VL, Engelmayr GC, Mettler BA, Johnson JA, Sacks MS, Mayer JE. Transforming growth factor-beta 1 modulates extracellular matrix production, proliferation, and apoptosis of endothelial progenitor cells in tissue-engineering scaffolds. Circulation. 2006;114:I193–9.

    Article  PubMed  CAS  Google Scholar 

  13. Brown RA, Sethi KK, Gwanmesia I, Raemdonck D, Eastwood M, Mudera V. Enhanced fibroblast contraction of 3D collagen lattices and integrin expression by TGF-beta 1 and -beta 3: mechanoregulatory growth factors? Exp Cell Res. 2002;274(2):310–22.

    Article  PubMed  CAS  Google Scholar 

  14. Simionescu A, Philips K, Vyavahare N. Elastin-derived peptides and TGF-beta 1 induce osteogenic responses in smooth muscle cells. Biochem Biophys Res Commun. 2005;334(2):524–32.

    Article  PubMed  CAS  Google Scholar 

  15. Altman GH, Diaz F, Jakuba C, Calabro T, Horan RL, Chen JS, et al. Silk-based biomaterials. Biomaterials. 2003;24(3):401–16.

    Article  PubMed  CAS  Google Scholar 

  16. Drury JL, Mooney DJ. Hydrogels for tissue engineering: scaffold design variables and applications. Biomaterials. 2003;24(24):4337–51.

    Article  PubMed  CAS  Google Scholar 

  17. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21(24):2529–43.

    Article  PubMed  CAS  Google Scholar 

  18. Lee KY, Mooney DJ. Hydrogels for tissue engineering. Chem Rev. 2001;101(7):1869–79.

    Article  PubMed  CAS  Google Scholar 

  19. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60(4):613–21.

    Article  PubMed  CAS  Google Scholar 

  20. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3(2):232–8.

    Article  PubMed  CAS  Google Scholar 

  21. Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18(3):241–68.

    Article  PubMed  CAS  Google Scholar 

  22. Kim SS, Park MS, Jeon O, Choi CY, Kim BS. Poly(lactide-co-glycolide)/hydroxyapatite composite scaffolds for bone tissue engineering. Biomaterials. 2006;27(8):1399–409.

    Article  PubMed  CAS  Google Scholar 

  23. Anderson DG, Burdick JA, Langer R. Materials science—smart biomaterials. Science. 2004;305(5692):1923–4.

    Article  PubMed  CAS  Google Scholar 

  24. Hubbell JA. Biomaterials in tissue engineering. Bio-Technol. 1995;13(6):565–76.

    CAS  Google Scholar 

  25. Langer R, Tirrell DA. Designing materials for biology and medicine. Nature. 2004;428(6982):487–92.

    Article  PubMed  CAS  Google Scholar 

  26. Peppas NA, Langer R. New challenges in biomaterials. Science. 1994;263(5154):1715–20.

    Article  PubMed  CAS  Google Scholar 

  27. Fernandes H, Moroni L, van Blitterswijk C, de Boer J. Extracellular matrix and tissue engineering applications. J Mater Chem. 2009;19(31):5474–84.

    Article  CAS  Google Scholar 

  28. Cannizzaro SM, Padera RF, Langer R, Rogers RA, Black FE, Davies MC, et al. A novel biotinylated degradable polymer for cell-interactive applications. Biotechnol Bioeng. 1998;58(5):529–35.

    Article  PubMed  CAS  Google Scholar 

  29. Wang DA, Ji J, Sun YH, Shen JC, Feng LX, Elisseeff JH. In situ immobilization of proteins and RGD peptide on polyurethane surfaces via poly(ethylene oxide) coupling polymers for human endothelial cell growth. Biomacromolecules. 2002;3(6):1286–95.

    Article  PubMed  CAS  Google Scholar 

  30. Kong HJ, Hsiong S, Mooney DJ. Nanoscale cell adhesion ligand presentation regulates nonviral gene delivery and expression. Nano Lett. 2007;7(1):161–6.

    Article  PubMed  CAS  Google Scholar 

  31. Lateef SS, Boateng S, Hartman TJ, Crot CA, Russell B, Hanley L. GRGDSP peptide-bound silicone membranes withstand mechanical flexing in vitro and display enhanced fibroblast adhesion. Biomaterials. 2002;23(15):3159–68.

    Article  PubMed  CAS  Google Scholar 

  32. Allen TM, Cullis PR. Drug delivery systems: entering the mainstream. Science. 2004;303(5665):1818–22.

    Article  PubMed  CAS  Google Scholar 

  33. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329–47.

    Article  PubMed  CAS  Google Scholar 

  34. Pitsillides CM, Joe EK, Wei XB, Anderson RR, Lin CP. Selective cell targeting with light-absorbing microparticles and nanoparticles. Biophys J. 2003;84(6):4023–32.

    Article  PubMed  CAS  Google Scholar 

  35. Sarikaya M, Tamerler C, Jen AKY, Schulten K, Baneyx F. Molecular biomimetics: nanotechnology through biology. Nat Mater. 2003;2(9):577–85.

    Article  PubMed  CAS  Google Scholar 

  36. Chen RR, Silva EA, Yuen WW, Brock AA, Fischbach C, Lin AS, et al. Integrated approach to designing growth factor delivery systems. FASEB J. 2007;21(14):3896–903.

    Article  PubMed  CAS  Google Scholar 

  37. Chen RR, Silva EA, Yuen WW, Mooney DJ. Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res. 2007;24(2):258–64.

    Article  PubMed  CAS  Google Scholar 

  38. Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23(22):4307–14.

    Article  PubMed  CAS  Google Scholar 

  39. Ratner BD, Bryant SJ. Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng. 2004;6:41–75.

    Article  PubMed  CAS  Google Scholar 

  40. Silva EA, Mooney DJ. Spatiotemporal control of vascular endothelial growth factor delivery from injectable hydrogels enhances angiogenesis. J Thromb Haemost. 2007;5(3):590–8.

    Article  PubMed  CAS  Google Scholar 

  41. Silva EA, Mooney DJ. Synthetic extracellular matrices for tissue engineering and regeneration. Curr Top Dev Biol. 2004;64:181–205.

    Article  PubMed  CAS  Google Scholar 

  42. Freed LE, Vunjaknovakovic G, Biron RJ, Eagles DB, Lesnoy DC, Barlow SK, et al. Biodegradable polymer scaffolds for tissue engineering. Bio-Technol. 1994;12(7):689–93.

    CAS  Google Scholar 

  43. Agrawal CM, Ray RB. Biodegradable polymeric scaffolds for musculoskeletal tissue engineering. J Biomed Mater Res. 2001;55(2):141–50.

    Article  PubMed  CAS  Google Scholar 

  44. Hutmacher DW. Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym Ed. 2001;12(1):107–24.

    Article  PubMed  CAS  Google Scholar 

  45. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol. 1998;16(5):224–30.

    Article  PubMed  CAS  Google Scholar 

  46. Li WJ, Tuli R, Okafor C, Derfoul A, Danielson KG, Hall DJ, et al. A three-dimensional nanofibrous scaffold for cartilage tissue engineering using human mesenchymal stem cells. Biomaterials. 2005;26(6):599–609.

    Article  PubMed  CAS  Google Scholar 

  47. Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanotibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25(5):877–86.

    Article  PubMed  CAS  Google Scholar 

  48. Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release. 2001;70(1–2):1–20.

    Article  PubMed  CAS  Google Scholar 

  49. Anderson JM, Shive MS. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev. 1997;28(1):5–24.

    Article  PubMed  CAS  Google Scholar 

  50. Chau Y, Tan FE, Langer R. Synthesis and characterization of dextran-peptide-methotrexate conjugates for tumor targeting via mediation by matrix metalloproteinase II and matrix metalloproteinase IX. Bioconjug Chem. 2004;15(4):931–41.

    Article  PubMed  CAS  Google Scholar 

  51. Lutolf MR, Weber FE, Schmoekel HG, Schense JC, Kohler T, Muller R, et al. Repair of bone defects using synthetic mimetics of collagenous extracellular matrices. Nat Biotechnol. 2003;21(5):513–8.

    Article  PubMed  CAS  Google Scholar 

  52. Murthy N, Campbell J, Fausto N, Hoffman AS, Stayton PS. Bioinspired pH-responsive polymers for the intracellular delivery of biomolecular drugs. Bioconjug Chem. 2003;14(2):412–9.

    Article  PubMed  CAS  Google Scholar 

  53. Lee KY, Peters MC, Anderson KW, Mooney DJ. Controlled growth factor release from synthetic extracellular matrices. Nature. 2000;408(6815):998–1000.

    Article  PubMed  CAS  Google Scholar 

  54. Faury G, Garnier S, Weiss AS, Wallach J, Fulop T, Jacob MP, et al. Action of tropoelastin and synthetic elastin sequences on vascular tone and on free Ca2+ level in human vascular endothelial cells. Circ Res. 1998;82(3):328–36.

    Article  PubMed  CAS  Google Scholar 

  55. Li DY, Brooke B, Davis EC, Mecham RP, Sorensen LK, Boak BB, et al. Elastin is an essential determinant of arterial morphogenesis. Nature. 1998;393(6682):276–80.

    Article  PubMed  CAS  Google Scholar 

  56. Li DY, Faury G, Taylor DG, Davis EC, Boyle WA, Mecham RP, et al. Novel arterial pathology in mice and humans hemizygous for elastin. J Clin Invest. 1998;102(10):1783–7.

    Article  PubMed  CAS  Google Scholar 

  57. Robert L, Jacob MP, Fulop T. Elastin in blood vessels. Mol Biol Pathol Elastic Tissues. 1995;192:286–303.

    CAS  Google Scholar 

  58. Kielty CM, Sherratt MJ, Shuttleworth CA. Elastic fibres. J Cell Sci. 2002;115(14):2817–28.

    PubMed  CAS  Google Scholar 

  59. Wognum S, Schmidt DE, Sacks MS. On the mechanical role of de novo synthesized elastin in the urinary bladder wall. J Biomech Eng. 2009;131(10):101018.

    Article  PubMed  Google Scholar 

  60. Rahn DD, Acevedo JF, Word RA. Effect of vaginal distention on elastic fiber synthesis and matrix degradation in the vaginal wall: potential role in the pathogenesis of pelvic organ prolapse. Am J Physiol Regul Integr Comp Physiol. 2008;295(4):R1351–8.

    Article  PubMed  CAS  Google Scholar 

  61. Berglund JD, Nerem RM, Sambanis A. Incorporation of intact elastin scaffolds in tissue-engineered collagen-based vascular grafts. Tissue Eng. 2004;10(9–10):1526–35.

    PubMed  CAS  Google Scholar 

  62. Buijtenhuijs P, Buttafoco L, Poot AA, Daamen WF, van Kuppevelt TH, Dijkstra PJ, et al. Tissue engineering of blood vessels: characterization of smooth-muscle cells for culturing on collagen-and-elastin-based scaffolds. Biotechnol Appl Biochem. 2004;39:141–9.

    Article  PubMed  CAS  Google Scholar 

  63. Daamen WF, van Moerkerk HTB, Hafmans T, Buttafoco L, Poot AA, Veerkamp JH, et al. Preparation and evaluation of molecularly-defined collagen-elastin-glycosaminoglycan scaffolds for tissue engineering. Biomaterials. 2003;24(22):4001–9.

    Article  PubMed  CAS  Google Scholar 

  64. Daamen WF, Veerkamp JH, van Hest JCM, van Kuppevelt TH. Elastin as a biomaterial for tissue engineering. Biomaterials. 2007;28(30):4378–98.

    Article  PubMed  CAS  Google Scholar 

  65. Leach JB, Wolinsky JB, Stone PJ, Wong JY. Crosslinked alpha-elastin biomaterials: towards a processable elastin mimetic scaffold. Acta Biomater. 2005;1(2):155–64.

    Article  PubMed  Google Scholar 

  66. Almine JF, Bax DV, Mithieux SM, Nivison-Smith L, Rnjak J, Waterhouse A, et al. Elastin-based materials. Chem Soc Rev. 2010;39(9):3371–9.

    Article  PubMed  CAS  Google Scholar 

  67. Mithieux SM, Rasko JEJ, Weiss AS. Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials. 2004;25(20):4921–7.

    Article  PubMed  CAS  Google Scholar 

  68. Duca L, Floquet N, Alix AJP, Haye B, Debelle L. Elastin as a matrikine. Crit Rev Oncol Hematol. 2004;49(3):235–44.

    Article  PubMed  Google Scholar 

  69. Bashur CA, Venkataraman L, Ramamurthi A. Tissue engineering and regenerative strategies to replicate biocomplexity of vascular elastic matrix assembly tissue. Eng Part B Rev. 2012;18:203–17.

    Google Scholar 

  70. Karnik SK, Brooke BS, Bayes-Genis A, Sorensen L, Wythe JD, Schwartz RS, et al. A critical role for elastin signaling in vascular morphogenesis and disease. Development. 2003;130(2):411–23.

    Article  PubMed  CAS  Google Scholar 

  71. Moore J, Thibeault S. Insights into the role of elastin in vocal fold health and disease. J Voice. 2011. doi:10.1016/j.jvoice.2011.05.003:7.

  72. Jones PA, Scottburden T, Gevers W. Glycoprotein, elastin, and collagen secretion by rat smooth muscle cells. Proc Natl Acad Sci USA. 1979;76(1):353–7.

    Article  PubMed  CAS  Google Scholar 

  73. Sephel GC, Davidson JM. Elastin production in human skin fibroblast cultures and its decline with age. J Invest Dermatol. 1986;86(3):279–85.

    Article  PubMed  CAS  Google Scholar 

  74. Davidson JM. Smad about elastin regulation. Am J Respir Cell Mol Biol. 2002;26(2):164–6.

    PubMed  CAS  Google Scholar 

  75. Suyama K, Nakamura F. Isolation and characterization of new cross-linking amino acid ‘allodesmosine’ from hydrolysate of elastin. Biochem Biophys Res Commun. 1990;170(2):713–8.

    Article  PubMed  CAS  Google Scholar 

  76. Brown-Augsburger P, Tisdale C, Broekelmann T, Sloan C, Mecham RP. Identification of an elastin cross-linking domain that joins three peptide chains. Possible role in nucleated assembly. J Biol Chem. 1995;270(30):17778–83.

    Article  PubMed  CAS  Google Scholar 

  77. Swee MH, Parks WC, Pierce RA. Developmental regulation of elastin production. Expression of tropoelastin pre-mRNA persists after down-regulation of steady-state mRNA levels. J Biol Chem. 1995;270(25):14899–906.

    Article  PubMed  CAS  Google Scholar 

  78. Hinek A, Mecham RP, Keeley F, Rabinovitch M. Impaired elastin fiber assembly related to reduced 67-kD elastin-binding protein in fetal lamb ductus arteriosus and in cultured aortic smooth muscle cells treated with chondroitin sulfate. J Clin Invest. 1991;88(6):2083–94.

    Article  PubMed  CAS  Google Scholar 

  79. Hinek A, Rabinovitch M. 67-kD Elastin-binding protein is a protective "companion" of extracellular insoluble elastin and intracellular tropoelastin. J Cell Biol. 1994;126(2):563–74.

    Article  PubMed  CAS  Google Scholar 

  80. Clarke AW, Wise SG, Cain SA, Kielty CM, Weiss AS. Coacervation is promoted by molecular interactions between the PF2 segment of fibrillin-1 and the domain 4 region of tropoelastin. Biochemistry. 2005;44(30):10271–81.

    Article  PubMed  CAS  Google Scholar 

  81. Kagan HM, Li WD. Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem. 2003;88(4):660–72.

    Article  PubMed  CAS  Google Scholar 

  82. Kothapalli CR, Ramamurthi A. Copper nanoparticle cues for biomimetic cellular assembly of crosslinked elastin fibers. Acta Biomater. 2009;5(2):541–53.

    Article  PubMed  CAS  Google Scholar 

  83. Sherratt MJ. Tissue elasticity and the ageing elastic fibre. Age (Dordr). 2009;31(4):305–25.

    Article  CAS  Google Scholar 

  84. Sokolis DP. Passive mechanical properties and structure of the aorta: segmental analysis. Acta Physiol (Oxf). 2007;190(4):277–89.

    Article  CAS  Google Scholar 

  85. Armentano RL, Levenson J, Barra JG, Fischer EI, Breitbart GJ, Pichel RH, et al. Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. Am J Physiol. 1991;260(6 Pt 2):H1870–7.

    PubMed  CAS  Google Scholar 

  86. Kaartinen V, Warburton D. Fibrillin controls TGF-beta activation. Nat Genet. 2003;33(3):331–2.

    Article  PubMed  CAS  Google Scholar 

  87. Ono RN, Sengle G, Charbonneau NL, Carlberg V, Bachinger HP, Sasaki T, et al. Latent transforming growth factor beta-binding proteins and fibulins compete for fibrillin-1 and exhibit exquisite specificities in binding sites. J Biol Chem. 2009;284(25):16872–81.

    Article  PubMed  CAS  Google Scholar 

  88. Ruiz-Ortega M, Rodriguez-Vita J, Sanchez-Lopez E, Carvajal G, Egido J. TGF-beta signaling in vascular fibrosis. Cardiovasc Res. 2007;74(2):196–206.

    Article  PubMed  CAS  Google Scholar 

  89. Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, et al. Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci. 2007;120(8):1383–92.

    Article  PubMed  CAS  Google Scholar 

  90. Gibson MA. Microfibril-associated glycoprotein-1 (MAGP-1) and other non-fibrillin macromolecules which may possess a functional association with the 10nm microfibrils. Madame Curie Bioscience database. Austin TX: Landes Bioscience; 2000.

  91. Yanagisawa H, Davis EC. Unraveling the mechanism of elastic fiber assembly: the roles of short fibulins. Int J Biochem Cell Biol. 2010;42(7):1084–93.

    Article  PubMed  CAS  Google Scholar 

  92. Charbonneau NL, Ono RN, Corson GM, Keene DR, Sakai LY. Fine tuning of growth factor signals depends on fibrillin microfibril networks. Birth Defects Res C Embryo Today. 2004;72(1):37–50.

    Article  PubMed  CAS  Google Scholar 

  93. Chaudhry SS, Cain SA, Morgan A, Dallas SL, Shuttleworth CA, Kielty CM. Fibrillin-1 regulates the bioavailability of TGF beta 1. J Cell Biol. 2007;176(3):355–67.

    Article  PubMed  CAS  Google Scholar 

  94. Isogai Z, Aspberg A, Keene DR, Ono RN, Reinhardt DP, Sakai LY. Versican interacts with fibrillin-1 and links extracellular microfibrils to other connective tissue networks. J Biol Chem. 2002;277(6):4565–72.

    Article  PubMed  CAS  Google Scholar 

  95. Kielty CM, Stephan S, Sherratt MJ, Williamson M, Shuttleworth CA. Applying elastic fibre biology in vascular tissue engineering. Philos Trans R Soc Lond B Biol Sci. 2007;362(1484):1293–312.

    Article  PubMed  CAS  Google Scholar 

  96. Charbonneau NL, Dzamba BJ, Ono RN, Keene DR, Corson GM, Reinhardt DP, et al. Fibrillins can co-assemble in fibrils, but fibrillin fibril composition displays cell-specific differences. J Biol Chem. 2003;278(4):2740–9.

    Article  PubMed  CAS  Google Scholar 

  97. Berk JL, Hatch CA, Morris SM, Stone PJ, Goldstein RH. Hypoxia suppresses elastin repair by rat lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 2005;289(6):L931–6.

    Article  PubMed  CAS  Google Scholar 

  98. Gacchina CE, Ramamurthi A. Impact of pre-existing elastic matrix on TGFβ1 and HA oligomer-induced regenerative elastin repair by rat aortic smooth muscle cells. J Tissue Eng Regen Med. 2011;5(2):85–96.

    Article  PubMed  CAS  Google Scholar 

  99. Beamish JA, He P, Kottke-Marchant K, Marchant RE. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng Part B Rev. 2010;16(5):467–91.

    Article  PubMed  CAS  Google Scholar 

  100. Kolodgie FD, Burke AP, Farb A, Weber DK, Kutys R, Wight TN, et al. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler Thromb Vasc Biol. 2002;22(10):1642–8.

    Article  PubMed  CAS  Google Scholar 

  101. Daugherty A, Cassis LA. Mouse models of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2004;24(3):429–34.

    Article  PubMed  CAS  Google Scholar 

  102. Wight TN. Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol. 2002;14(5):617–23.

    Article  PubMed  CAS  Google Scholar 

  103. Lau AC, Duong TT, Ito S, Yeung RS. Matrix metalloproteinase 9 activity leads to elastin breakdown in an animal model of Kawasaki disease. Arthritis Rheum. 2008;58(3):854–63.

    Article  PubMed  CAS  Google Scholar 

  104. Chetty A, Cao GJ, Severgnini M, Simon A, Warburton R, Nielsen HC. Role of matrix metalloprotease-9 in hyperoxic injury in developing lung. Am J Physiol Lung Cell Mol Physiol. 2008;295(4):L584–92.

    Article  PubMed  CAS  Google Scholar 

  105. Bressan GM, Pasqualironchetti I, Fornieri C, Mattioli F, Castellani I, Volpin D. Relevance of aggregation properties of tropoelastin to the assembly and structure of elastic fibers. J Ultrastruct Mol Struct Res. 1986;94(3):209–16.

    Article  PubMed  CAS  Google Scholar 

  106. Aikawa E, Aikawa M, Libby P, Figueiredo JL, Rusanescu G, Iwamoto Y, et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation. 2009;119(13):1785–94.

    Article  PubMed  CAS  Google Scholar 

  107. Senior RM, Griffin GL, Mecham RP. Chemotactic activity of elastin-derived peptides. J Clin Invest. 1980;66(4):859–62.

    Article  PubMed  CAS  Google Scholar 

  108. Debelle L, Tamburro AM. Elastin: molecular description and function. Int J Biochem Cell Biol. 1999;31(2):261–72.

    Article  PubMed  CAS  Google Scholar 

  109. Patel A, Fine B, Sandig M, Mequanint K. Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc Res. 2006;71(1):40–9.

    Article  PubMed  CAS  Google Scholar 

  110. Wolfe BL, Rich CB, Goud HD, Terpstra AJ, Bashir M, Rosenbloom J, et al. Insulin-like growth factor-I regulates transcription of the elastin gene. J Biol Chem. 1993;268(17):12418–26.

    PubMed  CAS  Google Scholar 

  111. Zimmermann DR, Dourszimmerman MT, Brucknertuderman L, Schubert M. Versican is expressed in the proliferating zone in the epidermis and in association with the elastic network of the dermis. J Cell Biol. 1994;124(5):817–25.

    Article  PubMed  CAS  Google Scholar 

  112. Joddar B, Ibrahim S, Ramamurthi A. Impact of delivery mode of hyaluronan oligomers on elastogenic responses of adult vascular smooth muscle cells. Biomaterials. 2007;28(27):3918–27.

    Article  PubMed  CAS  Google Scholar 

  113. Joddar B, Ramamurthi A. Fragment size- and dose-specific effects of hyaluronan on matrix synthesis by vascular smooth muscle cells. Biomaterials. 2006;27(15):2994–3004.

    Article  PubMed  CAS  Google Scholar 

  114. Joddar B, Ramamurthi A. Elastogenic effects of exogenous hyaluronan oligosaccharides on vascular smooth muscle cells. Biomaterials. 2006;27(33):5698–707.

    Article  PubMed  CAS  Google Scholar 

  115. Kothapalli CR, Ramamurthi A. Benefits of concurrent delivery of hyaluronan and IGF-1 cues to regeneration of crosslinked elastin matrices by adult rat vascular cells. J Tissue Eng Regen Med. 2008;2(2–3):106–16.

    Article  PubMed  CAS  Google Scholar 

  116. Kothapalli CR, Ramamurthi A. Biomimetic regeneration of elastin matrices using hyaluronan and copper ion cues. Tissue Eng Part A. 2009;15(1):103–13.

    Article  PubMed  CAS  Google Scholar 

  117. Bashur CA, Ramamurthi A. Aligned electrospun scaffolds and elastogenic factors for vascular cell-mediated elastic matrix assembly. J Tissue Eng Regen Med. 2012. doi:10.1002/term.470.

  118. Rucker RB, Kosonen T, Clegg MS, Mitchell AE, Rucker BR, Uriu-Hare JY, et al. Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am J Clin Nutr. 1998;67(5):996S–1002S.

    PubMed  CAS  Google Scholar 

  119. Kothapalli CR, Ramamurthi A. Lysyl oxidase enhances elastin synthesis and matrix formation by vascular smooth muscle cells. J Tissue Eng Regen Med. 2009;3(8):655–61.

    Article  PubMed  CAS  Google Scholar 

  120. Barone LM, Faris B, Chipman SD, Toselli P, Oakes BW, Franzblau C. Alteration of the extracellular matrix of smooth muscle cells by ascorbate treatment. Biochim Biophys Acta. 1985;840(2):245–54.

    Article  PubMed  CAS  Google Scholar 

  121. Bergethon PR, Mogayzel PJ, Franzblau C. Effect of the reducing environment on the accumulation of elastin and collagen in cultured smooth-muscle cells. Biochem J. 1989;258(1):279–84.

    PubMed  CAS  Google Scholar 

  122. Davidson JM, LuValle PA, Zoia O, Quaglino D, Giro MG. Ascorbate differentially regulates elastin and collagen biosynthesis in vascular smooth muscle cells and skin fibroblasts by pretranslational mechanisms. J Biol Chem. 1997;272(1):345–52.

    Article  PubMed  CAS  Google Scholar 

  123. Dunn DM, Franzblau C. Effects of ascorbate on insoluble elastin accumulation and cross-link formation in rabbit pulmonary artery smooth muscle cultures. Biochemistry. 1982;21(18):4195–202.

    Article  PubMed  CAS  Google Scholar 

  124. Faris B, Ferrera R, Toselli P, Nambu J, Gonnerman WA, Franzblau C. Effect of varying amounts of ascorbate on collagen, elastin and lysyl oxidase synthesis in aortic smooth muscle cell cultures. Biochim Biophys Acta. 1984;797(1):71–5.

    Article  PubMed  CAS  Google Scholar 

  125. Keire PA, L'Heureux N, Vernon RB, Merrilees MJ, Starcher B, Okon E, et al. Expression of versican isoform V3 in the absence of ascorbate improves elastogenesis in engineered vascular constructs. Tissue Eng Part A. 2010;16(2):501–12.

    Article  PubMed  CAS  Google Scholar 

  126. Mitts TF, Bunda S, Wang Y, Hinek A. Aldosterone and mineralocorticoid receptor antagonists modulate elastin and collagen deposition in human skin. J Invest Dermatol. 2010;130(10):2396–406.

    Article  PubMed  CAS  Google Scholar 

  127. Coussens LM, Fingleton B, Matrisian LM. Cancer therapy—matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295(5564):2387–92.

    Article  PubMed  CAS  Google Scholar 

  128. Butler GS, Butler MJ, Atkinson SJ, Will H, Tamura T, van Westrum SS, et al. The TIMP2 membrane type 1 metalloproteinase "receptor" regulates the concentration and efficient activation of progelatinase A—a kinetic study. J Biol Chem. 1998;273(2):871–80.

    Article  PubMed  CAS  Google Scholar 

  129. Baker AH, Zaltsman AB, George SJ, Newby AC. Divergent effects of tissue inhibitor of metalloproteinase-1, -2, or −3 overexpression on rat vascular smooth muscle cell invasion, proliferation, and death in vitro—TIMP-3 promotes apoptosis. J Clin Invest. 1998;101(6):1478–87.

    Article  PubMed  CAS  Google Scholar 

  130. Clutterbuck AL, Asplin KE, Harris P, Allaway D, Mobasheri A. Targeting matrix metalloproteinases in inflammatory conditions. Curr Drug Targets. 2009;10(12):1245–54.

    Article  PubMed  CAS  Google Scholar 

  131. Baxter BT, Pearce WH, Waltke EA, Littooy FN, Hallett JW, Kent KC, et al. Prolonged administration of doxycycline in patients with small asymptomatic abdominal aortic aneurysms: report of a prospective (phase II) multicenter study. J Vasc Surg. 2002;36(1):1–12.

    Article  PubMed  Google Scholar 

  132. Bendeck MP, Conte M, Zhang MY, Nili N, Strauss BH, Farwell SM. Doxycycline modulates smooth muscle cell growth, migration, and matrix remodeling after arterial injury. Am J Pathol. 2002;160(3):1089–95.

    Article  PubMed  CAS  Google Scholar 

  133. Maegdefessel L, Azuma J, Toh R, Merk DR, Deng A, Chin JT, et al. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest. 2012;122(2):497–506.

    Article  PubMed  CAS  Google Scholar 

  134. Zhang P, Huang A, Ferruzzi J, Mecham RP, Starcher BC, Tellides G, et al. Inhibition of microRNA-29 enhances elastin levels in cells haploinsufficient for elastin and in bioengineered vessels—brief report. Arterioscler Thromb Vasc Biol. 2012;32(3):756–U501.

    Article  PubMed  CAS  Google Scholar 

  135. Maegdefessel L, Azuma J, Toh R, Deng A, Merk DR, Raiesdana A, et al. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med. 2012;4(122):122ra22.

    Article  PubMed  CAS  Google Scholar 

  136. Safran SA, Gov N, Nicolas A, Schwarz US, Tlusty T. Physics of cell elasticity, shape and adhesion. Physica a-Stat Mech Applic. 2005;352(1):171–201.

    Article  CAS  Google Scholar 

  137. Flemming RG, Murphy CJ, Abrams GA, Goodman SL, Nealey PF. Effects of synthetic micro- and nano-structured surfaces on cell behavior. Biomaterials. 1999;20(6):573–88.

    Article  PubMed  CAS  Google Scholar 

  138. Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM. Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A. 2008;14(11):1835–42.

    Article  PubMed  CAS  Google Scholar 

  139. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32(8–9):762–98.

    Article  CAS  Google Scholar 

  140. Ju YM, Choi JS, Atala A, Yoo JJ, Lee SJ. Bilayered scaffold for engineering cellularized blood vessels. Biomaterials. 2010;31(15):4313–21.

    Article  PubMed  CAS  Google Scholar 

  141. Mark Saltzman W, Baldwin SP. Materials for protein delivery in tissue engineering. Adv Drug Deliv Rev. 1998;33(1–2):71–86.

    PubMed  Google Scholar 

  142. Masters KS. Covalent growth factor immobilization strategies for tissue repair and regeneration. Macromol Biosci. 2011;11(9):1149–63.

    Article  PubMed  CAS  Google Scholar 

  143. Zeugolis DI, Khew ST, Yew ESY, Ekaputra AK, Tong YW, Yung LYL, et al. Electro-spinning of pure collagen nano-fibres—just an expensive way to make gelatin? Biomaterials. 2008;29(15):2293–305.

    Article  PubMed  CAS  Google Scholar 

  144. Sell SA, McClure MJ, Garg K, Wolfe PS, Bowlin GL. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv Drug Deliv Rev 2009; 61:1007-19

    Google Scholar 

  145. Ji W, Sun Y, Yang F, van den Beucken JJ, Fan M, Chen Z, et al. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res. 2011;28(6):1259–72.

    Article  PubMed  CAS  Google Scholar 

  146. Sahoo S, Ang LT, Goh JC, Toh SL. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications. J Biomed Mater Res A. 2010;93(4):1539–50.

    PubMed  Google Scholar 

  147. Chaikof EL, Matthew H, Kohn J, Mikos AG, Prestwich GD, Yip CM. Biomaterials and scaffolds in reparative medicine. Ann N Y Acad Sci. 2002;961:96–105.

    Google Scholar 

  148. Griffith LG, Naughton G. Tissue engineering—current challenges and expanding opportunities. Science. 2002;295(5557):1009–14.

    Article  PubMed  CAS  Google Scholar 

  149. Huebsch N, Mooney DJ. Inspiration and application in the evolution of biomaterials. Nature. 2009;462(7272):426–32.

    Article  PubMed  CAS  Google Scholar 

  150. Lue J-M, Wang X, Marin-Muller C, Wang H, Lin PH, Yao Q, et al. Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn. 2009;9(4):325–41.

    Article  Google Scholar 

  151. Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov. 2010;9(8):615–27.

    Article  PubMed  CAS  Google Scholar 

  152. Kamaly N, Xiao ZY, Valencia PM, Radovic-Moreno AF, Farokhzad OC. Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem Soc Rev. 2012;41(7):2971–3010.

    Article  PubMed  CAS  Google Scholar 

  153. Wang AZ, Gu F, Zhang L, Chan JM, Radovic-Moreno A, Shaikh MR, et al. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin Biol Ther. 2008;8(8):1063–70.

    Article  PubMed  CAS  Google Scholar 

  154. Nguyen KT, Shukla KP, Moctezuma M, Braden ARC, Zhou J, Hu ZB, et al. Studies of the cellular uptake of hydrogel nanospheres and microspheres by phagocytes, vascular endothelial cells, and smooth muscle cells. J Biomed Mater Res. 2009;88A(4):1022–30.

    Article  CAS  Google Scholar 

  155. Fahmy TM, Demento SL, Caplan MJ, Mellman I, Saltzman WM. Design opportunities for actively targeted nanoparticle vaccines. Nanomedicine. 2008;3(3):343–55.

    Article  PubMed  CAS  Google Scholar 

  156. Song CX, Labhasetwar V, Murphy H, Qu X, Humphrey WR, Shebuski RJ, et al. Formulation and characterization of biodegradable nanoparticles for intravascular local drug delivery. J Control Release. 1997;43(2–3):197–212.

    Article  Google Scholar 

  157. Panyam J, Zhou WZ, Prabha S, Sahoo SK, Labhasetwar V. Rapid endo-lysosomal escape of poly(dl-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery. FASEB J 2002;16(10):1217–26.

    Google Scholar 

  158. Arvizo RR, Miranda OR, Thompson MA, Pabelick CM, Bhattacharya R, Robertson JD, et al. Effect of nanoparticle surface charge at the plasma membrane and beyond. Nano Lett. 2010;10(7):2543–8.

    Article  PubMed  CAS  Google Scholar 

  159. De Jong WH, Borm PJA. Drug delivery and nanoparticles: applications and hazards. Int J Nanomed. 2008;3(2):133–49.

    Article  Google Scholar 

  160. Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, et al. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomed. 2011;6:2591–605.

    CAS  Google Scholar 

  161. Cu Y, Saltzman WM. Controlled surface modification with poly(ethylene)glycol enhances diffusion of PLGA nanoparticles in human cervical mucus. Mol Pharm. 2009;6(1):173–81.

    Article  PubMed  CAS  Google Scholar 

  162. Cu Y, Saltzman WM. Drug delivery—stealth particles give mucus the slip. Nat Mater. 2009;8(1):11–3.

    Article  PubMed  CAS  Google Scholar 

  163. Nair LS, Laurencin CT. Polymers as biomaterials for tissue engineering and controlled drug delivery. Adv Biochem Engin/Biotechnol. 2006;102:47–90.

    Google Scholar 

  164. Yang SF, Leong KF, Du ZH, Chua CK. The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng. 2001;7(6):679–89.

    Article  PubMed  CAS  Google Scholar 

  165. Sarkar S, Lee GY, Wong JY, Desai TA. Development and characterization of a porous micro-patterned scaffold for vascular tissue engineering applications. Biomaterials. 2006;27(27):4775–82.

    Article  PubMed  CAS  Google Scholar 

  166. Ahmann KA, Weinbaum JS, Johnson SL, Tranquillo RT. Fibrin degradation enhances vascular smooth muscle cell proliferation and matrix deposition in fibrin-based tissue constructs fabricated in vitro. Tissue Eng Part A. 2010;16(10):3261–70.

    Article  PubMed  CAS  Google Scholar 

  167. Adair-Kirk TL, Senior RM. Fragments of extracellular matrix as mediators of inflammation. Int J Biochem Cell Biol. 2008;40(6–7):1101–10.

    Article  PubMed  CAS  Google Scholar 

  168. Martinon F. Signaling by ROS drives inflammasome activation. Eur J Immunol. 2010;40(3):616–9.

    Article  PubMed  CAS  Google Scholar 

  169. Silva AKA, Richard C, Bessodes M, Scherman D, Merten OW. Growth factor delivery approaches in hydrogels. Biomacromolecules. 2009;10(1):9–18.

    Article  PubMed  CAS  Google Scholar 

  170. Nuttelman CR, Tripodi MC, Anseth KS. Dexamethasone-functionalized gels induce osteogenic differentiation of encapsulated hMSCs. J Biomed Mater Res. 2006;76A(1):183–95.

    Article  CAS  Google Scholar 

  171. Ibrahim S, Kothapalli CR, Kang QK, Ramamurthi A. Characterization of glycidyl methacrylate—crosslinked hyaluronan hydrogel scaffolds incorporating elastogenic hyaluronan oligomers. Acta Biomater. 2011;7(2):653–65.

    Article  PubMed  CAS  Google Scholar 

  172. Murphy WL, Peters MC, Kohn DH, Mooney DJ. Sustained release of vascular endothelial growth factor from mineralized poly(lactide-co-glycolide) scaffolds for tissue engineering. Biomaterials. 2000;21(24):2521–7.

    Article  PubMed  CAS  Google Scholar 

  173. Hinek A, Wang Y, Liu K, Mitts TF, Jimenez F. Proteolytic digest derived from bovine ligamentum nuchae stimulates deposition of new elastin-enriched matrix in cultures and transplants of human dermal fibroblasts. J Dermatol Sci. 2005;39(3):155–66.

    Article  PubMed  CAS  Google Scholar 

  174. Daamen WF, Nillesen STM, Wismans RG, Reinhardt DP, Hafmans T, Veerkamp JH, et al. A biomaterial composed of collagen and solubilized elastin enhances angiogenesis and elastic fiber formation without calcification. Tissue Eng Part A. 2008;14(3):349–60.

    Article  PubMed  CAS  Google Scholar 

  175. Li M, Mondrinos MJ, Chen X, Gandhi MR, Ko FK, Lelkes PI. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J Biomed Mater Res. 2006;79A(4):963–73.

    Article  CAS  Google Scholar 

  176. Stitzel J, Liu L, Lee SJ, Komura M, Berry J, Soker S, et al. Controlled fabrication of a biological vascular substitute. Biomaterials. 2006;27(7):1088–94.

    Article  PubMed  CAS  Google Scholar 

  177. Ito S, Ishimaru S, Wilson SE. Effect of coacervated alpha-elastin on proliferation of vascular smooth muscle and endothelial cells. Angiology. 1998;49(4):289–97.

    Article  PubMed  CAS  Google Scholar 

  178. Ito S, Ishimaru S, Wilson SE. Inhibitory effect of type 1 collagen gel containing α-elastin on proliferation and migration of vascular smooth muscle and endothelial cells. Cardiovasc Surg. 1997;5(2):176–83.

    Article  PubMed  CAS  Google Scholar 

  179. Miyamoto K, Atarashi M, Kadozono H, Shibata M, Koyama Y, Okai M, et al. Creation of cross-linked electrospun isotypic-elastin fibers controlled cell-differentiation with new cross-linker. Int J Biol Macromol. 2009;45(1):33–41.

    Article  PubMed  CAS  Google Scholar 

  180. Fulop T, Khalil A, Larbi A. The role of elastin peptides in modulating the immune response in aging and age-related diseases. Pathol Biol. 2012;60(1):28–33.

    Article  PubMed  CAS  Google Scholar 

  181. Stephan S, Ball SG, Williamson M, Bax DV, Lomas A, Shuttleworth CA, et al. Cell-matrix biology in vascular tissue engineering. J Anat. 2006;209(4):495–502.

    Article  PubMed  CAS  Google Scholar 

  182. Sherratt MJ, Bax DV, Chaudhry SS, Hodson N, Lu JR, Saravanapavan P, et al. Substrate chemistry influences the morphology and biological function of adsorbed extracellular matrix assemblies. Biomaterials. 2005;26(34):7192–206.

    Article  PubMed  CAS  Google Scholar 

  183. Sherratt MJ, Holmes DF, Shuttleworth CA, Kielty CM. Substrate-dependent morphology of supramolecular assemblies: fibrillin and type-VI collagen microfibrils. Biophys J. 2004;86(5):3211–22.

    Article  PubMed  CAS  Google Scholar 

  184. Miao M, Cirulis JT, Lee S, Keeley FW. Structural determinants of cross-linking and hydrophobic domains for self-assembly of elastin-like polypeptides. Biochemistry. 2005;44(43):14367–75.

    Article  PubMed  CAS  Google Scholar 

  185. Yang GC, Woodhouse KA, Yip CM. Substrate-facilitated assembly of elastin-like peptides: studies by variable-temperature in situ atomic force microscopy. J Am Chem Soc. 2002;124(36):10648–9.

    Article  PubMed  CAS  Google Scholar 

  186. Michael KE, Vernekar VN, Keselowsky BG, Meredith JC, Latour RA, Garcia AJ. Adsorption-induced conformational changes in fibronectin due to interactions with well-defined surface chemistries. Langmuir. 2003;19(19):8033–40.

    Article  CAS  Google Scholar 

  187. Mitsi M, Hong Z, Costello CE, Nugent MA. Heparin-mediated conformational changes in fibronectin expose vascular endothelial growth factor binding sites. Biochemistry. 2006;45(34):10319–28.

    Article  PubMed  CAS  Google Scholar 

  188. Ma Z, Mao Z, Gao C. Surface modification and property analysis of biomedical polymers used for tissue engineering. Colloids Surf B Biointerfaces. 2007;60(2):137–57.

    Article  PubMed  CAS  Google Scholar 

  189. Mann BK, Schmedlen RH, West JL. Tethered-TGF-beta increases extracellular matrix production of vascular smooth muscle cells. Biomaterials. 2001;22(5):439–44.

    Article  PubMed  CAS  Google Scholar 

  190. Solorio LD, Fu AS, Hernandez-Irizarry R, Alsberg E. Chondrogenic differentiation of human mesenchymal stem cell aggregates via controlled release of TGF-beta 1 from incorporated polymer microspheres. J Biomed Mater Res. 2010;92A(3):1139–44.

    CAS  Google Scholar 

  191. Lu L, Stamatas GN, Mikos AG. Controlled release of transforming growth factor beta 1 from biodegradable polymer microparticles. J Biomed Mater Res. 2000;50(3):440–51.

    Article  PubMed  CAS  Google Scholar 

  192. Lu LC, Yaszemski MJ, Mikos AG. TGF-beta 1 release from biodegradable polymer microparticles: its effects on marrow stromal osteoblast function. J Bone Joint Surg Am. 2001;83A:S82–91.

    Google Scholar 

  193. Peter SJ, Lu L, Kim DJ, Stamatas GN, Miller MJ, Yaszemski MJ, et al. Effects of transforming growth factor beta 1 released from biodegradable polymer microparticles on marrow stromal osteoblasts cultured on poly(propylene fumarate) substrates. J Biomed Mater Res. 2000;50(3):452–62.

    Article  PubMed  CAS  Google Scholar 

  194. Tanaka H, Sugita T, Yasunaga Y, Shimose S, Deie M, Kubo T, et al. Efficiency of magnetic liposomal transforming growth factor-beta 1 in the repair of articular cartilage defects in a rabbit model. J Biomed Mater Res. 2005;73A(3):255–63.

    Article  CAS  Google Scholar 

  195. Gacchina CE, Deb PP, Barth JL, Ramamurthi A. Elastogenic inductability of smooth muscle cells from a rat model of late stage abdominal aortic aneurysms. Tissue Eng. 2011;17(13–14):1699–711.

    CAS  Google Scholar 

  196. Venkataraman L, Ramamurthi A. Induced elastin matrix generation within 3-dimensional collagen scaffolds. Tissue Eng Part A. 2011;17:2879–89.

    Article  PubMed  CAS  Google Scholar 

  197. Eley JG, Mathew P. Preparation and release characteristics of insulin and insulin-like growth factor-one from polymer nanoparticles. J Microencapsul. 2007;24(3):225–34.

    Article  PubMed  CAS  Google Scholar 

  198. Meinel L, Zoidis E, Zapf J, Hassa P, Hottiger MO, Auer JA, et al. Localized insulin-like growth factor I delivery to enhance new bone formation. Bone. 2003;33(4):660–72.

    Article  PubMed  CAS  Google Scholar 

  199. Hedberg EL, Shih CK, Solchaga LA, Caplan AI, Mikos AG. Controlled release of hyaluronan oligomers from biodegradable polymeric microparticle carriers. J Control Release. 2004;100(2):257–66.

    Article  PubMed  CAS  Google Scholar 

  200. Mehta K, Sadeghi T, McQueen T, Lopez-Berestein G. Liposome encapsulation circumvents the hepatic clearance mechanisms of all-trans-retinoic acid. Leuk Res. 1994;18(8):587–96.

    Article  PubMed  CAS  Google Scholar 

  201. Parthasarathy R, Mehta K. Altered metabolism of all-trans-retinoic acid in liposome-encapsulated form. Cancer Lett. 1998;134(2):121–8.

    Article  PubMed  CAS  Google Scholar 

  202. Patel P, Mundargi RC, Babu VR, Jain D, Rangaswamy V, Aminabhavi TM. Microencapsulation of doxycycline into poly(lactide-co-glycolide) by spray drying technique: effect of polymer molecular weight on process parameters. J Appl Polym Sci. 2008;108(6):4038–46.

    Article  CAS  Google Scholar 

  203. Patel RS, Cho DY, Tian C, Chang A, Estrellas KM, Lavin D, et al. Doxycycline delivery from PLGA microspheres prepared by a modified solvent removal method. J Microencapsul. 2012. doi:10.3109/02652048.2011.651499.

  204. Wang X, Xu H, Zhao Y, Wang S, Abe H, Naito M, et al. Poly(lactide-co-glycolide) encapsulated hydroxyapatite microspheres for sustained release of doxycycline. Mater Sci Eng B. 2012;177(4):367–72.

    Article  CAS  Google Scholar 

  205. Mundargi RC, Srirangarajan S, Agnihotri SA, Patil SA, Ravindra S, Setty SB, et al. Development and evaluation of novel biodegradable microspheres based on poly(d, l-lactide-co-glycolide) and poly(epsilon-caprolactone) for controlled delivery of doxycycline in the treatment of human periodontal pocket: in vitro and in vivo studies. J Control Release. 2007;119(1):59–68.

    Article  PubMed  CAS  Google Scholar 

  206. Sangare L, Morisset R, Gaboury L, Ravaoarinoro M. Effects of cationic liposome-encapsulated doxycycline on experimental Chlamydia trachomatis genital infection in mice. J Antimicrob Chemother. 2001;47(3):323–31.

    Article  PubMed  CAS  Google Scholar 

  207. Davies SR, Cole AA, Schmid TM. Doxycycline inhibits type X collagen synthesis in avian hypertrophic chondrocyte cultures. J Biol Chem. 1996;271(42):25966–70.

    Article  PubMed  CAS  Google Scholar 

  208. TeKoppele JM, Beekman B, Verzijl N, Koopman JL, DeGroot J, Bank RA. Doxycycline inhibits collagen synthesis by differentiated articular chondrocytes. Adv Dent Res. 1998;12(2):63–7.

    Article  PubMed  CAS  Google Scholar 

  209. Ding R, McGuinness CL, Burnand KG, Sullivan E, Smith A. Matrix metalloproteinases in the aneurysm wall of patients treated with low-dose doxycycline. Vascular. 2005;13(5):290–7.

    PubMed  Google Scholar 

  210. Prall AK, Longo GM, Mayhan WG, Waltke EA, Fleckten B, Thompson RW, et al. Doxycycline in patients with abdominal aortic aneurysms and in mice: comparison of serum levels and effect on aneurysm growth in mice. J Vasc Surg. 2002;35(5):923–8.

    Article  PubMed  Google Scholar 

  211. Curci JA, Mao DL, Bohner DG, Allen BT, Rubin BG, Reilly JM, et al. Preoperative treatment with doxycycline reduces aortic wall expression and activation of matrix metalloproteinases in patients with abdominal aortic aneurysms. J Vasc Surg. 2000;31(2):325–41.

    Article  PubMed  CAS  Google Scholar 

  212. Curci JA, Petrinec D, Liao SX, Golub LM, Thompson RW. Pharmacologic suppression of experimental abdominal aortic aneurysms: a comparison of doxycycline and four chemically modified tetracyclines. J Vasc Surg. 1998;28(6):1082–93.

    Article  PubMed  CAS  Google Scholar 

  213. Piette M, Castagne D, Delattre L, Piel G. Preparation and evaluation of liposomes encapsulating synthetic MMP inhibitor (Ro 28–2653)—cyclodextrin complexes. J Incl Phenom Macrocycl Chem. 2007;57(1–4):101–3.

    Article  CAS  Google Scholar 

  214. Anand S, Majeti BK, Acevedo LM, Murphy EA, Mukthavaram R, Scheppke L, et al. MicroRNA-132-mediated loss of p120RasGAP activates the endothelium to facilitate pathological angiogenesis. Nat Med. 2010;16(8):909–14.

    Article  PubMed  CAS  Google Scholar 

  215. Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18(9):1650–6.

    Article  PubMed  CAS  Google Scholar 

  216. Hickey T, Kreutzer D, Burgess DJ, Moussy F. In vivo evaluation of a dexamethasone/PLGA microsphere system designed to suppress the inflammatory tissue response to implantable medical devices. J Biomed Mater Res. 2002;61(2):180–7.

    Article  PubMed  CAS  Google Scholar 

  217. Hickey T, Kreutzer D, Burgess DJ, Moussy F. Dexamethasone/PLGA microspheres for continuous delivery of an anti-inflammatory drug for implantable medical devices. Biomaterials. 2002;23(7):1649–56.

    Article  PubMed  CAS  Google Scholar 

  218. Gómez-Gaete C, Fattal E, Silva L, Besnard M, Tsapis N. Dexamethasone acetate encapsulation into Trojan particles. J Control Release. 2008;128(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  219. Gómez-Gaete C, Tsapis N, Besnard M, Bochot A, Fattal E. Encapsulation of dexamethasone into biodegradable polymeric nanoparticles. Int J Pharm. 2007;331(2):153–9.

    Article  PubMed  CAS  Google Scholar 

  220. Hegeman MA, Cobelens PM, Kamps JAAM, Hennus MP, Jansen NJG, Schultz MJ, et al. Liposome-encapsulated dexamethasone attenuates ventilator-induced lung inflammation. Br J Pharmacol. 2011;163(5):1048–58.

    Article  PubMed  CAS  Google Scholar 

  221. Jordan RE, Hewitt N, Lewis W, Kagan H, Franzbla C. Regulation of elastase-catalyzed hydrolysis of insoluble elastin by synthetic and naturally occurring hydrophobic ligands. Biochemistry. 1974;13(17):3497–503.

    Article  PubMed  CAS  Google Scholar 

  222. Kagan HM, Jordan RE, Crombie GD, Lewis W, Franzbla C. Proteolysis of elastin–ligand complexes. Stimulation of elastase digestion of insoluble elastin by sodium dodecyl sulfate. Biochemistry. 1972;11(18):3412–8.

    Article  PubMed  CAS  Google Scholar 

  223. Gertler A. The non-specific electrostatic nature of the adsorption of elastase and other basic proteins on elastin. Eur J Biochem. 1971;20(4):541–6.

    Article  PubMed  CAS  Google Scholar 

  224. Kagan HM, Simpson DE, Tseng L. Substrate-directed modulation of elastin oxidation by lysyl oxidase. Connect Tissue Res. 1981;8(3–4):213–7.

    Article  PubMed  CAS  Google Scholar 

  225. Kagan HM, Tseng L, Simpson DE. Control of elastin metabolism by elastin ligands. Reciprocal effects on lysyl oxidase activity. J Biol Chem. 1981;256(11):5417–21.

    PubMed  CAS  Google Scholar 

  226. Kagan HM, Sullivan KA, Olsson TA, Cronlund AL. Purification and properties of four species of lysyl oxidase from bovine aorta. Biochem J. 1979;177(1):203–14.

    PubMed  CAS  Google Scholar 

  227. Buck CA, Horwitz AF. Cell surface receptors for extracellular matrix molecules. Annu Rev Cell Biol. 1987;3:179–205.

    Article  PubMed  CAS  Google Scholar 

  228. Hersel U, Dahmen C, Kessler H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials. 2003;24(24):4385–415.

    Article  PubMed  CAS  Google Scholar 

  229. Ohta K, Yamaguchi J, Akimoto M, Fukushima K, Suwa T, Awazu S. Retention mechanism of imidazoles in connective tissue. 1. Binding to elastin. Drug Metab Dispos. 1996;24(12):1291–7.

    PubMed  CAS  Google Scholar 

  230. Oitate M, Hirota T, Murai T, Miura S-i, Ikeda T. Covalent binding of rofecoxib, but not other cyclooxygenase-2 inhibitors, to allysine aldehyde in elastin of human aorta. Drug Metab Dispos. 2007;35(10):1846–52.

    Article  PubMed  CAS  Google Scholar 

  231. Oitate M, Hirota T, Takahashi M, Murai T, Miura S-i, Senoo A, et al. Mechanism for covalent binding of rofecoxib to elastin of rat aorta. J Pharmacol Exp Ther. 2007;320(3):1195–203.

    Article  PubMed  CAS  Google Scholar 

  232. Lutolf MP, Lauer-Fields JL, Schmoekel HG, Metters AT, Weber FE, Fields GB, et al. Synthetic matrix metalloproteinase-sensitive hydrogels for the conduction of tissue regeneration: engineering cell-invasion characteristics. Proc Natl Acad Sci USA. 2003;100(9):5413–8.

    Article  PubMed  CAS  Google Scholar 

  233. Seliktar D, Zisch AH, Lutolf MP, Wrana JL, Hubbell JA. MMP-2 sensitive, VEGF-bearing bioactive hydrogels for promotion of vascular healing. J Biomed Mater Res. 2004;68A(4):704–16.

    Article  CAS  Google Scholar 

  234. Banerjee J, Hanson AJ, Gadam B, Elegbede AI, Tobwala S, Ganguly B, et al. Release of liposomal contents by cell-secreted matrix metalloproteinase-9. Bioconjug Chem. 2009;20(7):1332–9.

    Article  PubMed  CAS  Google Scholar 

  235. Elegbede AI, Banerjee J, Hanson AJ, Tobwala S, Ganguli B, Wang R, et al. Mechanistic studies of the triggered release of liposomal contents by matrix metalloproteinase-9. J Am Chem Soc. 2008;130(32):10633–42.

    Article  PubMed  CAS  Google Scholar 

  236. Hatakeyama H, Akita H, Ishida E, Hashimoto K, Kobayashi H, Aoki T, et al. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int J Pharm. 2007;342(1–2):194–200.

    Article  PubMed  CAS  Google Scholar 

  237. Hatakeyama H, Akita H, Kogure K, Oishi M, Nagasaki Y, Kihira Y, et al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 2007;14(1):68–77.

    Article  PubMed  CAS  Google Scholar 

  238. Terada T, Iwai M, Kawakami S, Yamashita F, Hashida M. Novel PEG-matrix metalloproteinase-2 cleavable peptide-lipid containing galactosylated liposomes for hepatocellular carcinoma-selective targeting. J Control Release. 2006;111(3):333–42.

    Article  PubMed  CAS  Google Scholar 

  239. D'Armiento J. Decreased elastin in vessel walls puts the pressure on. J Clin Invest. 2003;112(9):1308–10.

    Article  PubMed  CAS  Google Scholar 

  240. Davis EC. Smooth muscle cell to elastic lamina connections in developing mouse aorta: role in aortic medial organization. Lab Invest. 1993;68(1):89–99.

    PubMed  CAS  Google Scholar 

  241. Gacchina CE, Brothers TE, Ramamurthi A. Evaluating smooth muscle cells from CaCl2-induced rat aortal expansions as a surrogate culture model for study of elastogenic induction of human aneurysmal cells. Tissue Eng. 2011;17:1945–8.

    Article  CAS  Google Scholar 

  242. Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, et al. Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha(5)beta(1) and alpha(v)beta(3) integrins. J Biol Chem. 2003;278(36):34605–16.

    Article  PubMed  CAS  Google Scholar 

  243. Lomas AC, Mellody KT, Freeman LJ, Bax DV, Shuttleworth CA, Kielty CM. Fibulin-5 binds human smooth-muscle cells through alpha 5 beta 1 and alpha 4 beta 1 integrins, but does not support receptor activation. Biochem J. 2007;405:417–28.

    Article  PubMed  CAS  Google Scholar 

  244. Zhang Z, Wang ZX, Liu SQ, Kodama M. Pore size, tissue ingrowth, and endothelialization of small-diameter microporous polyurethane vascular prostheses. Biomaterials. 2004;25(1):177–87.

    Article  PubMed  CAS  Google Scholar 

  245. Kannan RY, Salacinski HJ, Butler PE, Hamilton G, Seifalian AM. Current status of prosthetic bypass grafts: a review. J Biomed Mater Res B Appl Biomater. 2005;74B(1):570–81.

    Article  CAS  Google Scholar 

  246. Niklason LE, Gao J, Abbott WM, Hirschi KK, Houser S, Marini R, et al. Functional arteries grown in vitro. Science. 1999;284(5413):489–93.

    Article  PubMed  CAS  Google Scholar 

  247. Mitchell SL, Niklason LE. Requirements for growing tissue-engineered vascular grafts. Cardiovasc Pathol. 2003;12(2):59–64.

    Article  PubMed  CAS  Google Scholar 

  248. L'Heureux N, Stoclet JC, Auger FA, Lagaud GJL, Germain L, Andriantsitohaina R. A human tissue-engineered vascular media: a new model for pharmacological studies of contractile responses. FASEB J. 2001;15(2):515–24.

    Article  PubMed  Google Scholar 

  249. L'Heureux N, Germain L, Labbe R, Auger FA. In vitro construction of a human blood vessel from cultured vascular cells. J Vasc Surg. 1993;17(3):499–509.

    Article  PubMed  Google Scholar 

  250. Martin ND, Schaner PJ, Tulenko TN, Shapiro IM, DiMatteo CA, Williams TK, et al. In vivo behavior of decellularized vein allograft. J Surg Res. 2005;129(1):17–23.

    Article  PubMed  Google Scholar 

  251. Schaner PJ, Martin ND, Tulenko TN, Shapiro IM, Tarola NA, Leichter RF, et al. Decellularized vein as a potential scaffold for vascular tissue engineering. J Vasc Surg. 2004;40(1):146–53.

    Article  PubMed  Google Scholar 

  252. Faury G, Ristori MT, Verdetti J, Jacob MP, Robert L. Effect of elastin peptides on vascular tone. J Vasc Res. 1995;32(2):112–9.

    Article  PubMed  CAS  Google Scholar 

  253. Robb BW, Wachi H, Schaub T, Mecham RP, Davis EC. Characterization of an in vitro model off elastic fiber assembly. Mol Biol Cell. 1999;10(11):3595–605.

    PubMed  CAS  Google Scholar 

  254. Nivison-Smith L, Rnjak J, Weiss AS. Synthetic human elastin microfibers: stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications. Acta Biomater. 2010;6(2):354–9.

    Article  PubMed  CAS  Google Scholar 

  255. Nivison-Smith L, Weiss AS. Alignment of human vascular smooth muscle cells on parallel electrospun synthetic elastin fibers. J Biomed Mater Res. 2012;100A(1):155–61.

    Article  CAS  Google Scholar 

  256. Mann BK, West JL. Cell adhesion peptides alter smooth muscle cell adhesion, proliferation, migration, and matrix protein synthesis on modified surfaces and in polymer scaffolds. J Biomed Mater Res. 2002;60(1):86–93.

    Article  PubMed  CAS  Google Scholar 

  257. Haider M, Leung V, Ferrari F, Crissman J, Powell J, Cappello J, et al. Molecular engineering of silk-elastinlike polymers for matrix-mediated gene delivery: biosynthesis and characterization. Mol Pharm. 2005;2(2):139–50.

    Article  PubMed  CAS  Google Scholar 

  258. Herrero-Vanrell R, Rincon AC, Alonso M, Reboto V, Molina-Martinez IT, Rodriguez-Cabello JC. Self-assembled particles of an elastin-like polymer as vehicles for controlled drug release. J Control Release. 2005;102(1):113–22.

    Article  PubMed  CAS  Google Scholar 

  259. Ghosh J, Murphy MO, Turner N, Khwaja N, Halka A, Kielty CM, et al. The role of transforming growth factor beta(1) in the vascular system. Cardiovasc Pathol. 2005;14(1):28–36.

    Article  PubMed  CAS  Google Scholar 

  260. Long JL, Tranquillo RT. Elastic fiber production in cardiovascular tissue-equivalents. Matrix Biol. 2003;22(4):339–50.

    Article  PubMed  CAS  Google Scholar 

  261. Swartz DD, Russell JA, Andreadis ST. Engineering of fibrin-based functional and implantable small-diameter blood vessels. Am J Physiol Heart Circ Physiol. 2005;288(3):H1451–60.

    Article  PubMed  CAS  Google Scholar 

  262. Labhasetwar V, Song CX, Humphrey W, Shebuski R, Levy RJ. Arterial uptake of biodegradable nanoparticles: effect of surface modifications. J Pharm Sci. 1998;87(10):1229–34.

    Article  PubMed  CAS  Google Scholar 

  263. Guzman LA, Labhasetwar V, Song CX, Jang YS, Lincoff AM, Levy R, et al. Local intraluminal infusion of biodegradable polymeric nanoparticles—a novel approach for prolonged drug delivery after balloon angioplasty. Circulation. 1996;94(6):1441–8.

    Article  PubMed  CAS  Google Scholar 

  264. Starcher BC. Lung elastin and matrix. Chest. 2000;117(5):229S–34S.

    Article  PubMed  CAS  Google Scholar 

  265. Wise SG, Mithieux SM, Weiss AS. Engineered tropoelastin and elastin-based biomaterials. In: McPherson A, editor. Advances in protein chemistry and structural biology, vol 78. Elsevier Books, San Diego; 2009. p. 1–24.

  266. Pierce RA, Mariani TJ, Senior RM. Elastin in lung development and disease. In: Chadwick DJGJA, editor. Molecular biology and pathology of elastic tissues. Chichester, UK, Wiley; 1995. p. 199–214.

  267. Greenlee KJ, Werb Z, Kheradmand F. Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev. 2007;87(1):69–98.

    Article  PubMed  CAS  Google Scholar 

  268. Wood JR, Bellamy D, Child AH, Citron KM. Pulmonary disease in patients with Marfan syndrome. Thorax. 1984;39(10):780–4.

    Article  PubMed  CAS  Google Scholar 

  269. Crouch E. Pathobiology of pulmonary fibrosis. Am J Physiol. 1990;259(4):L159–84.

    PubMed  CAS  Google Scholar 

  270. Kuhn C. Repairing the cables of the lung. Am J Respir Cell Mol Biol. 1997;17(3):287–8.

    PubMed  CAS  Google Scholar 

  271. Orens JB, Garrity Jr ER. General overview of lung transplantation and review of organ allocation. Proc Am Thorac Soc. 2009;6(1):13–9.

    Article  PubMed  Google Scholar 

  272. Andrade CF, Wong AP, Waddell TK, Keshavjee S, Liu MY. Cell-based tissue engineering for lung regeneration. Am J Physiol Lung Cell Mol Physiol. 2007;292(2):L510–8.

    Article  PubMed  CAS  Google Scholar 

  273. Cortiella J, Nichols JE, Kojima K, Bonassar LJ, Dargon P, Roy AK, et al. Tissue-engineered lung: an in vivo and in vitro comparison of polyglycolic acid and pluronic F-127 hydrogel/somatic lung progenitor cell constructs to support tissue growth. Tissue Eng. 2006;12(5):1213–25.

    Article  PubMed  CAS  Google Scholar 

  274. Mondrinos MJ, Koutzaki S, Jiwanmall E, Li MY, Dechadarevian JP, Lelkes PI, et al. Engineering three-dimensional pulmonary tissue constructs. Tissue Eng. 2006;12(4):717–28.

    Article  PubMed  CAS  Google Scholar 

  275. Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A. Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Eng Part A. 2010;16(8):2581–91.

    Article  PubMed  CAS  Google Scholar 

  276. Petersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, et al. Tissue-engineered lungs for in vivo implantation. Science. 2010;329(5991):538–41.

    Article  PubMed  CAS  Google Scholar 

  277. Rippon HJ, Lane S, Qin M, Ismail NS, Wilson MR, Takata M, et al. Embryonic stem cells as a source of pulmonary epithelium in vitro and in vivo. Proc Am Thorac Soc. 2008;5(6):717–22.

    Article  PubMed  Google Scholar 

  278. Wang DC, Morales JE, Calame DG, Alcorn JL, Wetsel RA. Transplantation of human embryonic stem cell-derived alveolar epithelial type II cells abrogates acute lung injury in mice. Mol Ther. 2010;18(3):625–34.

    Article  PubMed  CAS  Google Scholar 

  279. Yu JY, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318(5858):1917–20.

    Article  PubMed  CAS  Google Scholar 

  280. Nichols JE, Niles JA, Cortiella J. Design and development of tissue engineered lung: progress and challenges. Organogenesis. 2009;5(2):57–61.

    Article  PubMed  Google Scholar 

  281. Lanone S, Zheng T, Zhu Z, Liu W, Lee CG, Ma B, et al. Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and-12 in IL-13-induced inflammation and remodeling. J Clin Invest. 2002;110(4):463–74.

    PubMed  CAS  Google Scholar 

  282. Vandenbroucke RE, Dejonckheere E, Libert C. A therapeutic role for matrix metalloproteinase inhibitors in lung diseases? Eur Respir J. 2011;38(5):1200–14.

    Article  PubMed  CAS  Google Scholar 

  283. Massaro GD, Massaro D. Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats. Am J Physiol Lung Cell Mol Physiol. 1996;270(2):L305–10.

    CAS  Google Scholar 

  284. Massaro GD, Massaro D. Retinoic acid treatment abrogates elastase-induced pulmonary emphysema in rats. Nat Med. 1997;3(6):675–7.

    Article  PubMed  CAS  Google Scholar 

  285. Mariani TJ, Sandefur S, Pierce RA. Elastin in lung development. Exp Lung Res. 1997;23(2):131–45.

    Article  PubMed  CAS  Google Scholar 

  286. Azarmi S, Roa WH, Loebenberg R. Targeted delivery of nanoparticles for the treatment of lung diseases. Adv Drug Deliv Rev. 2008;60(8):863–75.

    Article  PubMed  CAS  Google Scholar 

  287. Bailey MM, Berkland CJ. Nanoparticle formulations in pulmonary drug delivery. Med Res Rev. 2009;29(1):196–212.

    Article  PubMed  CAS  Google Scholar 

  288. Ely L, Roa W, Finlay WH, Lobenberg R. Effervescent dry powder for respiratory drug delivery. Eur J Pharm Biopharm. 2007;65(3):346–53.

    Article  PubMed  CAS  Google Scholar 

  289. Mastrandrea LD, Quattrin T. Clinical evaluation of inhaled insulin. Adv Drug Deliv Rev. 2006;58(9–10):1061–75.

    Article  PubMed  CAS  Google Scholar 

  290. Quattrin T. Inhaled insulin: recent advances in the therapy of type 1 and 2 diabetes. Expert Opin Pharmacother. 2004;5(12):2597–604.

    Article  PubMed  CAS  Google Scholar 

  291. Bosquillon C, Lombry C, Préat V, Vanbever R. Influence of formulation excipients and physical characteristics of inhalation dry powders on their aerosolization performance. J Control Release. 2001;70(3):329–39.

    Article  PubMed  CAS  Google Scholar 

  292. Edwards DA, Hanes J, Caponetti G, Hrkach J, BenJebria A, Eskew ML, et al. Large porous particles for pulmonary drug delivery. Science. 1997;276(5320):1868–71.

    Article  PubMed  CAS  Google Scholar 

  293. Tsapis N, Bennett D, Jackson B, Weitz DA, Edwards DA. Trojan particles: large porous carriers of nanoparticles for drug delivery. Proc Natl Acad Sci USA. 2002;99(19):12001–5.

    Article  PubMed  CAS  Google Scholar 

  294. Moller W, Hofer T, Ziesenis A, Karg E, Heyder J. Ultrafine particles cause cytoskeletal dysfunctions in macrophages. Toxicol Appl Pharmacol. 2002;182(3):197–207.

    Article  PubMed  CAS  Google Scholar 

  295. Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci. 2007;97(1):163–80.

    Article  PubMed  CAS  Google Scholar 

  296. Pandey R, Sharma A, Zahoor A, Sharma S, Khuller GK, Prasad B. Poly (dl-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J Antimicrob Chemother. 2003;52(6):981–6.

    Article  PubMed  CAS  Google Scholar 

  297. Sharma A, Sharma S, Khuller GK. Lectin-functionalized poly (lactide-co-glycolide) nanoparticles as oral/aerosolized antitubercular drug carriers for treatment of tuberculosis. J Antimicrob Chemother. 2004;54(4):761–6.

    Article  PubMed  CAS  Google Scholar 

  298. Foster KA, Yazdanian M, Audus KL. Microparticulate uptake mechanisms of in-vitro cell culture models of the respiratory epithelium. J Pharm Pharmacol. 2001;53(1):57–66.

    Article  PubMed  CAS  Google Scholar 

  299. Fink TL, Klepcyk PJ, Oette S, Gedeon CR, Hyatt SL, Kowalczyk TH, et al. Plasmid size up to 20 kbp does not limit effective in vivo lung gene transfer using compacted DNA nanoparticles. Gene Ther. 2006;13(13):1048–51.

    Article  PubMed  CAS  Google Scholar 

  300. Fenner DE, Hsu Y. Pathophysiology of the pelvic floor: basic physiology, effects of ageing, and menopausal changes pelvic floor disorders. In: Santoro GA, Wieczorek AP, Bartram CI, editors. Springer, Milan; 2010. p. 25–32.

  301. Drewes PG, Yanagisawa H, Starcher B, Hornstra I, Csiszar K, Marinis SI, et al. Pelvic organ prolapse in fibulin-5 knockout mice—pregnancy-induced changes in elastic fiber homeostasis in mouse vagina. Am J Pathol. 2007;170(2):578–89.

    Article  PubMed  CAS  Google Scholar 

  302. Weber AM, Richter HE. Pelvic organ prolapse. Obstet Gynecol. 2005;106(3):615–34.

    Article  PubMed  Google Scholar 

  303. Jelovsek JE, Barber MD, Paraiso MFR, Walters MD. Functional bowel and anorectal disorders in patients with pelvic organ prolapse and incontinence. Am J Obstet Gynecol. 2005;193(6):2105–11.

    Article  PubMed  Google Scholar 

  304. Bump RC, Norton PA. Epidemiology and natural history of pelvic floor dysfunction. Obstet Gynecol Clin North Am. 1998;25(4):723.

    Article  PubMed  CAS  Google Scholar 

  305. Liu XQ, Zhao Y, Gao JG, Pawlyk B, Starcher B, Spencer JA, et al. Elastic fiber homeostasis requires lysyl oxidase-like 1 protein. Nat Genet. 2004;36(2):178–82.

    Article  PubMed  CAS  Google Scholar 

  306. Liu XQ, Zhao Y, Pawlyk B, Damaser M, Li TS. Failure of elastic fiber homeostasis leads to pelvic floor disorders. Am J Pathol. 2006;168(2):519–28.

    Article  PubMed  CAS  Google Scholar 

  307. Nakamura T, Lozano PR, Ikeda Y, Iwanaga Y, Hinek A, Minamisawa S, et al. Fibulin-5/DANCE is essential for elastogenesis in vivo. Nature. 2002;415(6868):171–5.

    Article  PubMed  CAS  Google Scholar 

  308. Yanagisawa H, Davis EC, Starcher BC, Ouchi T, Yanagisawa M, Richardson JA, et al. Fibulin-5 is an elastin-binding protein essential for elastic fibre development in vivo. Nature. 2002;415(6868):168–71.

    Article  PubMed  Google Scholar 

  309. Mallipeddi R, Rohan LC. Nanoparticle-based vaginal drug delivery systems for HIV prevention. Expert Opin Drug Deliv. 2010;7(1):37–48.

    Article  PubMed  CAS  Google Scholar 

  310. Lai SK, O'Hanlon DE, Harrold S, Man ST, Wang Y-Y, Cone R, et al. Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci USA. 2007;104(5):1482–7.

    Article  PubMed  CAS  Google Scholar 

  311. Lai SK, Wang Y-Y, Hanes J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv Drug Deliv Rev. 2009;61(2):158–71.

    Article  PubMed  CAS  Google Scholar 

  312. Gray SD, Titze IR, Alipour F, Hammond TH. Biomechanical and histologic observations of vocal fold fibrous proteins. Ann Otol Rhinol Laryngol. 2000;109(1):77–85.

    PubMed  CAS  Google Scholar 

  313. Hirano M. Structure of the vocal fold in normal and disease states. Anatomical and physical study. ASHA Rep. 1981;11:11–30.

    Google Scholar 

  314. Hahn MS, Kobler JB, Starcher BC, Zeitels SM, Langer R. Quantitative and comparative studies of the vocal fold extracellular matrix- I: elastic fibers and hyaluronic acid. Ann Otol Rhinol Laryngol. 2006;115(2):156–64.

    PubMed  Google Scholar 

  315. Sato K, Hirano M. Age-related changes of the macula flava of the human vocal fold. Ann Otol Rhinol Laryngol. 1995;104(11):839–44.

    PubMed  CAS  Google Scholar 

  316. Sato K, Hirano M. Histologic investigation of the macula flava of the human vocal fold. Ann Otol Rhinol Laryngol. 1995;104(2):138–43.

    PubMed  CAS  Google Scholar 

  317. Ding H, Gray SD. Senescent expression of genes coding tropoelastin, elastase, lysyl oxidase, and tissue inhibitors of metalloproteinases in rat vocal folds: comparison with skin and lungs. J Speech Lang Hear Res. 2001;44(2):317–26.

    Article  PubMed  CAS  Google Scholar 

  318. Rousseau B, Hirano S, Scheidt TD, Welham NV, Thibeault SL, Chan RW, et al. Characterization of vocal fold scarring in a canine model. Laryngoscope. 2003;113(4):620–7.

    Article  PubMed  Google Scholar 

  319. Thibeault SL, Gray SD, Bless DM, Chan RW, Ford CN. Histologic and rheologic characterization of vocal fold scarring. J Voice. 2002;16(1):96–104.

    Article  PubMed  Google Scholar 

  320. Hirano S. Current treatment of vocal fold scarring. Curr Opin Otolaryngol Head Neck Surg. 2005;13(3):143–7.

    Article  PubMed  Google Scholar 

  321. Zeitels SM, Hillman RE, Mauri M, Desloge R, Doyle PB. Phonomicrosurgery in singers and performing artists: treatment outcomes, management theories, and future directions. Ann Otol Rhinol Laryngol. 2002;111(12):21–40.

    Google Scholar 

  322. Chhetri DK, Head C, Revazova E, Hart S, Bhuta S, Berke GS. Lamina propria replacement therapy with cultured autologous fibroblasts for vocal fold scars. Otolaryngol Head Neck Surg. 2004;131(6):864–70.

    Article  PubMed  Google Scholar 

  323. Kolachala VL, Henriquez OA, Shams S, Golub JS, Kim Y-t, Laroui H, et al. Slow-release nanoparticle-encapsulated delivery system for laryngeal injection. Laryngoscope. 2010;120(5):988–94.

    PubMed  CAS  Google Scholar 

  324. Mortensen M, Woo P. Office steroid injections of the larynx. Laryngoscope. 2006;116(10):1735–9.

    Article  PubMed  Google Scholar 

  325. Hirano S, Thibeault S, Bless DM, Ford CN, Kanemaru SI. Hepatocyte growth factor and its receptor c-Met in rat and rabbit vocal folds. Ann Otol Rhinol Laryngol. 2002;111(8):661–6.

    PubMed  Google Scholar 

  326. Hirano S, Bless DM, Heisey D, Ford CN. Effect of growth factors on hyaluronan production by canine vocal fold fibroblasts. Ann Otol Rhinol Laryngol. 2003;112(7):617–24.

    PubMed  Google Scholar 

  327. Hirano S, Bless D, Heisey D, Ford C. Roles of hepatocyte growth factor and transforming growth factor beta 1 in production of extracellular matrix by canine vocal fold fibroblasts. Laryngoscope. 2003;113(1):144–8.

    Article  PubMed  CAS  Google Scholar 

  328. Hirano S, Bless DM, Massey RJ, Hartig GK, Ford CN. Morphological and functional changes of human vocal fold fibroblasts with hepatocyte growth factor. Ann Otol Rhinol Laryngol. 2003;112(12):1026–33.

    PubMed  Google Scholar 

  329. Luo Y, Kobler JB, Zeitels SM, Langer R. Effects of growth factors on extracellular matrix production by vocal fold fibroblasts in 3-dimensional culture. Tissue Eng. 2006;12(12):3365–74.

    Article  PubMed  CAS  Google Scholar 

  330. Hirano S, Bless DM, Rousseau B, Welham N, Montequin D, Chan RW, et al. Prevention of vocal fold scarring by topical injection of hepatocyte growth factor in a rabbit model. Laryngoscope. 2004;114(3):548–56.

    Article  PubMed  Google Scholar 

  331. Duflo S, Thibeault SL, Li W, Shu XZ, Prestwich GD. Vocal fold tissue repair in vivo using a synthetic extracellular matrix. Tissue Eng. 2006;12(8):2171–80.

    Article  PubMed  CAS  Google Scholar 

  332. Grieshaber SE, Farran AJE, Lin-Gibson S, Kiick KL, Jia X. Synthesis and characterization of elastin-mimetic hybrid polymers with multiblock, alternating molecular architecture and elastomeric properties. Macromolecules. 2009;42(7):2532–41.

    Article  PubMed  CAS  Google Scholar 

  333. Long JL, Neubauer J, Zhang Z, Zuk P, Berke GS, Chhetri DK. Functional testing of a tissue-engineered vocal fold cover replacement. Otolaryngol Head Neck Surg. 2010;142(3):438–40.

    Article  PubMed  Google Scholar 

  334. Park H, Karajanagi S, Wolak K, Aanestad J, Daheron L, Kobler JB, et al. Three-dimensional hydrogel model using adipose-derived stem cells for vocal fold augmentation. Tissue Eng Part A. 2010;16(2):535–43.

    Article  PubMed  CAS  Google Scholar 

  335. Taipale J, Saharinen J, Hedman K, KeskiOja J. Latent transforming growth factor-beta 1 and its binding protein are components of extracellular matrix microfibrils. J Histochem Cytochem. 1996;44(8):875–89.

    Article  PubMed  CAS  Google Scholar 

  336. Reinhardt DP, Sasaki T, Dzamba BJ, Keene DR, Chu ML, Gohring W, et al. Fibrillin-1 and fibulin-2 interact and are colocalized in some tissues. J Biol Chem. 1996;271(32):19489–96.

    Article  PubMed  CAS  Google Scholar 

  337. Abrams WR, Ma RI, Kucich U, Bashir MM, Decker S, Tsipouras P, et al. Molecular cloning of the microfibrillar protein MFAP3 and assignment of the gene to human chromosome 5q32-q33.2. Genomics. 1995;26(1):47–54.

    Article  PubMed  CAS  Google Scholar 

  338. Hirano E, Fujimoto N, Tajima S, Akiyama M, Ishibashi A, Kobayashi R, et al. Expression of 36-kDa microfibril-associated glycoprotein (MAGP-36) in human keratinocytes and its localization in skin. J Dermatol Sci. 2002;28(1):60–7.

    Article  PubMed  CAS  Google Scholar 

  339. Horrigan SK, Rich CB, Streeten BW, Li ZY, Foster JA. Characterization of an associated microfibril protein through recombinant DNA techniques. J Biol Chem. 1992;267(14):10087–95.

    PubMed  CAS  Google Scholar 

  340. Lausen M, Lynch N, Schlosser A, Tornoe I, Saekmose SG, Teisner B, et al. Microfibril-associated protein 4 is present in lung washings and binds to the collagen region of lung surfactant protein D. J Biol Chem. 1999;274(45):32234–40.

    Article  PubMed  CAS  Google Scholar 

  341. Liu WG, Faraco J, Qian CP, Francke U. The gene for microfibril-associated protein-1 (MFAP1) is located several megabases centromeric to FBN1 and is not mutated in Marfan syndrome. Hum Genet. 1997;99(5):578–84.

    Article  PubMed  CAS  Google Scholar 

  342. Toyoshima T, Yamashita K, Furuichi H, Shishibori T, Itano T, Kobayashi R. Ultrastructural distribution of 36-kD microfibril-associated glycoprotein (MAGP-36) in human and bovine tissues. J Histochem Cytochem. 1999;47(8):1049–56.

    Article  PubMed  CAS  Google Scholar 

  343. Clark R, Singer A. Wound repair: basic biology to tissue engineering. In: Lanza R, Langer R, Vacanti JP, editors. Principles of tissue engineering 2. San Diego: Academic Press; 2000. p. 855–78.

    Google Scholar 

  344. Parenteau N, Hardin-Young J, Ross R. Skin. In: Lanza R, Langer R, Vacanti JP, editors. Principles of tissue engineering 2. San Diego: Academic Press; 2000. p. 879–87.

    Chapter  Google Scholar 

  345. Amadeu TP, Braune AS, Porto LC, Desmouliere A, Costa AMA. Fibrillin-1 and elastin are differentially expressed in hypertrophic scars and keloids. Wound Repair Regen. 2004;12(2):169–74.

    Article  PubMed  Google Scholar 

  346. Roten SV, Bhat S, Bhawan J. Elastic fibers in scar tissue. J Cutan Pathol. 1996;23(1):37–42.

    Article  PubMed  CAS  Google Scholar 

  347. Chen G, Chen J, Zhuo S, Xiong S, Zeng H, Jiang X, et al. Nonlinear spectral imaging of human hypertrophic scar based on two-photon excited fluorescence and second-harmonic generation. Br J Dermatol. 2009;161(1):48–55.

    Article  PubMed  CAS  Google Scholar 

  348. Tsuji T, Sawabe M. Elastic fibers in scar tissue: scanning and transmission electron microscopic studies. J Cutan Pathol. 1987;14(2):106–13.

    Article  PubMed  CAS  Google Scholar 

  349. Giro MG, Oikarinen AI, Oikarinen H, Sephel G, Uitto J, Davidson JM. Demonstration of elastin gene expression in human skin fibroblast cultures and reduced tropoelastin production by cells from a patient with atrophoderma. J Clin Invest. 1985;75(2):672–8.

    Article  PubMed  CAS  Google Scholar 

  350. Lamme EN, van Leeuwen RTJ, Jonker A, van Marle J, Middelkoop E. Living skin substitutes: survival and function of fibroblasts seeded in a dermal substitute in experimental wounds. J Invest Dermatol. 1998;111(6):989–95.

    Article  PubMed  CAS  Google Scholar 

  351. Jones I, Currie L, Martin R. A guide to biological skin substitutes. Br J Plast Surg. 2002;55(3):185–93.

    Article  PubMed  CAS  Google Scholar 

  352. Casasco M, Casasco A, Comaglia AI, Farina A, Calligaro A. Differential distribution of elastic tissue in human natural skin and tissue-engineered skin. J Mol Histol. 2004;35(4):421–8.

    Article  PubMed  CAS  Google Scholar 

  353. Rnjak J, Wise SG, Mithieux SM, Weiss AS. Severe burn injuries and the role of elastin in the design of dermal substitutes. Tissue Eng Part B Rev. 2011;17(2):81–91.

    Article  PubMed  CAS  Google Scholar 

  354. Devries HJC, Zeegelaar JE, Middelkoop E, Gijsbers G, Vanmarle J, Wildevuur CHR, et al. Reduced wound contraction and scar formation in punch biopsy wounds. Native collagen dermal substitutes. A clinical study. Br J Dermatol. 1995;132(5):690–7.

    CAS  Google Scholar 

  355. Lamme EN, de Vries HJC, van Veen H, Gabbiani G, Westerhof W, Middelkoop E. Extracellular matrix characterization during healing of full-thickness wounds treated with a collagen/elastin dermal substitute shows improved skin regeneration in pigs. J Histochem Cytochem. 1996;44(11):1311–22.

    Article  PubMed  CAS  Google Scholar 

  356. de Vries HJ, Middelkoop E, Mekkes JR, Dutrieux RP, Wildevuur CH, Westerhof H. Dermal regeneration in native non-cross-linked collagen sponges with different extracellular matrix molecules. Wound Repair Regen. 1994;2(1):37–47.

    Article  PubMed  Google Scholar 

  357. Raghunath M, Bachi T, Meuli M, Altermatt S, Gobet R, BrucknerTuderman L, et al. Fibrillin and elastin expression in skin regenerating from cultured keratinocyte autografts: morphogenesis of microfibrils begins at the dermo-epidermal junction and precedes elastic fiber formation. J Invest Dermatol. 1996;106(5):1090–5.

    Article  PubMed  CAS  Google Scholar 

  358. van Zuijlen PPM, van Trier AJM, Vloemans J, Groenevelt F, Kreis RW, Middelkoop E. Graft survival and effectiveness of dermal substitution in burns and reconstructive surgery in a one-stage grafting model. Plast Reconstr Surg. 2000;106(3):615–23.

    Article  PubMed  Google Scholar 

  359. Haslik W, Kamolz LP, Nathschlaeger G, Andel H, Meissl G, Frey M. First experiences with the collagen-elastin matrix Matriderm((R)) as a dermal substitute in severe burn injuries of the hand. Burns. 2007;33(3):364–8.

    Article  PubMed  CAS  Google Scholar 

  360. Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63(6):470–91.

    Article  PubMed  CAS  Google Scholar 

  361. Liu J, Hu W, Chen H, Ni Q, Xu H, Yang X. Isotretinoin-loaded solid lipid nanoparticles with skin targeting for topical delivery. Int J Pharm. 2007;328(2):191–5.

    Article  PubMed  CAS  Google Scholar 

  362. Maia CS, Mehnert W, Schaller M, Korting HC, Gysler A, Haberland A, et al. Drug targeting by solid lipid nanoparticles for dermal use. J Drug Target. 2002;10(6):489–95.

    Article  CAS  Google Scholar 

  363. Chen HB, Chang XL, Du DR, Liu W, Liu J, Weng T, et al. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release. 2006;110(2):296–306.

    Article  PubMed  CAS  Google Scholar 

  364. Kuntsche J, Bunjes H, Fahr A, Pappinen S, Rönkkö S, Suhonen M, et al. Interaction of lipid nanoparticles with human epidermis and an organotypic cell culture model. Int J Pharm. 2008;354(1–2):180–95.

    Article  PubMed  CAS  Google Scholar 

  365. Castro GA, Coelho ALLR, Oliveira CA, Mahecha GAB, Oréfice RL, Ferreira LAM. Formation of ion pairing as an alternative to improve encapsulation and stability and to reduce skin irritation of retinoic acid loaded in solid lipid nanoparticles. Int J Pharm. 2009;381(1):77–83.

    Article  PubMed  CAS  Google Scholar 

  366. Mandawgade SD, Patravale VB. Development of SLNs from natural lipids: application to topical delivery of tretinoin. Int J Pharm. 2008;363(1–2):132–8.

    Article  PubMed  CAS  Google Scholar 

  367. Shah KA, Date AA, Joshi MD, Patravale VB. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm. 2007;345(1–2):163–71.

    Article  PubMed  CAS  Google Scholar 

  368. Aitken KJ, Bagli DJ. The bladder extracellular matrix. Part I: architecture, development and disease. Nat Rev Urol. 2009;6(11):596–611.

    Article  PubMed  CAS  Google Scholar 

  369. Aitken KJ, Bagli DJ. The bladder extracellular matrix. Part II: regenerative applications. Nat Rev Urol. 2009;6(11):612–21.

    Article  PubMed  CAS  Google Scholar 

  370. Murakumo M, Ushiki T, Abe K, Matsumura K, Shinno Y, Koyanagi T. Three-dimensional arrangement of collagen and elastin fibers in the human urinary bladder: a scanning electron microscopic study. J Urol. 1995;154(1):251–6.

    Article  PubMed  CAS  Google Scholar 

  371. Korossis S, Bolland F, Ingham E, Fisher J, Kearney J, Southgate J. Tissue engineering of the urinary bladder: considering structure-function relationships and the role of mechanotransduction. Tissue Eng. 2006;12(4):635–44.

    Article  PubMed  Google Scholar 

  372. Cortivo R, Pagano F, Passerini G, Abatangelo G, Castellani I. Elastin and collagen in the normal and obstructed urinary bladder. Br J Urol. 1981;53(2):134–7.

    Article  PubMed  CAS  Google Scholar 

  373. Lemack GE, Szabo Z, Urban Z, Boyd CD, Csiszar K, Vaughan ED, et al. Altered bladder function in transgenic mice expressing rat elastin. Neurourol Urodyn. 1999;18(1):55–68.

    Article  PubMed  CAS  Google Scholar 

  374. Hinek A, Smith AC, Cutiongco EM, Callahan JW, Gripp KW, Weksberg R. Decreased elastin deposition and high proliferation of fibroblasts from Costello syndrome are related to functional deficiency in the 67-kD elastin-binding protein. Am J Hum Genet. 2000;66(3):859–72.

    Article  PubMed  CAS  Google Scholar 

  375. Hinek A, Wilson SE. Impaired elastogenesis in Hurler disease—dermatan sulfate accumulation linked to deficiency in elastin-binding protein and elastic fiber assembly. Am J Pathol. 2000;156(3):925–38.

    Article  PubMed  CAS  Google Scholar 

  376. Sutherland RS, Baskin LS, Elfman F, Hayward SW, Cunha GR. The role of type IV collagenases in rat bladder development and obstruction. Pediatr Res. 1997;41(3):430–4.

    Article  PubMed  CAS  Google Scholar 

  377. Aitken KJ, Block G, Lorenzo A, Herz D, Sabha N, Dessouki O, et al. Mechanotransduction of extracellular signal-regulated kinases 1 and 2 mitogen-activated protein kinase activity in smooth muscle is dependent on the extracellular matrix and regulated by matrix metalloproteinases. Am J Pathol. 2006;169(2):459–70.

    Article  PubMed  CAS  Google Scholar 

  378. Pattison MA, Wurster S, Webster TJ, Haberstroh KM. Three-dimensional, nano-structured PLGA scaffolds for bladder tissue replacement applications. Biomaterials. 2005;26(15):2491–500.

    Article  PubMed  CAS  Google Scholar 

  379. Nagatomi J, DeMiguel F, Torimoto K, Chancellor MB, Getzenberg RH, Sacks MS. Early molecular-level changes in rat bladder wall tissue following spinal cord injury. Biochem Biophys Res Commun. 2005;334(4):1159–64.

    Article  PubMed  CAS  Google Scholar 

  380. Parekh A, Long RA, Chancellor MB, Sacks MS. Assessing the effects of transforming growth factor-β1 on bladder smooth muscle cell phenotype. II. Modulation of collagen organization. J Urol. 2009;182(3):1216–21.

    Article  PubMed  CAS  Google Scholar 

  381. Parekh A, Long RA, Iannone EC, Chancellor MB, Sacks MS. Assessing the effects of transforming growth factor-β1 on bladder smooth muscle cell phenotype. I. Modulation of in vitro contractility. J Urol. 2009;182(3):1210–5.

    Article  PubMed  CAS  Google Scholar 

  382. Heise RL, Ivanova J, Parekh A, Sacks MS. Generating elastin-rich small intestinal submucosa-based smooth muscle constructs utilizing exogenous growth factors and cyclic mechanical stimulation. Tissue Eng Part A. 2009;15(12):3951–60.

    Article  PubMed  CAS  Google Scholar 

  383. Carreras I, Rich CB, Panchenko MP, Foster JA. Basic fibroblast growth factor decreases elastin gene transcription in aortic smooth muscle cells. J Cell Biochem. 2002;85(3):592–600.

    Article  PubMed  CAS  Google Scholar 

  384. Erdoğar N, İskit AB, Mungan NA, Bilensoy E. Prolonged retention and in vivo evaluation of cationic nanoparticles loaded with Mitomycin C designed for intravesical chemotherapy of bladder tumours. J Microencapsul. 2012. doi:10.3109/02652048.2012.668957.

    Google Scholar 

  385. Lu Z, Yeh TK, Tsai M, Au JLS, Wientjes MG. Paclitaxel-loaded gelatin nanoparticles for intravesical bladder cancer therapy. Clin Cancer Res. 2004;10(22):7677–84.

    Article  PubMed  CAS  Google Scholar 

  386. Bilensoy E, Sarisozen C, Esendağlı G, Doğan AL, Aktaş Y, Şen M, et al. Intravesical cationic nanoparticles of chitosan and polycaprolactone for the delivery of mitomycin C to bladder tumors. Int J Pharm. 2009;371(1–2):170–6.

    Article  PubMed  CAS  Google Scholar 

  387. Roth CC, Mondalek FG, Kibar Y, Ashley RA, Bell CH, Califano JA, et al. Bladder regeneration in a canine model using hyaluronic acid-poly(lactic-co-glycolic-acid) nanoparticle modified porcine small intestinal submucosa. BJU Int. 2011;108(1):148–55.

    Article  PubMed  Google Scholar 

  388. Mondalek FG, Lawrence BJ, Kropp BP, Grady BP, Fung KM, Madihally SV, et al. The incorporation of poly (lactic-co-glycolic) acid nanoparticles into porcine small intestinal submucosa biomaterials. Biomaterials. 2008;29(9):1159–66.

    Article  PubMed  CAS  Google Scholar 

  389. Roth CC. Urologic tissue engineering in pediatrics: from nanostructures to bladders. Pediatr Res. 2010;67(5):509–13.

    Article  PubMed  Google Scholar 

  390. Mecham RP, Levy BD, Morris SL, Madaras JG, Wrenn DS. Increased cyclic GMP levels lead to a stimulation of elastin production in ligament fibroblasts that is reversed by cyclic AMP. J Biol Chem. 1985;260(6):3255–8.

    PubMed  CAS  Google Scholar 

  391. Mecham RP, Lange G, Madaras J, Starcher B. Elastin synthesis by ligamentum nuchae fibroblasts: effects of culture conditions and extracellular matrix on elastin production. J Cell Biol. 1981;90(2):332–8.

    Article  PubMed  CAS  Google Scholar 

  392. Rich CB, Goud HD, Bashir M, Rosenbloom J, Foster JA. Developmental regulation of aortic elastin gene expression involves disruption of an IGF-I sensitive repressor complex. Biochem Biophys Res Commun. 1993;196(3):1316–22.

    Article  PubMed  CAS  Google Scholar 

  393. Brettell LM, McGowan SE. Basic fibroblast growth factor decreases elastin production by neonatal rat lung fibroblasts. Am J Respir Cell Mol Biol. 1994;10(3):306–15.

    PubMed  CAS  Google Scholar 

  394. Davis EC, Mecham RP. Intracellular trafficking of tropoelastin. Matrix Biol. 1998;17(4):245–54.

    Article  PubMed  CAS  Google Scholar 

  395. Frisch SM, Davidson JM, Werb Z. Blockage of tropoelastin secretion by monensin represses tropoelastin synthesis at a pretranslational level in rat smooth muscle cells. Mol Cell Biol. 1985;5(1):253–8.

    PubMed  CAS  Google Scholar 

  396. Cortizo MC, De Mele MFL. Cytotoxicity of copper ions released from metal—variation with the exposure period and concentration gradients. Biol Trace Elem Res. 2004;102(1–3):129–41.

    Article  PubMed  CAS  Google Scholar 

  397. Hayashi A, Suzuki T, Tajima S. Modulations of elastin expression and cell proliferation by retinoids in cultured vascular smooth muscle cells. J Biochem. 1995;117(1):132–6.

    PubMed  CAS  Google Scholar 

  398. Tajima S, Hayashi A, Suzuki T. Elastin expression is up-regulated by retinoic acid but not by retinol in chick embryonic skin fibroblasts. J Dermatol Sci. 1997;15(3):166–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Representative data from the Ramamurthi laboratory, included as illustrative examples in this manuscript, were generated with grant support from the National Institutes of Health [HL092051] awarded to Anand Ramamurthi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Ramamurthi.

Additional information

Balakrishnan Sivaraman and Chris A. Bashur have equal contribution.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivaraman, B., Bashur, C.A. & Ramamurthi, A. Advances in biomimetic regeneration of elastic matrix structures. Drug Deliv. and Transl. Res. 2, 323–350 (2012). https://doi.org/10.1007/s13346-012-0070-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-012-0070-6

Keywords

Navigation