Drug Delivery and Translational Research

, Volume 2, Issue 3, pp 145–151

Delivering drugs to the central nervous system: an overview

Review Article

Abstract

Developing therapies for the brain is perhaps the greatest challenge facing modern medicine today. While a great many potential therapies show promise in animal models, precious few make it to approval or are even studied in human patients. The particular challenges to the translation of neurotherapeutics to the clinic are many, but a major barrier is difficulty in delivering therapeutics into the brain. The goal of this workshop was to present ways to deliver therapeutics to the brain, including the limitations of each method, and describe ways to track their delivery, safety, and efficacy. Solving the problem of delivery will aid translation of therapeutics for patients suffering from neurodegeneration and other disorders of the brain.

Keywords

Drug delivery Brain Central nervous system Lysosomal storage disease Neurodegeneration Blood–brain barrier 

References

  1. 1.
    Prusiner S. Director’s Message, UCSF Institute for Neurogenerative Diseases, http://ind.ucsf.edu/ind/aboutus/director, last accessed 4/18/2012.
  2. 2.
    Kola I, Landis J. Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov. 2004;3:711–6.PubMedCrossRefGoogle Scholar
  3. 3.
    Talele SS, Xu K, Pariser AR, Braun MM, Farag-El-Massah S, Phillips MI, Thompson BH, Coté TR. Therapies for inborn errors of metabolism: what has the Orphan Drug Act delivered? Pediatrics. 2010;126:101–6.PubMedCrossRefGoogle Scholar
  4. 4.
    Gill SS, Patel NK, Hotton GR, O’Sullivan K, McCarter R, Bunnage M, Brooks DJ, Svendsen CN, Heywood P. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med. 2003;9:589–95.PubMedCrossRefGoogle Scholar
  5. 5.
    Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci USA. 1994;91:2076–80.PubMedCrossRefGoogle Scholar
  6. 6.
    Sampson JH, Akabani G, Archer GE, Bigner DD, Berger MS, Friedman AH, Friedman HS, Herndon II JE, Kunwar S, Marcus S, McLendon RE, Paolino A, Penne K, Provenzale J, Quinn J, Reardon DA, Rich J, Stenzel T, Tourt-Uhlig S, Wikstrand C, Wong T, Williams R, Yuan F, Zalutsky MR, Pastan I. Progress report of a phase I study of the intracerebral microinfusion of a recombinant chimeric protein composed of transforming growth factor (TGF)-β and a mutated form of the Pseudomonas exotoxin termed PE-38 (TP-38) for the treatment of malignant brain tumors. J Neuro-Oncol. 2003;65:27–35.CrossRefGoogle Scholar
  7. 7.
    Worgall S, Sondhi D, Hackett NR, Kosofsky B, Kekatpure MV, Neyzi N, Dyke JP, Ballon D, Heier L, Greenwald BM, Christos P, Mazumdar M, Souweidane MM, Kaplitt MG, Crystal RG. Treatment of late infantile neuronal ceroid lipofuscinosis by CNS administration of a serotype 2 adeno-associated virus expressing CLN2 cDNA. Hum Gene Ther. 2008;19:463–74.PubMedCrossRefGoogle Scholar
  8. 8.
    Bier A. Versuche fiber Cocainisirung des Rtickenma ’kes. Deutsche Zeitschrift fur Chirurgie. 1899;51:361–9.CrossRefGoogle Scholar
  9. 9.
    Brill S, Gurman GM, Fisher A. A history of neuraxial administration of local analgesics and opioids. Eur J Anaesthesiol. 2003;20:682–9.PubMedCrossRefGoogle Scholar
  10. 10.
    Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev. 2012;64:614–28.Google Scholar
  11. 11.
    Scranton RA, Fletcher L, Sprague S, Jimenez DF, Digicaylioglu M. The rostral migratory stream plays a key role in intranasal delivery of drugs into the CNS. PLoS One. 2011;6:e18711.PubMedCrossRefGoogle Scholar
  12. 12.
    Boado RJ, Zhang Y, Zhang Y, Xia C-F, Wang Y, Pardridge WM. Genetic engineering of a lysosomal enzyme fusion protein for targeted delivery across the human blood–brain barrier. Biotechnol Bioeng. 2008;99:475–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Yu YJ, Zhang Y, Kenrick M, Hoyte K, Luk W, Lu Y, Atwal J, Elliott JM, Prabhu S, Watts RJ, Dennis MS. Boosting brain uptake of a therapeutic antibody by reducing its affinity for a transcytosis target. Sci Transl Med. 2011;3:84ra44.PubMedCrossRefGoogle Scholar
  14. 14.
    Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, Mitragotri S, Muzykantov VR. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther. 2008;16:1450–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Chen YH, Chang M, Davidson BL. Molecular signatures of disease brain endothelia provide new sites for CNS-directed enzyme therapy. Nat Med. 2009;15:1215–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Dickson P, McEntee M, Vogler C, Le S, Levy B, Peinovich M, Hanson S, Passage M, Kakkis E. Intrathecal enzyme replacement therapy: successful treatment of brain disease via the cerebrospinal fluid. Mol Genet Metab. 2007;91:61–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Hemsley KM, King B, Hopwood JJ. Injection of recombinant human sulfamidase into the CSF via the cerebellomedullary cistern in MPS IIIA mice. Mol Genet Metab. 2007;90:313–28.PubMedCrossRefGoogle Scholar
  18. 18.
    Vuillemenot BR, Katz ML, Coates JR, Kennedy D, Tiger P, Kanazono S, Lobel P, Sohar I, Xu S, Cahayag R, Keve S, Koren E, Bunting S, Tsuruda LS, O’Neill CA. Intrathecal tripeptidyl-peptidase 1 reduces lysosomal storage in a canine model of late infantile neuronal ceroid lipofuscinosis. Mol Genet Metab. 2011;104:325–37.PubMedCrossRefGoogle Scholar
  19. 19.
    Lee WC, Tsoi YK, Troendle FJ, DeLucia MW, Ahmed Z, Dicky CA, Dickson DW, Eckman CB. Single-dose intracerebroventricular administration of galactocerebrosidase improves survival in a mouse model of globoid cell leukodystrophy. FASEB J. 2007;21:2520–7.PubMedCrossRefGoogle Scholar
  20. 20.
    Dodge JC, Clarke J, Treleaven CM, Taksir TV, Griffiths DA, Yang W, Fidler JA, Passini MA, Karey KP, Schuchman EH, Cheng SH, Shihabuddin LS. Intracerebroventricular infusion of acid sphingomyelinase corrects CNS manifestations in a mouse model of Niemann–Pick A disease. Exp Neurol. 2009;215:349–57.PubMedCrossRefGoogle Scholar
  21. 21.
    Felice BR, Wright TL, Boyd RB, Butt MT, Pfeifer RW, Pan J, Ruiz JA, Heartlein MW, Calias P. Safety evaluation of chronic intrathecal administration of idursulfase-IT in cynomolgus monkeys. Tox Pathol. 2011;39:879–92.CrossRefGoogle Scholar
  22. 22.
    Chen A, Vogler C, Levy B, McEntee MF, Passage M, Le S, Guerra C, Dickson P. Glycosaminoglycan storage in neuroanatomical regions of mucopolysaccharidosis I dogs following intrathecal recombinant human iduronidase. APMIS. 2011;119:513–21.PubMedCrossRefGoogle Scholar
  23. 23.
    Crawley AC, Marshall N, Beard H, Hassiotis S, Walsh V, King B, Hucker N, Fuller M, Jolly RD, Hopwood JJ, Hemsley KM. Enzyme replacement reduces neuropathology in MPS IIIA dogs. Neurobiol Dis. 2011;43:422–34.Google Scholar
  24. 24.
    Nicholson C. Diffusion and related transport mechanisms in brain tissue. Rep Prog Phys. 2001;64:815–84.CrossRefGoogle Scholar
  25. 25.
    Calias P, Papisov M, Pan J, Savioli N, Belov V, Huang Y, Lotterhand J, Alessandrini M, Liu N, Fischman AJ, Powell JL, Heartlein MW. CNS penetration of intrathecal–lumbar idursulfase in the monkey, dog and mouse: implications for neurological outcomes of lysosomal storage disorder. PLoS One. 2012;7:e30341.PubMedCrossRefGoogle Scholar
  26. 26.
    Dierenfeld AD, McEntee MF, Vogler CA, Vite CH, Chen AH, Passage M, Le S, Shah S, Jens JK, Snella EM, Kline KL, Parkes JD, Ware WA, Moran LE, Fales-Williams AJ, Wengert JA, Whitley RD, Betts DM, Boal AM, Riedesel EA, Gross W, Ellinwood NM, Dickson PI. Replacing the enzyme α-l-iduronidase at birth ameliorates symptoms in the brain and periphery of dogs with mucopolysaccharidosis type I. Sci Transl Med. 2010;2:60ra89.PubMedCrossRefGoogle Scholar
  27. 27.
    Grubb JH, Vogler C, Levy B, Galvin N, Tan Y, Sly WS. Chemically modified β-glucuronidase crosses blood–brain barrier and clears neuronal storage in murine mucopolysaccharidosis VII. Proc Natl Acad Sci USA. 2008;105:2616–21.PubMedCrossRefGoogle Scholar
  28. 28.
    Blanz J, Stroobants S, Lüllmann-Rauch R, Morelle W, Lüdemann M, D’Hooge R, Reuterwall H, Michalski JC, Fogh J, Andersson C, Saftig P. Reversal of peripheral and central neural storage and ataxia after recombinant enzyme replacement therapy in α-mannosidosis mice. Hum Mol Genet. 2008;17:3437–45.PubMedCrossRefGoogle Scholar
  29. 29.
    Vogler C, Levy B, Grubb JH, Galvin N, Tan Y, Kakkis E, Pavloff N, Sly WS. Overcoming the blood–brain barrier with high-dose enzyme replacement therapy in murine mucopolysaccharidosis VII. Proc Natl Acad Sci USA. 2005;102:14777–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Dickson PI, Pariser AR, Groft SC, Ishihara RW, McNeil DE, Tagle D, Griebel DJ, Kaler SG, Mink JW, Shapiro EG, Bjoraker KJ, Krivitzky L, Provenzale JM, Gropman A, Orchard P, Raymond G, Cohen BH, Steiner RD, Goldkind SF, Nelson RM, Kakkis E, Patterson MC. Research challenges in central nervous system manifestations of inborn errors of metabolism. Mol Genet Metab. 2011;102:326–38.PubMedCrossRefGoogle Scholar
  31. 31.
    Dickson PI, Ellinwood NM, Brown JR, Witt RG, Le SQ, Passage MB, Vera MU, Crawford BE. Specific antibody titer alters the effectiveness of intrathecal enzyme replacement therapy in canine mucopolysaccharidosis I. Mol Genet Metab. 2012;106:68–72.Google Scholar
  32. 32.
    Porter FD, Scherrer DE, Lanier MH, Langmade SJ, Molugu V, Gale SE, Olzeski D, Sidhu R, Dietzen DJ, Fu R, Wassif CA, Yanjanin NM, Marso SP, House J, Vite C, Schaffer JE, Ory DS. Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann–Pick C1 disease. Sci Transl Med. 2010;2:56ra81.PubMedCrossRefGoogle Scholar
  33. 33.
    Provenzale JM, Escolar M, Kurtzberg J. Quantitative analysis of diffusion tensor imaging data in serial assessment of Krabbe disease. Ann N Y Acad Sci. 2005;1064:220–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Wang SJ, Hung HMJ, O’Neill R. Adaptive design clinical trials and trial logistics models in CNS drug development. Eur Neuropsychopharm. 2011;21:159–66.CrossRefGoogle Scholar
  35. 35.
    Sun Y, Ran H, Liou B, Quinn B, Zamzow M, Zhang W, Bielawski J, Kitatani K, Setchell KDR, Hannun YA, Grabowski GA. Isofagomine in vivo effects in a neuronopathic Gaucher disease mouse. PLoS One. 2011;6:e19037.PubMedCrossRefGoogle Scholar
  36. 36.
    Cabrera-Salazar MA, Bercury SD, Ziegler RJ, Marshall J, Hodges BL, Chuang WL, Pacheco J, Li L, Cheng SH, Scheule RK. Intracerebroventricular delivery of glucocerebrosidase reduces substrates and increases lifespan in a mouse model of neuronopathic Gaucher disease. Exp Neurol. 2010;225:436–44.PubMedCrossRefGoogle Scholar
  37. 37.
    Capablo JL, Franco R, De Cabezón AS, Alfonso P, Pocovi M, Giraldo P. Neurologic improvement in a type 3 Gaucher disease patient treated with imiglucerase/miglustat combination. Epilepsia. 2007;48:1406–8.PubMedCrossRefGoogle Scholar
  38. 38.
    Khanna R, Soska R, Lun Y, Feng J, Frascella M, Young B, Brignol N, Pellegrino L, Sitaraman SA, Desnick RJ, Benjamin ER, Lockhart DJ, Valenzano KJ. The pharmacological chaperone 1-deoxygalactonojirimycin reduces tissue globotriaosylceramide levels in a mouse model of Fabry disease. Mol Ther. 2009;18:23–33.PubMedCrossRefGoogle Scholar
  39. 39.
    Ziegler RJ, Salegio EA, Dodge JC, Bringas J, Treleaven CM, Bercury SD, Tamsett TJ, Shihabuddin L, Hadaczek P, Fiandaca M, Bankiewicz K, Scheule RK. Distribution of acid sphingomyelinase in rodent and non-human primate brain after intracerebroventricular infusion. Exp Neurol. 2011;231:261–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Treleaven CM, Tamsett T, Fidler JA, Taksir TV, Cheng SH, Shihabuddin LS, Dodge JC. Comparative analysis of acid sphingomyelinase distribution in the CNS of rats and mice following intracerebroventricular delivery. PLoS One. 2011;6:e16313.PubMedCrossRefGoogle Scholar
  41. 41.
    Stroobants S, Gerlach D, Matthes F, Hartmann D, Fogh J, Gieselmann V, D’Hooge R, Matzner U. Intracerebroventricular enzyme infusion corrects central nervous system pathology and dysfunction in a mouse model of metachromatic leukodystrophy. Hum Mol Genet. 2011;20:2760–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Miyake N, Miyake K, Karlsson S, Shimada T. Successful treatment of metachromatic leukodystrophy using bone marrow transplantation of HoxB4 overexpressing cells. Mol Ther. 2010;18:1373–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Pierson TM, Bonnemann CG, Finkel RS, Bunin N, Tennekoon GI. Umbilical cord blood transplantation for juvenile metachromatic leukodystrophy. Ann Neurol. 2008;64:583–7.PubMedCrossRefGoogle Scholar
  44. 44.
    Meuleman N, Vanhaelen G, Tondreau T, Lewalle P, Kwan J, Bennani J, Martiat P, Lagneaux L, Bron D. Reduced intensity conditioning haematopoietic stem cell transplantation with mesenchymal stromal cells infusion for the treatment of metachromatic leukodystrophy: a case report. Haematologica. 2008;93:e11–3.PubMedCrossRefGoogle Scholar
  45. 45.
    Görg M, Wilck W, Granitzny B, Suerken A, Lukacs Z, Xiaoqi D, Schulte-Markwort M, Kohlschütter A. Stabilization of juvenile metachromatic leukodystrophy after bone marrow transplantation: a 13-year follow-up. J Child Neurol. 2007;22:1139–42.PubMedCrossRefGoogle Scholar
  46. 46.
    Roberts MS, Macauley SL, Wong AM, Yilmas D, Hohm S, Cooper JD, Sands MS. Combination small molecule PPT1 mimetic and CNS-directed gene therapy as a treatment for infantile neuronal ceroid lipofuscinosis. J Inher Metab Dis. in press.Google Scholar
  47. 47.
    Chang M, Cooper JD, Sleat DE, Cheng SH, Dodge JC, Passini MA, Lobel P, Davidson BL. Intraventricular enzyme replacement improves disease phenotypes in a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol Ther. 2008;16:649–56.PubMedCrossRefGoogle Scholar
  48. 48.
    Xu S, Wang L, El-Banna M, Sohar I, Sleat DE, Lobel P. Large-volume intrathecal enzyme delivery increases survival of a mouse model of late infantile neuronal ceroid lipofuscinosis. Mol Ther. 2011;19:1842–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Tamaki SJ, Jacobs Y, Dohse M, Capela A, Cooper JD, Reitsma M, He D, Tushinski R, Belichenko PV, Salehi A, Mobley W, Gage FH, Huhn S, Tsukamoto AS, Weissman IL, Uchida N. Neuroprotection of host cells by human central nervous system stem cells in a mouse model of infantile neuronal ceroid lipofuscinosis. Cell Stem Cell. 2009;5:310–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Sondhi D, Peterson DA, Edelstein AM, del Fierro K, Hackett NR, Crystal RG. Survival advantage of neonatal CNS gene transfer for late infantile neuronal ceroid lipofuscinosis. Exp Neurol. 2008;213:18–27.PubMedCrossRefGoogle Scholar
  51. 51.
    Fraldi A, Hemsley K, Crawley A, Lombardi A, Lau A, Sutherland L, Auricchio A, Ballabio A, Hopwood JJ. Functional correction of CNS lesions in an MPS-IIIA mouse model by intracerebral AAV-mediated delivery of sulfamidase and SUMF1 genes. Hum Mol Genet. 2007;16:2693–702.PubMedCrossRefGoogle Scholar
  52. 52.
    Fu H, Kang L, Jennings JS, Moy SS, Perez A, DiRosario J, McCarty DM, Muenzer J. Significantly increased lifespan and improved behavioral performances by rAAV gene delivery in adult mucopolysaccharidosis IIIB mice. Gene Ther. 2007;14:1065–77.PubMedCrossRefGoogle Scholar
  53. 53.
    Frisella WA, O’Connor LH, Vogler CA, Roberts M, Walkley S, Levy B, Daly TM, Sands MS. Intracranial injection of recombinant adeno-associated virus improves cognitive function in a murine model of mucopolysaccharidosis type VII. Mol Ther. 2001;3:351–8.PubMedCrossRefGoogle Scholar
  54. 54.
    Snyder EY, Taylor RM, Wolfe JH. Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain. Nature. 1995;374:367–70.PubMedCrossRefGoogle Scholar
  55. 55.
    Taylor R, Wolfe J. Decreased lysosomal storage in the adult MPS VII mouse brain in the vicinity of grafts of retroviral vector-corrected fibroblasts secreting high levels of [beta]-glucuronidase. Nat Med. 1997;3:771–4.PubMedCrossRefGoogle Scholar
  56. 56.
    Malm G, Gustafsson B, Berglund G, Lindström M, Naess K, Borgström B, Von Döbeln U, Ringdén O. Outcome in six children with mucopolysaccharidosis type IH, Hurler syndrome, after haematopoietic stem cell transplantation (HSCT). Acta Paediatrica. 2008;97:1108–12.PubMedCrossRefGoogle Scholar
  57. 57.
    Whitley CB, Belani KG, Chang P-N, Summers CG, Blazar BR, Tsai MY, Latchaw RE, Ramsay NKC, Kersey JH. Long-term outcome of Hurler syndrome following bone marrow transplantation. Am J Med Genet B Neuropsych Genet. 1993;46:209–18.CrossRefGoogle Scholar
  58. 58.
    Peters C, Balthazor M, Shapiro EG, King RJ, Kollman C, Hegland JD, Downey J, Trigg ME, Cowan MJ, Sanders J, Bunin N, Weinstein H, Lenarsky C, Falk P, Harris R, Bowen T, Williams TE, Grayson GH, Warkentin P, Sender L, Cool VA, Crittenden M, Packman S, Kaplan P, Lockman LA. Outcome of unrelated donor bone marrow transplantation in 40 children with Hurler syndrome. Blood. 1996;87:4894–902.PubMedGoogle Scholar
  59. 59.
    Baek RC, Broekman MLD, Leroy SG, Tierney LA, Sandberg MA, d’Azzo A, Seyfried TN, Sena-Esteves M. AAV-mediated gene delivery in adult GM1-gangliosidosis mice corrects lysosomal storage in CNS and improves survival. PLoS One. 2010;5:e13468.PubMedCrossRefGoogle Scholar
  60. 60.
    Sano R, Tessitore A, Ingrassia A, d’azzo A. Chemokine-induced recruitment of genetically modified bone marrow cells into the CNS of GM1-gangliosidosis mice corrects neuronal pathology. Blood. 2005;106:2259–68.PubMedCrossRefGoogle Scholar
  61. 61.
    Tsuji D, Akeboshi H, Matsuoka K, Yasuoka H, Miyasaki E, Kasahara Y, Kawashima I, Chiba Y, Jigami Y, Taki T, Sakuraba H, Itoh K. Highly phosphomannosylated enzyme replacement therapy for GM2 gangliosidosis. Ann Neurol. 2011;69:691–701.PubMedCrossRefGoogle Scholar
  62. 62.
    Matsuoka K, Tamura T, Tsuji D, Dohzono Y, Kitakaze K, Ohno K, Saito S, Sakuraba H, Itoh K. Therapeutic potential of intracerebroventricular replacement of modified human [beta]-hexosaminidase B for GM2 gangliosidosis. Mol Ther. 2011.Google Scholar
  63. 63.
    Martino S, Marconi P, Tancini B, Dolcetta D, De Angelis MGC, Montanucci P, Bregola G, Sandhoff K, Bordignon C, Emiliani C, Manservigi R, Orlacchio A. A direct gene transfer strategy via brain internal capsule reverses the biochemical defect in Tay–Sachs disease. Hum Mol Genet. 2005;14:2113–23.PubMedCrossRefGoogle Scholar
  64. 64.
    Norflus F, Tifft CJ, McDonald MP, Goldstein G, Crawley JN, Hoffmann A, Sandhoff K, Suzuki K, Proia RL. Bone marrow transplantation prolongs life span and ameliorates neurologic manifestations in Sandhoff disease mice. J Clin Invest. 1998;101:1881–8.PubMedCrossRefGoogle Scholar
  65. 65.
    Leimig T, Mann L, Martin MDP, Bonten E, Persons D, Knowles J, Allay JA, Cunningham J, Nienhuis AW, Smeyne R, d’Azzo A. Functional amelioration of murine galactosialidosis by genetically modified bone marrow hematopoietic progenitor cells. Blood. 2002;99:3169–78.PubMedCrossRefGoogle Scholar
  66. 66.
    Spampanato C, De Leonibus E, Dama P, Gargiulo A, Fraldi A, Sorrentino NC, Russo F, Nusco E, Auricchio A, Surace EM, Ballabio A. Efficacy of a combined intracerebral and systemic gene delivery approach for the treatment of a severe lysosomal storage disorder. Mol Ther. 2011;19:860–9.PubMedCrossRefGoogle Scholar
  67. 67.
    Roces DP, Lullmann-Rauch R, Peng J, Balducci C, Andersson C, Tollersrud O, Fogh J, Orlacchio A, Beccari T, Saftig P, von Figura K. Efficacy of enzyme replacement therapy in {alpha}-mannosidosis mice: a preclinical animal study. Hum Mol Genet. 2004;13:1979–88.PubMedCrossRefGoogle Scholar
  68. 68.
    Broomfield A, Chakrapani A, Wraith J. The effects of early and late bone marrow transplantation in siblings with alpha-mannosidosis. Is early haematopoietic cell transplantation the preferred treatment option? J Inher Metab Dis Epub. 2010.Google Scholar
  69. 69.
    Strazza M, Luddi A, Carbone M, Rafi MA, Costantino-Ceccarini E, Wenger DA. Significant correction of pathology in brains of twitcher mice following injection of genetically modified mouse neural progenitor cells. Mol Genet Metab. 2009;97:27–34.PubMedCrossRefGoogle Scholar
  70. 70.
    Shen JS, Watabe KF, Ohashi TF, Eto Y. Intraventricular administration of recombinant adenovirus to neonatal twitcher mouse leads to clinicopathological improvements. J Gene Med. 2004;6:1206–15.PubMedCrossRefGoogle Scholar
  71. 71.
    Caniglia M, Rana I, Pinto RM, Fariello G, Caruso R, Angioni A, Dionisi Vici C, Sabetta G, De Rossi G. Allogeneic bone marrow transplantation for infantile globoid-cell leukodystrophy (Krabbe’s disease). Pediatr Transplant. 2002;6:427–31.PubMedCrossRefGoogle Scholar
  72. 72.
    Escolar ML, Poe MD, Provenzale JM, Richards KC, Allison J, Wood S, Wenger DA, Pietryga D, Wall D, Champagne M, Morse R, Krivit W, Kurtzberg J. Transplantation of umbilical-cord blood in babies with infantile Krabbe’s disease. N Engl J Med. 2005;352:2069–81.PubMedCrossRefGoogle Scholar
  73. 73.
    Krivit W, Shapiro EG, Peters C, Wagner JE, Cornu G, Kurtzberg J, Wenger DA, Kolodny EH, Vanier MT, Loes DJ, Dusenbery K, Lockman LA. Hematopoietic stem-cell transplantation in globoid-cell leukodystrophy. N Engl J Med. 1998;338:1119–27.PubMedCrossRefGoogle Scholar
  74. 74.
    Davidson CD, Ali NF, Micsenyi MC, Stephney G, Renault S, Dobrenis K, Ory DS, Vanier MT, Walkley SU. Chronic cyclodextrin treatment of murine Niemann–Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One. 2009;4:e6951.PubMedCrossRefGoogle Scholar
  75. 75.
    Stein VM, Crooks A, Ding W, Prociuk M, O’Donnell P, Bryan C, Sikora T, Dingemanse J, Vanier MT, Walkley SU, Vite CH. Miglustat improves purkinje cell survival and alters microglial phenotype in feline Niemann–Pick Disease Type C. J Neuropathol Exp Neurol. 2012;71:434–48.PubMedCrossRefGoogle Scholar
  76. 76.
    Chien YH, Lee NC, Tsai LK, Huang AC, Peng SF, Chen SJ, Hwu WL. Treatment of Niemann–Pick disease type C in two children with miglustat: Initial responses and maintenance of effects over 1 year. J Inher Metab Dis. 2007;30:826.PubMedCrossRefGoogle Scholar
  77. 77.
    Patterson MC, Vecchio D, Prady H, Abel L, Wraith JE. Miglustat for treatment of Niemann–Pick C disease: a randomised controlled study. Lancet Neurol. 2007;6:765–72.PubMedCrossRefGoogle Scholar
  78. 78.
    Pineda M, Wraith JE, Mengel E, Sedel F, Hwu WL, Rohrbach M, Bembi B, Walterfang M, Korenke GC, Marquardt T, Luzy C, Giorgino R, Patterson MC. Miglustat in patients with Niemann–Pick disease type C (NP-C): a multicenter observational retrospective cohort study. Mol Genet Metab. 2009;98:243–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Dunder U, Kaartinen V, Valtonen P, Vaananen E, Kosma VM, Heisterkamp N, Groffen J, Mononen I. Enzyme replacement therapy in a mouse model of aspartylglycosaminuria. FASEB J. 2000;14:361–7.PubMedGoogle Scholar
  80. 80.
    Laine M, Ahtiainen L, Rapola J, Richter J, Jalanko A. Bone marrow transplantation in young aspartylglucosaminuria mice: improved clearance of lysosomal storage in brain by using wild type as compared to heterozygote donors. Bone Marrow Transplant. 2004;34:1001–3.PubMedCrossRefGoogle Scholar
  81. 81.
    Malm G, Månsson JE, Winiarski J, Mosskin M, Ringdén O. Five-year follow-up of two siblings with aspartylglucosaminuria undergoing allogeneic stem-cell transplantation from unrelated donors. Transplant 2004;78.Google Scholar
  82. 82.
    Kondagari GS, King BM, Thomson PC, Williamson P, Clements PR, Fuller M, Hemsley KM, Hopwood JJ, Taylor RM. Treatment of canine fucosidosis by intracisternal enzyme infusion. Exp Neurol. 2011;230:218–26.Google Scholar
  83. 83.
    Taylor RM, Farrow BR, Stewart GJ. Amelioration of clinical disease following bone marrow transplantation in fucosidase-deficient dogs. Am J Med Genet. 1992;42:628–32.PubMedCrossRefGoogle Scholar
  84. 84.
    Miano MF, Lanino-Gatti E, Gatti RF, Morreale GF, Fondelli PF, Celle ME, Stroppiano MF, Crescenzi FF, Dini G. Four year follow-up of a case of fucosidosis treated with unrelated donor bone marrow transplantation. Bone Marrow Transplant. 2001;27:747–51.PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2012

Authors and Affiliations

  1. 1.Division of Medical Genetics, Department of PediatricsLos Angeles Biomedical Research Institute at Harbor-UCLA Medical CenterTorranceUSA

Personalised recommendations