Drug Delivery and Translational Research

, Volume 2, Issue 1, pp 56–64 | Cite as

Fluorescently labeled microbubbles for facilitating translational molecular ultrasound studies

  • Patrick Koczera
  • Zhuojun Wu
  • Stanley Fokong
  • Benjamin Theek
  • Lia Appold
  • Samuel Jorge
  • Diana Möckel
  • Zhe Liu
  • Adelina Curaj
  • Gert Storm
  • Marc van Zandvoort
  • Fabian Kiessling
  • Twan Lammers
Research Article

Abstract

Microbubbles (MB) are routinely used as contrast agents for functional and molecular ultrasound (US) imaging. For molecular US imaging, MB are functionalized with antibodies or peptides, in order to visualize receptor expression by angiogenic or inflamed endothelium. In general, initial in vitro binding studies with targeted MB are performed using phase contrast microscopy. Difficulties in the identification of MB in standard phase contrast microscopy, however, generally result in high variability, high observer dependency, and low reproducibility. To overcome these shortcomings, we here describe a simple post-loading strategy for labeling polymer-based MB with fluorophores, and we show that the use of rhodamine-loaded MB in combination with fluorescence microscopy substantially reduces the variability and the observer dependency of in vitro binding studies. In addition, we demonstrate that rhodamine-loaded MB can also be used for in vivo and ex vivo experimental setups, e.g., for analyzing MB binding to inflamed carotids using two-photon laser scanning microscopy, and for validating the binding of VEGFR2-targeted MB to tumor endothelium. These findings demonstrate that fluorescently labeled MB substantially facilitate translational molecular US studies, and they suggest that a similar synthetic strategy can be exploited for preparing drug-loaded MB, to enable image-guided, targeted, and triggered drug delivery to tumors and to sites of inflammation.

Keywords

Microbubbles PBCA Molecular imaging Ultrasound Rhodamine Two-photon microscopy 

Notes

Acknowledgments

The authors kindly acknowledge financial support by the DFG and by HighTech.NRW, as well as technical assistance from Anne Rix, Susanne Arns and Marek Weiler.

References

  1. 1.
    Weissleder R, Mahmood U. Molecular imaging. Radiology. 2001;219(2):316–33.PubMedGoogle Scholar
  2. 2.
    Massoud TF, Gambhir SS. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 2003;17(5):545–80.PubMedCrossRefGoogle Scholar
  3. 3.
    Rudin M, Weissleder R. Molecular imaging in drug discovery and development. Nat Rev Drug Discov. 2003;2(2):123–31.PubMedCrossRefGoogle Scholar
  4. 4.
    Herschman HR. Molecular imaging: looking at problems, seeing solutions. Science. 2003;302(5645):605–8.PubMedCrossRefGoogle Scholar
  5. 5.
    Kiessling F, Huppert J, Palmowski M. Functional and molecular ultrasound imaging: concepts and contrast agents. Curr Med Chem. 2009;16(5):627–42.PubMedCrossRefGoogle Scholar
  6. 6.
    Kiessling F, Gaetjens J, Palmowski M. Application of molecular ultrasound for imaging integrin expression. Theranostics. 2011;1:127–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Willmann JK, Paulmurugan R, Chen K, Gheysens O, Rodriguez-Porcel M, Lutz AM, et al. US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology. 2008;246(2):508–18.PubMedCrossRefGoogle Scholar
  8. 8.
    Palmowski M, Huppert J, Ladewig G, Hauff P, Reinhardt M, Mueller MM, et al. Molecular profiling of angiogenesis with targeted ultrasound imaging: early assessment of antiangiogenic therapy effects. Mol Cancer Ther. 2008;7(1):101–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Tardy I, Pochon S, Theraulaz M, Emmel P, Passantino L, Tranquart F, et al. Ultrasound molecular imaging of VEGFR2 in a rat prostate tumor model using BR55. Invest Radiol. 2010;45(10):573–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Kaufmann BA, Carr CL, Belcik JT, Xie A, Yue Q, Chadderdon S, et al. Molecular imaging of the initial inflammatory response in atherosclerosis: implications for early detection of disease. Arterioscler Thromb Vasc Biol. 2010;30(1):54–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Lindner JR. Contrast ultrasound molecular imaging of inflammation in cardiovascular disease. Cardiovasc Res. 2009;84(2):182–9.PubMedCrossRefGoogle Scholar
  12. 12.
    Hamilton AJ, Huang SL, Warnick D, Rabbat M, Kane B, Nagaraj A, et al. Intravascular ultrasound molecular imaging of atheroma components in vivo. J Am Coll Cardiol. 2004;43(3):453–60.PubMedCrossRefGoogle Scholar
  13. 13.
    Klibanov AL. Ultrasound molecular imaging with targeted microbubble contrast agents. J Nucl Cardiol. 2007;14(6):876–84.PubMedCrossRefGoogle Scholar
  14. 14.
    Palmowski M, Peschke P, Huppert J, Hauff P, Reinhardt M, Maurer M, et al. Molecular ultrasound imaging of early vascular response in prostate tumors irradiated with carbon ions. Neoplasia. 2009;11(9):856–63.PubMedGoogle Scholar
  15. 15.
    Fokong S, Siepmann M, Liu Z, Schmitz G, Kiessling F, Gätjens J. Advanced characterization and refinement of poly N-butyl cyanoacrylate microbubbles for ultrasound imaging. Ultrasound Med Biol. 2011;37(10):1622–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Hoff L, Sontum PC, Hovem JM. Oscillations of polymeric microbubbles: effect of the encapsulating shell. J Acoust Soc Am. 2000;107(4):2272–80.PubMedCrossRefGoogle Scholar
  17. 17.
    Megens RT, Reitsma S, Schiffers PH, Hilgers RH, De Mey JG, Slaaf DW, et al. Two-photon microscopy of vital murine elastic and muscular arteries. Combined structural and functional imaging with subcellular resolution. J Vasc Res. 2007;44(2):87–98.PubMedCrossRefGoogle Scholar
  18. 18.
    Megens RT, Oude Egbrink MG, Cleutjens JP, Kuijpers MJ, Schiffers PH, Merkx M, et al. Imaging collagen in intact viable healthy and atherosclerotic arteries using fluorescently labeled CNA35 and two-photon laser scanning microscopy. Mol Imaging. 2007;6(4):247–60.PubMedGoogle Scholar
  19. 19.
    Megens RT, oude Egbrink MG, Merkx M, Slaaf DW, van Zandvoort MA. Two-photon microscopy on vital carotid arteries: imaging the relationship between collagen and inflammatory cells in atherosclerotic plaques. J Biomed Opt. 2008;13(4):044022.PubMedCrossRefGoogle Scholar
  20. 20.
    Palmowski M, Morgenstern B, Hauff P, Reinhardt M, Huppert J, Maurer M, et al. Pharmacodynamics of streptavidin-coated cyanoacrylate microbubbles designed for molecular ultrasound imaging. Invest Radiol. 2008;43(3):162–9.PubMedCrossRefGoogle Scholar

Copyright information

© Controlled Release Society 2012

Authors and Affiliations

  • Patrick Koczera
    • 1
  • Zhuojun Wu
    • 2
    • 5
  • Stanley Fokong
    • 1
  • Benjamin Theek
    • 1
  • Lia Appold
    • 1
  • Samuel Jorge
    • 1
  • Diana Möckel
    • 1
  • Zhe Liu
    • 1
  • Adelina Curaj
    • 1
    • 2
  • Gert Storm
    • 3
    • 4
  • Marc van Zandvoort
    • 2
    • 5
  • Fabian Kiessling
    • 1
  • Twan Lammers
    • 1
    • 3
    • 4
  1. 1.Department of Experimental Molecular ImagingRWTH Aachen UniversityAachenGermany
  2. 2.Institute for Molecular Cardiovascular ResearchRWTH Aachen UniversityAachenGermany
  3. 3.Department of Targeted TherapeuticsUniversity of TwenteEnschedeThe Netherlands
  4. 4.MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands
  5. 5.Department of Biomedical EngineeringMaastricht University Medical CentreMaastrichtThe Netherlands

Personalised recommendations