Advertisement

China Ocean Engineering

, Volume 33, Issue 4, pp 477–483 | Cite as

New Wave Solutions of Time-Fractional Coupled Boussinesq–Whitham–Broer–Kaup Equation as A Model of Water Waves

  • Emrah Atilgan
  • Mehmet Senol
  • Ali KurtEmail author
  • Orkun Tasbozan
Technical Notes
  • 48 Downloads

Abstract

The main purpose of this paper is to obtain the wave solutions of conformable time fractional Boussinesq–Whitham–Broer–Kaup equation arising as a model of shallow water waves. For this aim, the authors employed auxiliary equation method which is based on a nonlinear ordinary differential equation. By using conformable wave transform and chain rule, a nonlinear fractional partial differential equation is converted to a nonlinear ordinary differential equation. This is a significant impact because neither Caputo definition nor Riemann–Liouville definition satisfies the chain rule. While the exact solutions of the fractional partial derivatives cannot be obtained due to the existing drawbacks of Caputo or Riemann–Liouville definitions, the reliable solutions can be achieved for the equations defined by conformable fractional derivatives.

Key words

time fractional coupled Boussinesq–Whitham–Broer–Kaup equation conformable fractional derivative auxiliary equation method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdeljawad, T., 2015. On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279, 57–66.MathSciNetCrossRefzbMATHGoogle Scholar
  2. Aminikhah, H., Sheikhani, A.H.R. and Rezazadeh, H., 2016. Sub-equation method for the fractional regularized long-wave equations with conformable fractional derivatives, Scientia Iranica, 23(3), 1048–1054.CrossRefGoogle Scholar
  3. Atangana, A., Baleanu, D. and Alsaedi, A., 2015. New properties of conformable derivative, Open Mathematics, 13(1), 2391–5455.MathSciNetCrossRefzbMATHGoogle Scholar
  4. Batarfi, H., Losada, J., Nieto, J.J. and Shammakh, W., 2015. Three-point boundary value problems for conformable fractional differential equations, Journal of Function Spaces, 2015, 706383.MathSciNetCrossRefzbMATHGoogle Scholar
  5. Biswas, A., Al-Amr, M.O., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S.P. and Belic, M., 2018a. Resonant optical solitons with dual-power law nonlinearity and fractional temporal evolution, Optik, 165, 233–239.CrossRefGoogle Scholar
  6. Biswas, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Ekici, M., Zhou, Q., Moshokoa, S.P. and Belic, M., 2018b. Optical soliton perturbation with Fokas-Lenells equation using three exotic and efficient integration schemes, Optik, 165, 288–294.CrossRefGoogle Scholar
  7. Biswas, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M., Zhou, Q., Moshokoa, S.P. and Belic, M., 2018c. Optical solitons having weak non-local nonlinearity by two integration schemes, Optik, 164, 380–384.CrossRefGoogle Scholar
  8. Boussinesq, J., 1872. Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond, Journal de Mathématiques Pures et Appliquées, 17, 55–108. (in French)MathSciNetzbMATHGoogle Scholar
  9. Eslami, M. and Mirzazadeh, M., 2013. Topological 1-soliton solution of nonlinear Schrödinger equation with dual-power law nonlinearity in nonlinear optical fibers, The European Physical Journal Plus, 128(11), 140.CrossRefGoogle Scholar
  10. Eslami, M., 2016. Trial solution technique to chiral nonlinear Schrodinger’s equation in (1+2)-dimensions, Nonlinear Dynamics, 85(2), 813–816.MathSciNetCrossRefGoogle Scholar
  11. Eslami, M. and Mirzazadeh, M., 2016a. Optical solitons with Biswas-Milovic equation for power law and dual-power law nonlinearities, Nonlinear Dynamics, 83(1–2), 731–738.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Eslami, M. and Rezazadeh, H., 2016b. The first integral method for Wu-Zhang system with conformable time-fractional derivative, Calcolo, 53(3), 475–485.MathSciNetCrossRefzbMATHGoogle Scholar
  13. Eslami, M., Rezazadeh, H., Rezazadeh, M. and Mosavi, S.S., 2017. Exact solutions to the space-time fractional Schrödinger-Hirota equation and the space-time modified KDV-Zakharov-Kuznetsov equation, Optical and Quantum Electronics, 49(8), 279.CrossRefGoogle Scholar
  14. Iyiola, O.S. and Nwaeze, E.R., 2016. Some new results on the new conformable fractional calculus with application using D’Alambert approach, Progress in Fractional Differentiation and Applications, 2(2), 115–122.CrossRefGoogle Scholar
  15. Khalil, R., Al Horani, M., Yousef, A. and Sababheh, M., 2014. A new definition of fractional derivative, Journal of Computational and Applied Mathematics, 264, 65–70.MathSciNetCrossRefzbMATHGoogle Scholar
  16. Khodadad, F.S., Nazari, F., Eslami, M. and Rezazadeh, H., 2017. Soliton solutions of the conformable fractional Zakharov-Kuznetsov equation with dual-power law nonlinearity, Optical and Quantum Electronics, 49(11), 384.CrossRefGoogle Scholar
  17. Malfliet, W., 1992. Solitary wave solutions of nonlinear wave equations, American Journal of Physics, 60(7), 650–654.MathSciNetCrossRefzbMATHGoogle Scholar
  18. Osman, M.S., Korkmaz, A., Rezazadeh, H., Mirzazadeh, M., Eslami, M. and Zhou, Q., 2018. The unified method for conformable time fractional Schrödinger equation with perturbation terms, Chinese Journal of Physics, 56(5), 2500–2506.MathSciNetCrossRefGoogle Scholar
  19. Rezazadeh, H., 2018. New solitons solutions of the complex Ginzburg-Landau equation with Kerr law nonlinearity, Optik, 167, 218–227.CrossRefGoogle Scholar
  20. Rezazadeh, H., Mirhosseini-Alizamini, S.M., Eslami, M., Rezazadeh, M., Mirzazadeh, M. and Abbagari, S., 2018a. New optical solitons of nonlinear conformable fractional Schrödinger-Hirota equation, Optik, 172, 545–553.CrossRefGoogle Scholar
  21. Rezazadeh, H., Mirzazadeh, M., Mirhosseini-Alizamini, S.M., Neirameh, A., Eslami, M. and Zhou, Q., 2018b. Optical solitons of Lakshmanan-Porsezian-Daniel model with a couple of nonlinearities, Optik, 164, 414–423.CrossRefGoogle Scholar
  22. Rezazadeh, H., Osman, M.S., Eslami, M., Ekici, M., Sonmezoglu, A., Asma, M., Othman, W.A.M., Wong, B.R., Mirzazadeh, M., Zhou, Q., Biswas, A. and Belic, M., 2018c. Mitigating Internet bottleneck with fractional temporal evolution of optical solitons having quadratic-cubic nonlinearity, Optik, 164, 84–92.CrossRefGoogle Scholar
  23. Sabatier, J., Agrawal, O.P. and Tenreiro MacHado, J.A., 2007. Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, Dordrecht.CrossRefzbMATHGoogle Scholar
  24. Sachs, R.L., 1988. On the integrable variant of the boussinesq system: Painlevé property rational solutions, a related many-body system, and equivalence with the AKNS hierarchy, Physica D: Nonlinear Phenomena, 30(1–2), 1–27.MathSciNetCrossRefzbMATHGoogle Scholar
  25. Sirendaoreji, and Jiong, S., 2003. Auxiliary equation method for solving nonlinear partial differential equations, Physics Letters A, 309(5–6), 387–396.MathSciNetCrossRefzbMATHGoogle Scholar
  26. Tariq, K.U., Younis, M., Rezazadeh, H., Rizvi, S.T.R. and Osman, M.S., 2018. Optical solitons with quadratic-cubic nonlinearity and fractional temporal evolution, Modern Physics Letters B, 32(26), 1850317.MathSciNetCrossRefGoogle Scholar
  27. Tasbozan, O., Şenol, M., Kurt, A. and Özkan, O., 2018. New solutions of fractional Drinfeld-Sokolov-Wilson system in shallow water waves, Ocean Engineering, 161, 62–68.CrossRefGoogle Scholar
  28. Whitham, G.B., 1965. A general approach to linear and non-linear dispersive waves using a Lagrangian, Journal of Fluid Mechanics, 22(2), 273–283.MathSciNetCrossRefGoogle Scholar
  29. Whitham, G.B. and Lighthill, M.J., 1967. Variational methods and applications to water waves, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 299(1456), 6–25.CrossRefzbMATHGoogle Scholar
  30. Yomba, E., 2008. A generalized auxiliary equation method and its application to nonlinear Klein-Gordon and generalized nonlinear Camassa-Holm equations, Physics Letters A, 372(7), 1048–1060.MathSciNetCrossRefzbMATHGoogle Scholar
  31. Zhang, S. and Xia, T.C., 2007. A generalized new auxiliary equation method and its applications to nonlinear partial differential equations, Physics Letters A, 363(5–6), 356–360.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Emrah Atilgan
    • 1
  • Mehmet Senol
    • 2
  • Ali Kurt
    • 3
    Email author
  • Orkun Tasbozan
    • 4
  1. 1.Department of Management Informatics SystemsMustafa Kemal UniversityHatayTurkey
  2. 2.Department of MathematicsNevsehir Haci Bektas Veli UniversityNevsehirTurkey
  3. 3.Department of MathematicsPamukkale UniversityDenizliTurkey
  4. 4.Department of MathematicsMustafa Kemal UniversityHatayTurkey

Personalised recommendations