China Ocean Engineering

, Volume 33, Issue 1, pp 114–126 | Cite as

Numerical Analysis of the Behavior of A New Aeronautical Alloy (Ti555-03) Under the Effect of A High-Speed Water Jet

  • I. Ben BelgacemEmail author
  • L. Cheikh
  • E. M. Barhoumi
  • W. Khan
  • W. Ben Salem


In this paper, we present a numerical simulation of a water jet impacting a new aeronautical material Ti555-03 plate. The Computational Fluid Dynamics (CFD) behavior of the jet is investigated using a FV (Finite Volume) method. The Fluid–Structure Interaction (FSI) is studied using a coupled SPH (Smoothed Particle Hydrodynamics)-FE (Finite Element) method. The jets hit the metal sheet with an initial velocity 500 m/s. Two configurations which differ from each other by the position (angle of inclination) of the plate relatively to the axis of revolution of the jet inlet are investigated in this study. The objective of this study is to predict the impact of the fluid produced at high pressure and high speed especially at the first moment of impact. Numerical simulations are carried out under ABAQUS. We have shown in this study that the inclination of the titanium alloy plate by 45° stimulates the phenomenon of recirculation of water. This affects the velocity profile, turbulence and boundary layers in the impact zone. The stagnation zone and the phenomenon of water recirculation are strongly influenced by the slope of the plate which gives a pressure gradient and displacement very important between the two configurations. Fluctuations of physical variables (displacement and pressure) prove the need for a noise and vibratory study. These predictions will subsequently be used for the modeling of the problem of an orthogonal cut in a high-speed machining process assisted by high-pressure water jet.

Key words

Titanium alloy (Ti555-03) CFD turbulence ABAQUS Smoothed Particle Hydrodynamics (SPH) Fluid Structure Interaction (FSI) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayed Y., Germain G., Ammar A. and Furet B., 2013. Degradation modes and tool wear mechanisms in finish and rough machining of Ti17 titanium alloy under high-pressure water jet assistance, Wear, 305(1–2), 228–237.CrossRefGoogle Scholar
  2. Ayed Y., Robert C., Germain G. and Ammar A., 2016. Development of a numerical model for the understanding of the chip formation in high-pressure water-jet assisted machining, Finite Elements in Analysis and Design, 108, 1–8.CrossRefGoogle Scholar
  3. Behera C.B., Dutta P. and Srinivasan K., 2007. Numerical study of interrupted impinging jets for cooling of electronics, IEEE Transactions on Components and Packaging Technologies, 30(2), 275–284.CrossRefGoogle Scholar
  4. Braham Bouchnak T., 2010. Etude du Comportement en Sollicitations extrEmes et de L’usinabilité D’un Nouvel Alliage de Titane Aéronautique: le Ti555–3, Ph. D. Thesis, Arts et Métiers Paris Tech, Paris. (in French)Google Scholar
  5. Braham-Bouchnak T., Germain G., Robert P. and Lebrun J.L., 2010. High pressure water jet assisted machining of duplex steel: Machinability and tool life, International Journal of Material Forming, 3(S1), 507–510.CrossRefGoogle Scholar
  6. Chizari M., Al-Hassani S.T.S. and Barrett L.M., 2008. Experimental and numerical study of water jet spot welding, Journal of Materials Processing Technology, 198(1–3), 213–219.CrossRefGoogle Scholar
  7. Chizari M., Barrett L.M. and Al-Hassani S.T.S., 2009. An explicit numerical modelling of the water jet tube forming, Computational Materials Science, 45(2), 378–384.CrossRefGoogle Scholar
  8. Comte Bellot G. and Bailly C., 2003. Turbulence, CNRS Edition Par-is, Collection Sciences et Techniques de l’ingénieur. (in French)Google Scholar
  9. Gojon R., 2015. Etude de Jets Supersoniques Impactant Une Paroi Par Simulation Numérique: Analyse Aérodynamique et Acoustique Des Mécanismes De Rétroaction, Ph.D. Thesis, Ecole Centrale De Lyon, De Lyon. (in French)Google Scholar
  10. Guha A., Barron R.M. and Balachandar R., 2011. An experimental and numerical study of water jet cleaning process, Journal of Materials Processing Technology, 211(4), 610–618.CrossRefGoogle Scholar
  11. Hsu. C.Y., Liang. C.C., Teng T.L. and Nguyen A.T., 2013. A numerical study on high-speed water jet impact, Ocean Engineering, 72, 98–106.CrossRefGoogle Scholar
  12. Kaushik M., Kumar S. and Humrutha G., 2015. Review of computational fluid dynamics studies on jets, American Journal of Fluid Dynamics, 5(A), 1–11.Google Scholar
  13. Khan F., Milanovic I. and Hammad K., 2011. CFD modeling of submerged impinging jets with various separation distances, Proceedings of the 2011 ASEE Northeast Section Annual Conference, American Society for Engineering Education, Washington, DC.Google Scholar
  14. Liu M.B. and Liu G.R., 2010. Smoothed particle hydrodynamics (SPH): An overview and recent developments, Archives of Computational Methods in Engineering, 17(1), 25–76.MathSciNetCrossRefzbMATHGoogle Scholar
  15. Lush P.A., 1991. Comparison between analytical and numerical calculations of liquid impact on elastic-plastic solid, Journal of the Mechanics and Physics of Solids, 39(1), 145–155.CrossRefGoogle Scholar
  16. Mabrouki T., Raissi K. and Cornier A., 2000. Numerical simulation and experimental study of the interaction between a pure high-velocity waterjet and targets: Contribution to investigate the decoating process, Wear, 239(2), 260–273.CrossRefGoogle Scholar
  17. Mabrouki T. and Raissi K., 2002. Stripping process modelling: Interaction between a moving waterjet and coated target, International Journal of Machine Tools and Manufacture, 42(11), 1247–1258.CrossRefGoogle Scholar
  18. Mahjoub Saïd N., 2002. étude De La Diffusion D’Un Panaché Issu D’une Cheminée: Application A La Maitrise De La Dispersion D’un Polluant, Ph.D. Thesis, Ecole Nationale d’Ingénieurs de Monastir, Monastir. (in French)Google Scholar
  19. Rivière N., 2008. Etude Expérimentale D’une Injection Turbulente: Application Au Jet Impactant Une Surface Libre, Ph.D. Thesis, Université De Bordeaux 1, Bordeaux. (in French)Google Scholar
  20. Roux S., 2011. Contribution Expérimentale A L’Aérothermique D’un Jet En Impact Forcé Acoustiquement, Ph.D. Thesis, Universit'e de Poitiers, Poitiers. (in French)Google Scholar
  21. Roux S., Brizzi L.E. and Dorignacb E., 2009. Dynamique d’un jet rond impactant une paroi plane contraint par un forçage acoustique, 19éme Congrés Français de Mécanique, Marseille, 24–28. (in French)Google Scholar
  22. Saxena A. and Paul S., 2007. Numerical modelling of kerf geometry in abrasive water jet machining, International Journal of Abrasive Technology, 1(2), 208–230.CrossRefGoogle Scholar
  23. Sodjavi K., 2013. Etude Expérimentale de la Turbulence Dans Une Couche de Mélange Anisotherme, Ph.D. Thesis, Université Rennes, Rennes. (in French)Google Scholar

Copyright information

© Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • I. Ben Belgacem
    • 1
    Email author
  • L. Cheikh
    • 1
    • 2
  • E. M. Barhoumi
    • 3
  • W. Khan
    • 4
  • W. Ben Salem
    • 1
    • 5
  1. 1.Laboratoire de Génie Mécanique, Ecole Nationale d’Ingénieurs de MonastirUniversité de MonastirMonastirTunisia
  2. 2.Institut Préparatoire aux Etudes d’Ingénieur de MonastirUniversité de MonastirMonastirTunisia
  3. 3.Department of Electrical and Computer Engineering, College of EngineeringDhofar UniversitySalalahOman
  4. 4.University of WaterlooWaterlooCanada
  5. 5.Institut Supérieur des Arts et Métiers de MahdiaUniversité de MonastirMonastirTunisia

Personalised recommendations