Advertisement

China Ocean Engineering

, Volume 32, Issue 6, pp 696–705 | Cite as

Maximizing the Absorbed Power of A Point Absorber Using An FA-Based Optimized Model Predictive Control

  • Negar Rahimi
  • Reihaneh Kardehi MoghaddamEmail author
Article
  • 12 Downloads

Abstract

This paper presents an extended model predictive controller for maximizing the absorbed power of a point absorber wave energy converter. Owing to the great influence of controller parameters upon the absorbed power, the optimization of these parameters is carried out for the first time by a firefly algorithm (FA). Error, the difference between output velocity of buoy and input wave speed which leads to power maximization in the optimized MPC is compared with the classical MPC. Simulation results indicate that given the high accuracy and acceptable speed of the algorithm, it can adjust the parameters of the controller to the point where system error decreased effectively and the absorbed energy increased about 4 MW.

Key words

wave energy point absorber predictive controller firefly algorithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ali, E.S., 2015. Firefly algorithm based speed control of DC series motor powered by photovoltaic system, WSEAS Transactions on Power Systems, 10, 204–214.Google Scholar
  2. Babarit, A. and Clément, A.H., 2006. Optimal latching control of a wave energy device in regular and irregular waves, Applied Ocean Research, 28(2), 77–91.CrossRefGoogle Scholar
  3. Babarit, A., Guglielmi, M. and Clément, A.H., 2009. Declutching control of a wave energy converter, Ocean Engineering, 36(12–13), 1015–1024.CrossRefGoogle Scholar
  4. Castro, A., Carballo, R., Iglesias, G. and Rabuñal, J.R., 2014. Performance of artificial neural networks in nearshore wave power prediction, Applied Soft Computing, 23, 194–201.CrossRefGoogle Scholar
  5. Cretel, J.A.M., Lightbody, G., Thomas, G.P. and Lewis, A.W., 2011. Maximisation of energy capture by a wave-energy point absorber using model predictive control, IFAC Proceedings Volumes, 44(1), 3714–3721.CrossRefGoogle Scholar
  6. Fadaeenejad, M., Shamsipour, R., Rokni, S.D. and Gomes, C., 2014. New approaches in harnessing wave energy: with special attention to small islands, Renewable and Sustainable Energy Reviews, 29, 345–354.CrossRefGoogle Scholar
  7. Falnes, J., 2002. Ocean Waves and Oscillating Systems: Linear Interactions Including Wave-energy Extraction, Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  8. Fusco, F. and Ringwood, J.V., 2012. A study of the prediction requirements in real-time control of wave energy converters, IEEE Transactions on Sustainable Energy, 3(1), 176–184.CrossRefGoogle Scholar
  9. Fusco, F. and Ringwood, J.V., 2013. A simple and effective real-time controller for wave energy converters, IEEE Transactions on Sustainable Energy, 4(1), 21–30.CrossRefGoogle Scholar
  10. Garrido, A.J., Garrido, I., Amundarain, M., Alberdi, M. and De la Sen, M., 2012. Sliding-mode control of wave power generation plants, IEEE Transactions on Industry Applications, 48(6), 2372–2381.CrossRefGoogle Scholar
  11. Guo, B.Y., Patton, R., Jin, S.Y., Gilbert, J. and Parsons, D., 2018. Nonlinear modeling and verification of a heaving point absorber for wave energy conversion, IEEE Transactions on Sustainable Energy, 9(1), 453–461.CrossRefGoogle Scholar
  12. Henriques, J.C.C., Gato, L.M.C., Falcão, A.F.O., Robles, E. and Faÿ, F.X., 2016. Latching control of a floating oscillating-water-column wave energy converter, Renewable Energy, 90, 229–241.CrossRefGoogle Scholar
  13. Jama, M., Assi, A., Wahyudie, A. and Noura, H., 2012. Self-tunable fuzzy logic controller for the optimization of heaving wave energy converters, Proceedings of 2012 International Conference on Renewable Energy Research and Applications (ICRERA), IEEE, Nagasaki, Japan, pp. 1–6.Google Scholar
  14. Jama, M., Wahyudie, A., Assi, A. and Noura, H., 2013. Controlling heaving wave energy converter using function-based model predictive control technique, Proceedings of the 25th Chinese Control and Decision Conference (CCDC), IEEE, Guiyang, China, pp. 2705–2710.CrossRefGoogle Scholar
  15. Jama, M., Wahyudie, A., Assi, A. and Noura, H., 2014. An intelligent fuzzy logic controller for maximum power capture of point absorbers, Energies, 7(6), 4033–4053.CrossRefGoogle Scholar
  16. Kara, F., 2010. Time domain prediction of power absorption from ocean waves with latching control, Renewable Energy, 35(2), 423–434.CrossRefGoogle Scholar
  17. Li, G. and Belmont, M.R., 2014. Model predictive control of sea wave energy converters-Part I: a convex approach for the case of a single device, Renewable Energy, 69, 453–463.CrossRefGoogle Scholar
  18. López, I., Andreu, J., Ceballos, S., de Alegría, I.M. and Kortabarria, I., 2013. Review of wave energy technologies and the necessary power-equipment, Renewable and Sustainable Energy Reviews, 27, 413–434.CrossRefGoogle Scholar
  19. Milani, F. and Moghaddam, R.K., 2015. Wave energy converters control using improved MPC, Proceedings of 2015 IEEE International Congress on Technology, Communication and Knowledge (ICTCK), IEEE, Mashhad, Iran, pp. 61–70.CrossRefGoogle Scholar
  20. Milani, F. and Moghaddam, R.K., 2017. Power maximization of a point absorber wave energy converter using improved model predictive control, China Ocean Engineering, 31(4), 510–516.CrossRefGoogle Scholar
  21. Pastor, J. and Liu, Y.C., 2014. Frequency and time domain modeling and power output for a heaving point absorber wave energy converter, International Journal of Energy and Environmental Engineering, 5(2–3), 101.CrossRefGoogle Scholar
  22. Ringwood, J.V., Bacelli, G. and Fusco, F., 2014. Energy-maximizing control of wave-energy converters: The development of control system technology to optimize their operation, IEEE Control Systems Magazine, 34(5), 30–55.CrossRefGoogle Scholar
  23. Rossiter, J.A., 2003. Model-Based Predictive Control: A Practical Approach, CRC Press, New York, pp. 344.CrossRefGoogle Scholar
  24. Scattolini, R., 2009. Architectures for distributed and hierarchical model predictive control-a review, Journal of Process Control, 19(5), 723–731.CrossRefGoogle Scholar
  25. Schoen, M.P., Hals, J. and Moan, T., 2008. Wave prediction and fuzzy logic control of wave energy converters in irregular waves, Proceedings of the 16th Mediterranean Conference on Control and Automation, IEEE, Ajaccio, France, pp. 767–772.Google Scholar
  26. Veritas, D.N., 2011. Modelling and Analysis of Marine Operations, Recommended practice DNV-RP-H103.Google Scholar
  27. Wahyudie, A., Jama, M.A., Assi, A. and Noura, H., 2013. Sliding mode control for heaving wave energy converter, Proceedings of 2013 IEEE International Conference on Control Applications (CCA), IEEE, Hyderabad, India, pp. 989–994.CrossRefGoogle Scholar
  28. Wahyudie, A., Jama, M.A., Saeed, O., Noura, H., Assi, A. and Harib, K., 2015. Robust and low computational cost controller for improving captured power in heaving wave energy converters, Renewable Energy, 82, 114–124.CrossRefGoogle Scholar
  29. Wang, L.P., 2009. Model Predictive Control System Design and Implementation Using MATLAB®, Springer Science & Business Media, London, pp. 378.Google Scholar
  30. Yakub, F. and Mori, Y., 2014. Exploting the orthonormal function based on model predictive control for automotive application, Proceedings of the 14th International Conference on Systems Simulation AsianSim 2014, Springer, Kitakyushu, Japan, pp. 278–290.Google Scholar
  31. Yang, X.S., 2010. Firefly algorithm. stochastic test functions and design optimisation, International Journal of Bio-Inspired Computation, 2(2), 78–84.CrossRefGoogle Scholar
  32. Yang, X.S., 2014. Nature-Inspired Optimization Algorithms, Elsevier, Amsterdam, pp. 258.zbMATHGoogle Scholar
  33. Zhan, S.Y. and Li, G., 2018. Linear optimal noncausal control of wave energy converters, IEEE Transactions on Control Systems Technology, doi: 10.1109/TCST.2018.2812740.Google Scholar

Copyright information

© Chinese Ocean Engineering Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Mashhad BranchIslamic Azad UniversityMashhadIran

Personalised recommendations