Advertisement

Diabetology International

, Volume 9, Issue 1, pp 1–45 | Cite as

Japanese Clinical Practice Guideline for Diabetes 2016

  • Masakazu Haneda
  • Mitsuhiko Noda
  • Hideki Origasa
  • Hiroshi Noto
  • Daisuke Yabe
  • Yukihiro Fujita
  • Atsushi Goto
  • Tatsuya Kondo
  • Eiichi Araki
Guideline
  • 350 Downloads

Preface

Since its inception in 2004, the “Clinical Practice Guidelines for the Treatment of Diabetes” has attempted to promote evidence-based, rational, efficient and standardized clinical practice for diabetes in Japan and has undergone revisions every 3 years. Thus, the current edition represents the fifth revision.

Of note, in recent years, breakthroughs have been made in the management of diabetes and its complications, which include the approval of glucose-lowering agents with novel mechanisms of action for clinical use and the introduction and adoption of novel diagnostic and therapeutic modalities, such as continuous glucose monitoring (CGM) and sensor-augmented insulin pumps (SAP), in clinical practice. Again, renewed interest in diabetes-associated diseases has led to the accumulation of new evidence, as well as new developments at the Japan Diabetes Society (JDS), such as ongoing efforts directed toward the revision of the Classification of Diabetic Nephropathy, ensuring...

Keywords

Diabetes Guideline Diagnosis Treatment 

References

1 Guideline for the diagnosis of diabetes mellitus

  1. 1.
    Kosaka K,Akanuma Y, Goto Y, et al. Report of Committee on the classification and diagnostic criteria of diabetes mellitus.J Jpn Diabetes Soc. 1982;25:859–66 (in Japanese).Google Scholar
  2. 2.
    The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Report of the expert committee on the diagnosis and classification of diabetes mellitus. Diabetes Care. 1997;20:1183–97.Google Scholar
  3. 3.
    World Health Organization. Report of a WHO consultation: definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Geneva: World Health Organization Department of Noncommunicable Disease Surveillance. 1999. http://www.staff.ncl.ac.uk/philip.home/who_dmc.htm.
  4. 4.
    Kuzuya T, Nakagawa S, Satoh J, et al. Report of the Committee of Japan Diabetes Society on the classification and diagnostic criteria of diabetes mellitus. J Jpn Diabetes Soc. 1999;42:385–404 (in Japanese).Google Scholar
  5. 5.
    Seino Y, Nanjo K, Tajima N. et al. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus: The Committee of the Japan Diabetes Society on the diagnostic criteria of diabetes mellitus. Diabetol Int. 2010;1: 2.Google Scholar
  6. 6.
    Kadowaki T, Haneda M, Tominaga M, et al. Report of the Japan Diabetes Society’s Committee on the diagnostic criteria for diabetes mellitus and glucose metabolism disorder—a new category of fasting plasma glucose values : “high-normal”. J Jpn Diabetes Soc. 2008;51:281–3 (in Japanese).Google Scholar
  7. 7.
    Kawasaki E, Maruyama T, Imagawa A. et al. Diagnostic criteria for acute-onset type 1 diabetes mellitus (2012): Report of the Committee of Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus. Diabetol Int. 2013;4:221.Google Scholar
  8. 8.
    Tanaka S, Ohmori M, Awata T. et al. Erratum to: Diagnostic criteria for slowly progressive insulin-dependent (type 1) diabetes mellitus (SPIDDM) (2012): report by the Committee on Slowly Progressive Insulin-Dependent (Type 1) Diabetes Mellitus of the Japan Diabetes Society. Diabetol Int. 2015;6:149.Google Scholar
  9. 9.
    Imagawa A., Hanafusa T., Awata T. et al. Report of the Committee of the Japan Diabetes Society on the Research of Fulminant and Acute-onset Type 1 Diabetes Mellitus: New Diagnostic Criteria of Fulminant Type 1 Diabetes Mellitus (2012). Diabetol Int. 2012;3:179–183.Google Scholar
  10. 10.
    Imagawa A, Hanafusa T.et al. A nationwide survey of fulminant type 1 diabetes mellitus J Jpn Soc Inten Med. 2013;102:1829–1835 (in Japanese)Google Scholar

2 Goals and strategies for diabetes management

  1. 1.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS33). Lancet 1998;352:837–53 (level 1+).Google Scholar
  2. 2.
    Schauer PR, Bhatt DL, Kirwan JP, et al. Bariatric surgery versus intensive medical therapy for diabetes—3-year outcome. N Engl J Med. 2014;370:2002–13 (level. 1).Google Scholar
  3. 3.
    Sone H, Tanaka S, Tanaka S, et al. Serum level of triglycerides is a potent risk factor comparable to LDL cholesterol for coronary heart disease in Japanese patients with type 2 diabetes: subanalysis of the Japan Diabetes Complications Study (JDCS). J Clin Endocrinol Metab. 2011;96:3448–3456 (level 2).Google Scholar

3 Medical nutrition therapy (MNT)

  1. 1.
    Nakagawa Y, Ishikawa Y, Watanabe K, et al. Impact of the duration of diabetes and frequency of counseling on the effectiveness of dietitian-led medical nutrition therapy in patients with type 2 diabetes. J Jpn Diabetes Soc. 2014;57:813–9 (in Japanese) (level 3).Google Scholar
  2. 2.
    Pastors JG, Warshaw H, Daly A et al. The evidence for the effectiveness of medical nutrition therapy in diabetes management. Diabetes Care 2002;25:608–13 (level 3).Google Scholar

4 Physical activity/exercise

  1. 1.
    American Diabetes Association. Foundations of care and comprehensive medical evaluation. Sec. 3. In: Standards of Medical Care in Diabetes-2016. Diabetes Care 2016;39(Suppl 1):S23–35.Google Scholar
  2. 2.
    Marwick TH, Hordern MD, Miller T, et al. Exercise training for type 2 diabetes mellitus: impact on cardiovascular risk: a scientific statement from the American Heart Association. Circulation. 2009;119:3244–62.Google Scholar
  3. 3.
    Umpierre D, Ribeiro PA, Kramer CK et al: Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA. 2011;305:1790–9 (level 1).Google Scholar
  4. 4.
    Boulé NG, Kenny GP, Haddad E, et al. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia. 2003;46:1071–81 (level 1).Google Scholar
  5. 5.
    Kelley GA, Kelley KS: Effects of aerobic exercise on lipids and lipoproteins in adults with type 2 diabetes: a meta-analysis of randomized-controlled trials. Public Health. 2007;121:643–55 (level 1).Google Scholar
  6. 6.
    Schwingshackl L, Missbach B, Dias S, et al. Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes. a systematic review and network meta-analysis. Diabetologia. 2014;57:1789–97 (level 1).Google Scholar
  7. 7.
    Tonoli C, Heyman E, Roelands B, et al. Effects of different types of acute and chronic (training) exercise on glycaemic control in type 1 diabetes mellitus: a meta-analysis. Sports Med. 2012;42:1059–80 (level 3).Google Scholar
  8. 8.
    Kennedy A, Nirantharakumar K, Chimen M, et al. Does exercise improve glycaemic control in type 1 diabetes? a systematic review and meta-analysis. PLoS One 2013;8:e58861.  https://doi.org/10.1371/journal.pone.0058861 (level 3).
  9. 9.
    Chiang JL, Kirkman MS, Laffel LM, et al. Type 1 diabetes sourcebook authors: type 1 diabetes through the life span: a position statement of the American Diabetes Association. Diabetes Care. 2014;37:2034–54.Google Scholar

5 Treatment with glucose-lowering agents (excluding insulin)

  1. 1.
    United Kingdom Prospective Diabetes Study (UKPDS) 13. Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin dependent diabetes followed for three years. BMJ. 1995;310:83–8 (level 1+).Google Scholar
  2. 2.
    Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12 (level 2).Google Scholar
  3. 3.
    UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53 (level 1+).Google Scholar
  4. 4.
    Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes, 2015: a patient-centered approach: update to a position statement of the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care. 2015;381:140–9.Google Scholar
  5. 5.
    UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet. 1998;352:854–65 (level 1+).Google Scholar
  6. 6.
    Selvin E, Bolen S, Yeh HC, et al. Cardiovascular outcomes in trials of oral diabetes medications: a systematic review. Arch Intern Med. 2008;168:2070–80 (level 1+).Google Scholar
  7. 7.
    Zinman B, Wanner C, Lachin, JM, et al. Empagliflozin cardiovascular outcomes, and mortality in type 2 diabetes (EMPA-REG OUTCOME). N Engl J Med. 2015;373:2117–28 (level 1+).Google Scholar
  8. 8.
    Bennett WL, Wilson LM, Bolen S, et al. AHRQ comparative effectiveness reviews. oral diabetes medications for adults with type 2 diabetes: an update. Rockville (MD): Agency for Healthcare Research and Quality (US); 2011 (level 2).Google Scholar
  9. 9.
    Kaku K, Tajima N, Kawamori R, et al. Melbin Observational Research (MORE) study of metformin therapy in patients with type 2 diabetes mellitus. J Jpn Diabetes Soc. 2006;49:325–31 (in Japanese, level 2).Google Scholar
  10. 10.
    Meier C, Kraenzlin ME, Bodmer M, et al. Use of thiazolidinediones and fracture risk. Arch Intern Med. 2008;168:820–5 (level 3).Google Scholar
  11. 11.
    Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ. 2009;180:32–9 (level 2).Google Scholar
  12. 12.
    Home PD, Pocock SJ, Beck-Nielsen H, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373:2125–35 (level 1+).Google Scholar
  13. 13.
    Colhoun HM, Livingstone SJ, Looker HC, et al. Hospitalised hip fracture risk with rosiglitazone and pioglitazone use compared with other glucose-lowering drugs. Diabetologia. 2012;55:2929–37 (level 3).Google Scholar
  14. 14.
    Nissen SE, Nicholls SJ, Wolski K, et al. Comparison of pioglitazone vs glimepiride on progression of coronary atherosclerosis in patients with type 2 diabetes: the PERISCOPE randomized controlled trial. JAMA. 2008;299:1561–73 (level 1).Google Scholar
  15. 15.
    Tajima N, Kadowaki T, Odawara M, et al. Addition of sitagliptin to ongoing glimepiride therapy in Japanese patients with type 2 diabetes over 52 weeks leads to improved glycemic control. Diabetol Int. 2011;2:32–44 (level 1).Google Scholar
  16. 16.
    Kadowaki T, Kondo K. Efficacy and safety of teneligliptin added to glimepiride in Japanese patients with type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study with an open-label, long-term extension. Diabetes Obes Metab. 2014;16:418–25 (level 1).Google Scholar
  17. 17.
    Hermansen K, Kipnes M, Luo E, et al. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor, sitagliptin, in patients with type 2 diabetes mellitus inadequately controlled on glimepiride alone or on glimepiride and metformin. Diabetes Obes Metab. 2007;9:733–45 (level 1).Google Scholar
  18. 18.
    Iwakura T, Fujimoto K, Tahara Y, et al. A case of severe hypoglycemia induced by sitagliptin added to ongoing glimepiride therapy in patients with type 2 diabetes. J Jpn Diabetes Soc. 2010;53:505–8 (in Japanese, level 4).Google Scholar
  19. 19.
    Kadowaki T, Tajima N, Odawara M, et al. Efficacy and safety of sitagliptin add-on therapy in Japanese patients with type 2 diabetes on insulin monotherapy. Diabetol Int. 2013;4:160–72 (level 1).Google Scholar
  20. 20.
    Monami M, Dicembrini I, Mannucci E. Dipeptidyl peptidase-4 inhibitors and pancreatitis risk: a metaanalysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:48–56 (level 1).Google Scholar
  21. 21.
    White WB, Cannon CP, Heller SR, et al. Alogliptin after acute coronary syndrome in patients with type 2 diabetes (EXAMINE). N Engl J Med. 2013;369:1327–35 (level 1+).Google Scholar
  22. 22.
    Scirica BM, Bhatt DL, Braunwald E, et al. Saxagliptin and cardiovascular outcomes in patients with type 2 diabetes mellitus (SAVOR). N Engl J Med. 2013;369:1317–26 (level 1+).Google Scholar
  23. 23.
    Green JB, Bethel MA, Armstrong PW, et al. Effect of sitagliptin on cardiovascular outcomes in type 2 diabetes (TECOS). N Engl J Med. 2015;373:232–42 (level 1+).Google Scholar
  24. 24.
    Kaku K, Rasmussen MF, Clauson P, et al. Improved glycaemic control with minimal hypoglycaemia and no weight change with the once-daily human glucagon-like peptide-1 analogue liraglutide as add-on to sulphonylurea in Japanese patients with type 2 diabetes. Diabetes Obes Metab. 2010;12:341–7 (level 1).Google Scholar
  25. 25.
    Seino Y, Min KW, Niemoeller E, et al, Investigators EG-LAS. Randomized, double-blind, placebo-controlled trial of the once-daily GLP-1 receptor agonist lixisenatide in Asian patients with type 2 diabetes insufficiently controlled on basal insulin with or without a sulfonylurea (GetGoal-L-Asia). Diabetes Obes Metab. 2012;14:910–7 (level 1).Google Scholar
  26. 26.
    Monami M, Dicembrini I, Nardini C, et al. Glucagon-like peptide-1 receptor agonists and pancreatitis: a meta-analysis of randomized clinical trials. Diabetes Res Clin Pract. 2014;103:269–75 (level 1).Google Scholar
  27. 27.
    Pfeffer MA, Claggett B, Diaz R. Lixisenatide in patients with type 2 diabetes and acute coronary syndrome (ELIXA). N Engl J Med. 2015;373:2247–57 (level 1+).Google Scholar
  28. 28.
    Monami M, Nardini C, Mannucci E. Efficacy and safety of sodium glucose co-transport-2 inhibitors in type 2 diabetes: a meta-analysis of randomized clinical trials. Diabetes Obes Metab. 2014;16:457–66 (level 1).Google Scholar
  29. 29.
    Vasilakou D, Karagiannis T, Athanasiadou E, et al. Sodium-glucose cotransporter 2 inhibitors for type 2 diabetes: a systematic review and meta-analysis. Ann Intern Med. 2013;159:262–74 (level 1).Google Scholar
  30. 30.
    Bolinder J, Ljunggren O, Johansson L, et al. Dapagliflozin maintains glycaemic control while reducing weight and body fat mass over 2 years in patients with type 2 diabetes mellitus inadequately controlled on metformin. Diabetes Obes Metab. 2014;16:159–69 (level 1).Google Scholar
  31. 31.
    Charpentier G, Fleury F, Kabir M, et al. Improved glycaemic control by addition of glimepiride to metformin monotherapy in type 2 diabetic patients. Diabet Med. 2001;18:828–34 (level 1).Google Scholar
  32. 32.
    Moses R, Slobodniuk R, Boyages S, et al. Effect of repaglinide addition to metformin monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 1999;22:119–24 (level 1).Google Scholar
  33. 33.
    Van Gaal L, Maislos M, Schernthaner G, et al. Miglitol combined with metformin improves glycaemic control in type 2 diabetes. Diabetes Obes Metab. 2001;3:326–31 (level 1).Google Scholar
  34. 34.
    Einhorn D, Rendell M, Rosenzweig J, et al. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. The Pioglitazone 027 Study Group. Clin Ther. 2000;22:1395–409 (level 1).Google Scholar
  35. 35.
    Taskinen MR, Rosenstock J, Tamminen I, et al. Safety and efficacy of linagliptin as add-on therapy to metformin in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled study. Diabetes Obes Metab. 2011;13:65–74 (level 1).Google Scholar
  36. 36.
    DeFronzo RA, Ratner RE, Han J et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care. 2005;28:1092–100 (level 1).Google Scholar
  37. 37.
    Derosa G, Salvadeo SA, D’Angelo A, et al. Metabolic effect of repaglinide or acarbose when added to a double oral antidiabetic treatment with sulphonylureas and metformin: a double-blind, cross-over, clinical trial. Curr Med Res Opin. 2009;25:607–15 (level 1).Google Scholar
  38. 38.
    Scheen AJ, Tan MH, Betteridge DJ, et al. Long-term glycaemic control with metformin-sulphonylurea pioglitazone triple therapy in PROactive (PROactive 17). Diabet Med. 2009;26:1033–9 (level 3).Google Scholar
  39. 39.
    Lukashevich V, Prato SD, Araga M, et al. Efficacy and safety of vildagliptin in patients with type 2 diabetes mellitus inadequately controlled with dual combination of metformin and sulphonylurea. Diabetes Obes Metab. 2014;165:403–9 (level 1).Google Scholar
  40. 40.
    Kendall DM, Riddle MC, Rosenstock J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care. 2005;285:1083–91 (level 1).Google Scholar
  41. 41.
    Wilding JP, Charpentier G, Hollander P, et al. Efficacy and safety of canagliflozin in patients with type 2 diabetes mellitus inadequately controlled with metformin and sulphonylurea: a randomised trial. Int J Clin Pract. 2013;6712:1267–82 (level 1).Google Scholar

6 Insulin therapy

  1. 1.
    The Diabetes Control and Complications Trial (DCCT) Research Group. Early worsening of diabetic retinopathy in the diabetes control and complications trial. Arch Ophthalmol. 1998;116:874–86 (level 1+).Google Scholar
  2. 2.
    Takahashi Y, Takayama S, Ito T, et al. Clinical features of eighty-six diabetic patients with post-treatment painful neuropathy. J Jpn Diabetes Soc. 1998;41:165–70 (in Japanese, level 4).Google Scholar
  3. 3.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. United Kingdom Prospective Diabetes Study 24: a 6-year, randomized, controlled trial comparing sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy. Ann Intern Med. 1998;128:165–75 (level 1).Google Scholar
  4. 4.
    The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86 (level 1+).Google Scholar
  5. 5.
    The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT). Diabetologia. 1998;41:416–23 (level 1+).Google Scholar
  6. 6.
    Lawson ML, Gerstein HC, Tsui E, et al. Effect of intensive therapy on early macrovascular disease in young individuals with type 1 diabetes: a systematic review and meta-analysis. Diabetes Care. 1999;22(Suppl 2):B35–9 (level 1).Google Scholar
  7. 7.
    Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med. 2005;353:2643–53 (level 1+).Google Scholar
  8. 8.
    Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28:103–17 (level 1).Google Scholar
  9. 9.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53 (level 1+).Google Scholar
  10. 10.
    Shichiri M, Kishikawa H, Ohkubo Y, et al. Long-term results of the Kumamoto Study on optimal diabetes control in type 2 diabetic patients. Diabetes Care. 2000;23(Suppl 2):B21–9 (level 1).Google Scholar
  11. 11.
    Holman RR, Thorne KI, Farmer AJ, et al. Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes. N Engl J Med. 2007;357:1716–30 (level 1).Google Scholar
  12. 12.
    Liebl A, Prager R, Binz K, et al. Comparison of insulin analogue regimens in people with type 2 diabetes mellitus in the PREFER study: a randomized controlled trial. Diabetes Obes Metab. 2009;11:45–52 (level 1).Google Scholar
  13. 13.
    Feinglos MN, Thacker CR, Lobaugh B, et al. Combination insulin and sulfonylurea therapy in insulin requiring type 2 diabetes mellitus. Diabetes Res Clin Pract. 1998;39:193–9 (level 1).Google Scholar
  14. 14.
    Wright A, Burden AC, Paisey RB, et al. Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the UK Prospective Diabetes Study (UKPDS 57). Diabetes Care. 2002;25:330–6 (level 1).Google Scholar
  15. 15.
    Ozbek M, Erdogan M, Karadeniz M, et al. Preprandial repaglinide decreases exogenous insulin requirements and HbA1c levels in type 2 diabetic patients taking intensive insulin treatment. Acta Diabetol. 2006;43:148–51 (level 3).Google Scholar
  16. 16.
    De Luis DA, Aller R, Cuellar L, et al. Effect of repaglinide addition to NPH insulin monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care. 2001;24:1844–55 (level 3).Google Scholar
  17. 17.
    Yamada S, Watanabe M, Funae O, et al. Effect of combination therapy of a rapid-acting insulin secretagogue (glinide) with premixed insulin in type 2 diabetes mellitus. Intern Med. 2007;46:1893–7 (level 3).Google Scholar
  18. 18.
    Avilés-Santa L, Sinding J, Raskin P. Effects of metformin in patients with poorly controlled, insulin-treated type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Ann Intern Med. 1999;131:182–8 (level 1).Google Scholar
  19. 19.
    Relimpio F, Pumar A, Losada F, et al. Adding metformin versus insulin dose increase in insulin-treated but poorly controlled type 2 diabetes mellitus: an open-label randomized trial. Diabet Med. 1998;15:997–1002 (level 1).Google Scholar
  20. 20.
    Yki-Järvinen H, Ryysy L, Nikkilä K, et al. Comparison of bedtime insulin regimens in patients with type 2 diabetes mellitus: a randomized, controlled trial. Ann Intern Med. 1999;130:389–96 (level 1).Google Scholar
  21. 21.
    Ponssen HH, Elte JW, Lehert P, et al. Combined metformin and insulin therapy for patients with type 2 diabetes mellitus. Clin Ther. 2000;22:709–18 (level 1).Google Scholar
  22. 22.
    Juntti-Berggren L, Pigon J, Hellström P, et al. Influence of acarbose on post-prandial insulin requirements in patients with type 1 diabetes. Diabetes Nutr Metab. 2000;13:7–12 (level 1).Google Scholar
  23. 23.
    Han A, Katoh S, Nemoto M, et al. Effect of combination therapy of premixtured 50 R and voglibose in patients with type 2 diabetes. J Jpn Diabetes Soc. 2004;47:137–40 (in Japanese, level 1).Google Scholar
  24. 24.
    Schwartz S, Raskin P, Fonseca ,V et al. Effect of troglitazone in insulin-treated patients with type II diabetes mellitus: Troglitazone and Exogenous Insulin Study Group. N Engl J Med. 1998;338:861–6 (level 1).Google Scholar
  25. 25.
    Mattoo V, Eckland D, Widel M, et al. Metabolic effects of pioglitazone in combination with insulin in patients with type 2 diabetes mellitus whose disease is not adequately controlled with insulin therapy: results of a six-month, randomized, double-blind, prospective, multicenter, parallel-group study. Clin Ther. 2005;27:554–67 (level 1).Google Scholar
  26. 26.
    Bhat R, Bhansali A, Bhadada S, et al. Effect of pioglitazone therapy in lean type 1 diabetes mellitus. Diabetes Res Clin Pract. 2007;78:349–54 (level 1).Google Scholar
  27. 27.
    Raskin P, Rendell M, Riddle MC, et al. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care. 2001;24:1226–32 (level 1).Google Scholar
  28. 28.
    Vilsbøll T, Rosenstock J, Yki-Järvinen H, et al. Efficacy and safety of sitagliptin when added to insulin therapy in patients with type 2 diabetes. Diabetes Obes Metab. 2010;12:167–77 (level 1).Google Scholar
  29. 29.
    Eng C, Kramer CK, Zinman B, Retnakaran R. Glucagon-like peptide-1 receptor agonist and basal insulin combination treatment for the management of type 2 diabetes: a systematic review and meta-analysis. Lancet. 2014;384:2228–34 (level 1).Google Scholar
  30. 30.
    Holman RR, Paul SK, Bethel MA, et al. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med. 2008;359:1577–89 (level 1+).Google Scholar
  31. 31.
    The ACCORD Study Group. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med. 2011;364:818–28 (level 1+).Google Scholar

7 Diabetes Self-management education and support and education for the self-management of diabetes

  1. 1.
    Tshiananga JK, Kocher S, Weber C, et al. The effect of nurse-led diabetes self-management education on glycosylated hemoglobin and cardiovascular risk factors: a meta-analysis. Diabetes Educ. 2012;38:108–23 (level 1).Google Scholar
  2. 2.
    Minet L, Moller S, Vach W, et al. Mediating the effect of self-care management intervention in type 2 diabetes: a meta-analysis of 47 randomised controlled trials. Patient Educ Couns. 2010;80:29–41 (level 1).Google Scholar
  3. 3.
    Deakin T, McShane CE, Cade JE. Group based training for self-management strategies in people with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2005:CD003417 (level 1).Google Scholar
  4. 4.
    Duke SA, Colagiuri S, Colagiuri R. Individual patient education for people with type 2 diabetes mellitus. Cochrane Database Syst Rev. 2009:CD005268 (level 1).Google Scholar
  5. 5.
    The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86 (level 1).Google Scholar
  6. 6.
    Karter AJ, Ackerson LM, Darbinian JA, et al. Self-monitoring of blood glucose levels and glycemic control: the Northern California Kaiser Permanente Diabetes registry. Am J Med. 2001;111:1–9 (level 3).Google Scholar
  7. 7.
    Avery L, Flynn D, van Wersch A, et al. Changing physical activity behavior in type 2 diabetes: a systematic review and meta-analysis of behavioral interventions. Diabetes Care. 2012;35:2681–9 (level 1).Google Scholar
  8. 8.
    Young RJ, Taylor J, Friede T, et al. Pro-active call center treatment support (PACCTS) to improve glucose control in type 2 diabetes: a randomized controlled trial. Diabetes Care. 2005;28:278–82 (level 1).Google Scholar
  9. 9.
    Katon WJ, Lin EH, Von Korff M, et al. Collaborative care for patients with depression and chronic illnesses. N Engl J Med. 2010;363:2611–20 (level 1).Google Scholar
  10. 10.
    Huang Y, Wei X, Wu T, et al. Collaborative care for patients with depression and diabetes mellitus: a systematic review and meta-analysis. BMC Psychiatry. 2013;13:260 (level 1).Google Scholar

8 Diabetic retinopathy

  1. 1.
    Klein R, Klein BE, Moss SE, et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: IX. Fouryear incidence and progression of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol. 1989;107:237–43 (level 2).Google Scholar
  2. 2.
    Klein R, Klein BE, Moss SE, et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: X. Fouryear incidence and progression of diabetic retinopathy when age at diagnosis is 30 years or more. Arch Ophthalmol. 1989;107:244–9 (level 2).Google Scholar
  3. 3.
    Younis N, Broadbent DM, Vora JP, et al. Incidence of sight-threatening retinopathy in patients with type 2 diabetes in the Liverpool Diabetic Eye Study: a cohort study. Lancet. 2003;361:195–200 (level 2).Google Scholar
  4. 4.
    Misra A, Bachmann MO, Greenwood RH, et al. Trends in yield and effects of screening intervals during 17 years of a large UK community-based diabetic retinopathy screening programme. Diabet Med. 2009;26:1040–7 (level 2).Google Scholar
  5. 5.
    Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86 (level 1+).Google Scholar
  6. 6.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet. 1998;352:837–53 (level 1+).Google Scholar
  7. 7.
    Chew EY, Ambrosius WT, Davis MD, et al. Effects of medical therapies on retinopathy progression in type 2 diabetes. N Engl J Med. 2010;363:233–44 (level 1+).Google Scholar
  8. 8.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317:703–13 (level 1+).Google Scholar
  9. 9.
    UK Prospective Diabetes Study (UKPDS) Group. Risks of progression of retinopathy and vision loss related to tight blood pressure control in type 2 diabetes mellitus: UKPDS 69. Arch Opthalmol. 2004;122:1631–40 (level 1+).Google Scholar
  10. 10.
    Keech AC, Mitchell P, Summanen PA, et al. Effect of fenofibrate on the need for laser treatment for diabetic retinopathy (FIELD study): a randomised controlled trial. Lancet. 2007;370:1687–97 (level 1+).Google Scholar
  11. 11.
    The Diabetic Retinopathy Study Research Group. Photocoagulation treatment of proliferative diabetic retinopathy: the second report of diabetic retinopathy study findings. Ophthalmology. 1978;85:82–106 (level 1).Google Scholar
  12. 12.
    Evans JR, Michelessi M, Virgili G. Laser photocoagulation for proliferative diabetic retinopathy. Cochrane Database Syst Rev. 2014;11:CD011234 (level 1).Google Scholar
  13. 13.
    Chew EY, Mills JL, Metzger BE, et al. Metabolic control and progression of retinopathy: the diabetes in early pregnancy study. National Institute of Child Health and Human Development Diabetes in Early Pregnancy Study. Diabetes Care. 1995;18:631–7 (level 2).Google Scholar
  14. 14.
    Soubrane G, Canivet J, Coscas G. Influence of pregnancy on the evolution of background retinopathy. Int Ophthalmol. 1985;8:249–55 (level 2).Google Scholar
  15. 15.
    Diabetes Control and Complications Trial Research Group. Effect of pregnancy on microvascular complications in the diabetes control and complications trial. Diabetes Care. 2000;23:1084–91 (level 3).Google Scholar
  16. 16.
    Rossing P, Hougaard P, Parving HH. Risk factors for development of incipient and overt diabetic nephropathy in type 1 diabetic patients: a 10-year prospective observational study. Diabetes Care. 2002;25:859–64 (level 2).Google Scholar
  17. 17.
    Cheung N, Wang JJ, Klein R, et al. Diabetic retinopathy and the risk of coronary heart disease: the Atherosclerosis Risk in Communities Study. Diabetes Care. 2007;30:1742–6 (level 2).Google Scholar
  18. 18.
    Cheung N, Rogers S, Couper DJ, et al. Is diabetic retinopathy an independent risk factor for ischemic stroke? Stroke. 2007;38:398–401 (level 2).Google Scholar
  19. 19.
    Gerstein HC, Ambrosius WT, Danis R, et al. Diabetic retinopathy, its progression, and incident cardiovascular events in the ACCORD trial. Diabetes Care. 2013;36:1266–71 (level 3).Google Scholar
  20. 20.
    Kawasaki R, Tanaka S, Tanaka S, et al. Risk of cardiovascular diseases is increased even with mild diabetic retinopathy: the Japan diabetes complications study. Ophthalmology. 2013;120:574–82 (level 2).Google Scholar

9 Diabetic nephropathy

  1. 1.
    Katayama S, Moriya T, Tanaka S, et al. Low transition rate from normo- and low microalbuminuria to proteinuria in Japanese type 2 diabetic individuals: the Japan Diabetes Complications Study (JDCS). Diabetologia. 2011;54:1025–31 (level 2).Google Scholar
  2. 2.
    Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28:103–17 (level 1).Google Scholar
  3. 3.
    Patel A, MacMahon S, Chalmers J, et al. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med. 2008;358:2560–72 (level 1+).Google Scholar
  4. 4.
    Shurraw S, Hemmelgarn B, Lin M, et al. Association between glycemic control and adverse outcomes in people with diabetes mellitus and chronic kidney disease: a population-based cohort study. Arch Intern Med. 2011;171:1920–7 (level 3).Google Scholar
  5. 5.
    UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ. 1998;317:703–13 (level 1+).Google Scholar
  6. 6.
    Makino H, Haneda M, Babazono T, et al. Prevention of transition from incipient to overt nephropathy with telmisartan in patients with type 2 diabetes. Diabetes Care. 2007;30:1577–8 (level 1+).Google Scholar
  7. 7.
    Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:85–60 (level 1+).Google Scholar
  8. 8.
    Colhoun HM, Betteridge DJ, Durrington PN, et al. Effects of atorvastatin on kidney outcomes and cardiovascular disease in patients with diabetes: an analysis from the Collaborative Atorvastatin Diabetes Study (CARDS). Am J Kidney Dis. 2009;54:810–9 (level 1+).Google Scholar
  9. 9.
    Kimura S, Inoguchi T, Yokomizo H, et al. Randomized comparison of pitavastatin and pravastatin treatment on the reduction of urinary albumin in patients with type 2 diabetic nephropathy. Diabetes Obes Metab. 2012;14:666–9 (level 1+).Google Scholar
  10. 10.
    Haneda M, Kikkawa R, Sakai H, et al. Antiproteinuric effect of candesartan cilexetil in Japanese subjects with type 2 diabetes and nephropathy. Diabetes Res Clin Pract. 2004;66:87–95 (level 1).Google Scholar
  11. 11.
    Casas JP, Chua W, Loukogeorgakis S et al. Effect of inhibitors of the renin–angiotensin system and other antihypertensive drugs on renal outcomes: systematic review and meta-analysis. Lancet. 2005;366:2026–33 (level 1+).Google Scholar
  12. 12.
    Suckling RJ, He FJ, Macgregor GA. Altered dietary salt intake for preventing and treating diabetic kidney disease. Cochrane Database Syst Rev. 2010:CD006763 (level 1).Google Scholar
  13. 13.
    Imanishi M, Yoshioka K, Okumura M, et al. Sodium sensitivity related to albuminuria appearing before hypertension in type 2 diabetic patients. Diabetes Care. 2001;24:111–6 (level 2).Google Scholar
  14. 14.
    Hansen HP, Tauber-Lassen E, Jensen BR, et al. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002;62:220–8 (level 1).Google Scholar
  15. 15.
    Koya D, Haneda M, Inomata S, et al. Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: a randomised controlled trial. Diabetologia. 2009;52:2037–45 (level 1).Google Scholar
  16. 16.
    Kuriyama S, Tomonari H, Yoshida H, et al. Reversal of anemia by erythropoietin therapy retards the progression of chronic renal failure, especially in nondiabetic patients. Nephron. 1997;77:176–85 (level 2).Google Scholar
  17. 17.
    Matsuo S, Imai E, Horio M, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;5:982–92.Google Scholar
  18. 18.
    Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol. 2013;24:302–8.Google Scholar
  19. 19.
    Horio M, Imai E, Yasuda Y. Collaborators Developing the Japanese Equation for Estimated GFR: GFR estimation using standardized serum cystatin C in Japan. Am J Kidney Dis. 2013;61:197–203.Google Scholar

10 Diabetic neuropathy

  1. 1.
    Hotta N, Toyoda R, et al. Diabetic neuropathy. Kanehara, Tokyo ;1996. p. 145–54 (in Japanese).Google Scholar
  2. 2.
    Boulton AJ, Vinik AI, Arezzo JC, et al. Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care. 2005;28:956–62.Google Scholar
  3. 3.
    Tesfaye S, Chaturvedi N, Eaton SE, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med 2005;352:341–50 (level 2).Google Scholar
  4. 4.
    The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86 (level 1+).Google Scholar
  5. 5.
    Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract. 1995;28:103–17 (level 1).Google Scholar
  6. 6.
    Max MB, Culnane M, Schafer SC, et al. Amitriptyline relieves diabetic neuropathy pain in patients with normal or depressed mood. Neurology 1987;37:589–96 (level 1).Google Scholar
  7. 7.
    Freeman R, Durso-Decruz E, Emir B. Efficacy, safety, and tolerability of pregabalin treatment for painful diabetic peripheral neuropathy: findings from seven randomized, controlled trials across a range of doses. Diabetes Care. 2008;31:1448–54 (level 1).Google Scholar
  8. 8.
    Satoh J, Yagihashi S, Baba M, et al. Efficacy and safety of pregabalin for treating neuropathic pain associated with diabetic peripheral neuropathy: a 14 week, randomized, double-blind, placebo-controlled trial. Diabet Med. 2011;28:109–16 (level 1).Google Scholar
  9. 9.
    Pritchett YL, McCarberg BH, Watkin JG, et al. Duloxetine for the management of diabetic peripheral neuropathic pain: response profile. Pain Med. 2007;8:397–409 (level 1).Google Scholar
  10. 10.
    Yasuda H, Hotta N, Nakao K, et al. Superiority of duloxetine to placebo in improving diabetic neuropathic pain: results of a randomized controlled trial in Japan. J Diabetes Investig. 2011;2:132–9 (level 1).Google Scholar
  11. 11.
    Charles M, Soedamah-Muthu SS, Tesfaye S, et al. Low peripheral nerve conduction velocities and amplitudes are strongly related to diabetic microvascular complications in type 1 diabetes: the EURODIAB Prospective Complications Study. Diabetes Care. 2010;33:2648–53 (level 4).Google Scholar
  12. 12.
    Tesfaye S, Boulton AJ, Dyck PJ et al. Diabetic neuropathies: update on definitions, diagnostic criteria, estimation of severity, and treatments. Diabetes Care. 2010;33:2285–2293Google Scholar
  13. 13.
    Japanese Study Group on Diabetic Neuropathy. Simplified diagnostic criteria and clinical staging of diabetic polyneuropathy. Peripheral Nerve. 2012;23:109–111Google Scholar

11 Diabetic foot

  1. 1.
    International Working Group on the Diabetic Foot (IWGDF). Guidance 2015. http://iwgdf.org/guidelines-2/.
  2. 2.
    Frykberg RG, Zgonis T, Armstrong DG, et al. Diabetic foot disorders: a clinical practice guideline (2006 revision). J Foot Ankle Surg. 2006;45:S1–66.Google Scholar
  3. 3.
    Resnick HE, Carter EA, Lindsay R, et al. Relation of lower-extremity amputation to all-cause and cardiovascular disease mortality in American Indians: the Strong Heart Study. Diabetes Care. 2004;27:1286–93 (level 2).Google Scholar
  4. 4.
    Krishinan S, Nash F, Baker N, et al. Reduction in diabetic amputations over 11 years in a defined UK population benefits of multidisciplinary team work and continuous prospective audit. Diabetes Care. 2008;31:99–101 (level 2).Google Scholar
  5. 5.
    Malone JM, Snyder M, Anderson G, et al. Prevention of amputation by diabetic education. Am J Surg. 1989;1508:520–4 (level 1).Google Scholar
  6. 6.
    Stratton IM, Adler A, Neil HAW, et al. Association of glycaemia with macrovascular and microvascular complications of type 2diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12 (level 2).Google Scholar
  7. 7.
    Edmonds ME, Blundell MP, Morris ME, et al. Improved survival of the diabetic foot: the role of a specialized foot clinic. Q J Med. 1986;60:763–71 (level 4).Google Scholar
  8. 8.
    Armstrong DG, Bharara M, White M, et al. The impact and outcomes of establishing an integrated interdisciplinary surgical team to care for the diabetic foot. Diabetes Metab Res Rev. 2012;28:514–8 (level 3).Google Scholar
  9. 9.
    Rooke TW, Hirsch AT, Misra S, et al. 2011 ACCF/AHA focused update of the guideline for the management of patients with peripheral artery disease (updating the 2005 guideline): a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2011;58:2020–45.Google Scholar
  10. 10.
    Lipsky BA, Berendt AR, Cornia PB, et al. 2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections. Clin Infect Dis. 2012;54:e132–73.Google Scholar
  11. 11.
    Holstein P, Ellitsgaard N, Olsen BB, et al. Decreasing incidence of major amputations in people with diabetes. Diabetologia. 2000;43:844–7 (level 4).Google Scholar
  12. 12.
    Valensi P, Girod I, Baron F, et al. Quality of life and clinical correlates in patients with diabetic foot ulcers. Diabetes Metab. 2005;31:263–71 (level 4).Google Scholar
  13. 13.
    Ribu L, Birkeland K, Hanestad BR, et al. A longitudinal study of patients with diabetes and foot ulcers and their health-related quality of life: wound healing and quality-of-life changes. J Diabetes Complications. 2008;22:400–7 (level 2).Google Scholar
  14. 14.
    Brownrigg JR, Davey J, Holt PJ, et al. The association of ulceration of the foot with cardiovascular and all cause mortality in patients with diabetes. Diabetologia. 2012;55:2906–12 (level 2).Google Scholar

12 Diabetic macroangiopathy

  1. 1.
    Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med. 2003;348:383–93 (level 1).Google Scholar
  2. 2.
    Miller ME, Williamson JD, Gerstein HC, et al, ACCORD Investigators. Effects of randomization to intensive glucose control on adverse events, cardiovascular disease, and mortality in older versus younger adults in the ACCORD Trial. Diabetes Care. 2014;37:634–43 (level 3).Google Scholar
  3. 3.
    Wing RR, Look AHEAD Research Group. Long-term effects of a lifestyle intervention on weight and cardiovascular risk factors in individuals with type 2 diabetes mellitus: four-year results of the Look AHEAD trial. Arch Intern Med. 2010;170:1566–75 (level 1).Google Scholar
  4. 4.
    Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ. 2000;321:405–12 (level 2).Google Scholar
  5. 5.
    Adler AI, Stratton IM, Neil HA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ. 2000;321:412–9 (level 2).Google Scholar
  6. 6.
    de Vries FM, Denig P, Pouwels KB et al. Primary prevention of major cardiovascular and cerebrovascular events with statins in diabetic patients: a meta-analysis. Drugs 2012;72:2365–73 (level 1).Google Scholar
  7. 7.
    de Vries FM, Kolthof J, Postma MJ, et al. Efficacy of standard and intensive statin treatment for the secondary prevention of cardiovascular and cerebrovascular events in diabetes patients: a meta-analysis. PLoS One. 2014;9:e111247 (level 1).Google Scholar
  8. 8.
    Simpson SH, Gamble JM, Mereu L, et al. Effect of aspirin dose on mortality and cardiovascular events in people with diabetes: a meta-analysis. J Gen Intern Med. 2011;26:1336–44 (level 2).Google Scholar
  9. 9.
    Baigent C, Blackwell L, Collins R, et al, Antithrombotic Trialists’ (ATT) Collaboration. Aspirin in the primary and secondary prevention of vascular disease: collaborative meta-analysis of individual participant data from randomised trials. Lancet. 2009;373:1849–60 (level 1+).Google Scholar

13 Diabetes and periodontitis

  1. 1.
    Takahashi K, Nishimura F, Kurihara M, et al. Subgingival microflora and antibody responses against periodontal bacteria of young Japanese patients with type 1 diabetes mellitus. J Int Acad Periodontol. 2001;3:104–11 (level 3).Google Scholar
  2. 2.
    Morita I, Inagaki K, Nakamura F, et al. Relationship between periodontal status and levels of glycated hemoglobin. J Dent Res. 2012;91:161–6 (level 3).Google Scholar
  3. 3.
    Borgnakke WS, Ylöstalo PV, Taylor GW, et al. Effect of periodontal disease on diabetes: systematic review of epidemiologic observational evidence. J Periodontol. 2013;84:S135–52 (level 2).Google Scholar
  4. 4.
    Katagiri S, Nitta H, Nagasawa T, et al. Effect of glycemic control on periodontitis in type 2 diabetic patients with periodontal disease. J Diabetes Investig. 2013;4:320–5 (level 3).Google Scholar
  5. 5.
    Demmer RT, Jacobs DR, Desvarieux M. Periodontal disease and incident type 2 diabetes: results from the First National Health and Nutrition Examination Survey and its epidemiologic follow-up study. Diabetes Care. 2008;31:1373–9 (level 2).Google Scholar
  6. 6.
    Engebretson S, Kocher T. Evidence that periodontal treatment improves diabetes outcomes: a systematic review and meta-analysis. J Periodontol. 2013;84:S153–69 (level 1).Google Scholar

14 Diabetes complicated by obesity (including metabolic syndrome)

  1. 1.
    Matsuzawa Y, Sakata T, Ikeda Y, et al: Guidelines for the management of obesity disease 2006. 2006:1–91 (in Japanese).Google Scholar
  2. 2.
    Saito Y, Shirai A, Nakamura M, et al: Diagnostic criteria for obesity disease 2011. 2011:1–78 (in Japanese).Google Scholar
  3. 3.
    Van Gaal L, Scheen A. Weight management in type 2 diabetes: current and emerging approaches to treatment. Diabetes Care. 2015;38:1161–72.Google Scholar
  4. 4..
    Madigan CD, Aveyard P, Jolly K, et al. Regular self-weighing to promote weight maintenance after intentional weight loss: a quasi-randomized controlled trail. J Public Health (Oxf). 2014;36:259–67 (level 2).Google Scholar
  5. 5.
    Ribaric G, Buchwald JN, McGlennon TW. Diabetes and weight in comparative studies of bariatric surgery vs conventional medical therapy: a systematic review and meta-analysis. Obes Surg. 2014;24:437–55 (level 2).Google Scholar
  6. 6.
    Committee on Diagnostic Criteria for Metabolic Syndrome. Metabolic syndrome: its definition and diagnostic criteria. J Jpn Soc Intern. 2005;94:794–9 (in Japanese).Google Scholar

15 Hypertension associated with diabetes

  1. 1.
    Kengne AP, Patel A, Barzi F, et al, Asia Pacific Cohort Studies Collaboration. Systolic blood pressure, diabetes and the risk of cardiovascular diseases in the Asia-Pacific region. J Hypertens. 2007;25:205–13 (level 2).Google Scholar
  2. 2.
    Patel A, MacMahon S, Chalmers J, et al. Effects of a fixed combination of perindopril and indapamide on macrovascular and microvascular outcomes in patients with type 2 diabetes mellitus (the ADVANCE trial): a randomised controlled trial. Lancet. 2007;370:829–40 (level 1+).Google Scholar
  3. 3.
    American Diabetes Association. Microvascular complications and foot care: standards of medical care in diabetes 2016. Diabetes Care. 2016;39:S72–80.Google Scholar
  4. 4.
    American Diabetes Association. Standards of medical care in diabetes 2010. Diabetes Care. 2010;30:S4–10.Google Scholar
  5. 5.
    Bangalore S, Kumar S, Lobach I, et al. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesian random-effects meta analyses of randomized trials. Circulation. 2011;123:2799–810 (level 1).Google Scholar
  6. 6.
    Eguchi K, Hoshide S, Ishikawa S, et al. Aggressive blood pressure-lowering therapy guided by home blood pressure monitoring improves target organ damage in hypertensive patients with type 2 diabetes/prediabetes. J Clin Hypertens. 2012;14:422–8 (level 3).Google Scholar
  7. 7.
    Cooper-DeHoff RM, Gong Y, Handberg EM, et al. Tight blood pressure control and cardiovascular outcomes among hypertensive patients with diabetes and coronary artery disease. JAMA. 2010;304:61–8 (level 3).Google Scholar
  8. 8.
    Haller H, Ito S, Izzo JL Jr, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med. 2011;364:907–17 (level 1+).Google Scholar
  9. 9.
    Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet. 2000;355:253–9 (level 1+).Google Scholar
  10. 10.
    Lewis JB, Berl T, Bain RP, et al. Effect of intensive blood pressure control on the course of type 1 diabetic nephropathy: Collaborative Study Group. Am J Kidney Dis. 1999;34:809–17 (level 1).Google Scholar

16 Dyslipidemia associated with diabetes

  1. 1.
    Wang Y, Lammi-Keefe CJ, Hou L, et al. Impact of low-density lipoprotein cholesterol on cardiovascular outcomes in people with type 2 diabetes: a meta-analysis of prospective cohort studies. Diabetes Res Clin Pract. 2013;102:65–75 (level 2).Google Scholar
  2. 2.
    Turner RC, Millns H, Neil HA, et al. Risk factors for coronary artery disease in non-insulin dependent diabetes mellitus: United Kingdom Prospective Diabetes Study (UKPDS 23). BMJ. 1998;316:823–8 (level 3).Google Scholar
  3. 3.
    Sacks FM, Hermans MP, Fioretto P, et al. Association between plasma triglycerides and high-density lipoprotein cholesterol and microvascular kidney disease and retinopathy in type 2 diabetes mellitus: a global case-control study in 13 countries. Circulation. 2014;129:999–1008 (level 3).Google Scholar
  4. 4.
    Toth PP, Simko RJ, Palli SR, et al. The impact of serum lipids on risk for microangiopathy in patients with type 2 diabetes mellitus. Cardiovasc Diabetol. 2012;11:109–9 (level 3).Google Scholar
  5. 5..
    Heilbronn LK, Noakes M, Clifton PM. Effect of energy restriction, weight loss, and diet composition on plasma lipids and glucose in patients with type 2 diabetes. Diabetes Care. 1999;22:889–95 (level 1).Google Scholar
  6. 6.
    Hartweg J, Perera R, Montori V, et al. Omega-3 polyunsaturated fatty acids (PUFA) for type 2 diabetes mellitus. Cochrane Database Syst Rev. 2008:CD003205–CD003205 (level 1).Google Scholar
  7. 7.
    Hayashino Y, Jackson JL, Fukumori N, et al. Effects of supervised exercise on lipid profiles and blood pressure control in people with type 2 diabetes mellitus: a meta-analysis of randomized controlled trials. Diabetes Res Clin Pract. 2012;98:349–60 (level 1).Google Scholar
  8. 8.
    Cholesterol Treatment Trialists C, Kearney PM, Blackwell L, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomised trials of statins: a meta-analysis. Lancet. 2008;371:117–25 (level 1).Google Scholar
  9. 9.
    Colhoun HM, Betteridge DJ, Durrington PN, et al. Primary prevention of cardiovascular disease with atorvastatin in type 2 diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): multicentre randomised placebo-controlled trial. Lancet. 2004;364:685–96 (level 1+).Google Scholar
  10. 10.
    Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): randomised controlled trial. Lancet. 2005;366:1849–61 (level 1+).Google Scholar
  11. 11.
    Group AS, Ginsberg HN, Elam MB, et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med. 2010;362:1563–74 (level 1+).Google Scholar

17 Impaired glucose metabolism in pregnancy

  1. 1.
    Ray JG, O’Brien TE, Chan WS. Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: a meta-analysis. QJM. 2001;94:435–44 (level 2).Google Scholar
  2. 2.
    Falavigna M, Schmidt MI, Trujillo J, et al. Effectiveness of gestational diabetes treatment: a systematic review with quality of evidence assessment. Diabetes Res Clin Pract. 2012;98:396–405 (level 2).Google Scholar
  3. 3.
    Ekbom P, Damm P, Feldt-Rasmussen B, et al. Pregnancy outcome in type 1 diabetic women with microalbuminuria. Diabetes Care. 2001;24:1739–44 (level 2).Google Scholar
  4. 4.
    Metzger BE, Lowe LP, Dyer AR, HAPO Study Cooperative Research Group, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358:1991–2002 (level 2).Google Scholar
  5. 5.
    Chew EY, Mills JL, Metzger BE, et al. Metabolic control and progression of retinopathy. The Diabetes in Early Pregnancy Study. National Institute of Child Health and Human Development Diabetes in Early Pregnancy Study. Diabetes Care. 1995;18:631–7 (level 2).Google Scholar
  6. 6.
    Sanaka M,Minei S,Iwamoto Y. The allowance for pregnancy of women with diabetic nephropathy. J Jpn Soc Diabetes Pregnancy. 2006;6:127–35 (in Japanese, level 4).Google Scholar
  7. 7.
    Griffin ME, Coffey M, Johnson H, et al. Universal vs. risk factor-based screening for gestational diabetes mellitus: detection rates, gestation at diagnosis and outcome. Diabet Med. 2000;17:26–32 (level 2).Google Scholar
  8. 8.
    Ludwig DS, Currie J. The association between pregnancy weight gain and birthweight: a within-family comparison. Lancet. 2010;376:984–90 (level 2).Google Scholar
  9. 9.
    Langer O, Rodriguez DA, Xenakis EM, et al. Intensified versus conventional management of gestational diabetes. Am J Obstet Gynecol. 1994;170:1036–1046 (discussion 1046–1047, level 3).Google Scholar
  10. 10.
    Bellamy L, Casas JP, Hingorani AD, et al. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373:1773–9 (level 1).Google Scholar
  11. 11.
    Hiramatsu Y, Haneda M, et al. The joint committee with the Japan Society of Diabetes and Pregnancy and the Japan Diabetes Society "An abnormal glucose metabolism during pregnancy and the standardization of its diagnostic criteria." J Jpn Diabetes Soc. 2015;58:801–803 (in Japanese)Google Scholar

18 Pediatric/adolescent diabetes

  1. 1.
    ISPAD Clinical Practice Consensus Guidelines for Pediatric and Adolescent Diabetes 2014. Nankodo, Tokyo. 2015.Google Scholar
  2. 2.
    Ascerini C, Craig ME, de Beaufort C, et al. ISPAD clinical practice consensus guidelines 2014 compendium. Introduction. Pediatr Diabetes. 2014;15(Suppl 20):1–3.Google Scholar
  3. 3.
    Craig ME, Jefferies C, Dabelea D, et al. ISPAD clinical practice consensus guidelines 2014 compendium. Definition, epidemiology, and classification of diabetes in children and adlescents. Pediatr Diabetes 2014;15(Suppl 20):4–17.Google Scholar
  4. 4.
    Ly TT, Maahs DM, Rewers A, et al. ISPAD clinical practice consensus guidelines 2014 compendium. Assessment and management of hypoglycemia in children and adolescents with diabetes. Pediatr Diabetes. 2014;15(Suppl 20):180–92.Google Scholar
  5. 5.
    Zeitler P, Fu J, Tandon N, et al. ISPAD clinical practice consensus guidelines 2014 compendium. Type 2 diabetes in the child and adolescent. Pediatr Diabetes. 2014;15(Suppl 20):26–46.Google Scholar
  6. 6.
    Urakami T, Suzuki J, Mugishima H, et al. Screening and treatment of childhood type 1 and type 2 diabetes mellitus in Japan. Pediatr Endocrinol Rev. 2012;10(Supple 1):51–61.Google Scholar
  7. 7.
    Rubio-Cabezas O, Hattersley AT, Njölstad PR, et al. ISPAD clinical practice consensus guidelines 2014 compendium. The diagnosis and management of monogenic diabetes in children and adolescents. Pediatr Diabetes. 2014;15(Suppl 20):47–64.Google Scholar
  8. 8.
    Sugihara S, Sasaki N, Kohno H, et al. Survey of current medical treatments for child-onset type 2 diabetes mellitus in Japan. Clin Pediatr Endocrinol. 2005;14:65–75 (level 4).Google Scholar
  9. 9.
    Rafiq M, Flanagan SE, Patch AM, et al. Effective treatment with oral sulfonylureas in patients with diabetes due to sulfonylurea receptor 1 (SUR1) mutations. Diabetes Care. 2008;31:204–9 (level 3).Google Scholar
  10. 10.
    Lange K, Swift P, Pankowska E, et al. ISPAD clinical practice consensus guidelines 2014 compendium. Diabetes education. Pediatr Diabetes. 2014;15(Suppl 20):77–85.Google Scholar
  11. 11.
    Delamater AM, de Wit M, McDarby V, et al. ISPAD clinical practice consensus guidelines 2014 compendium. Psychological issues. Pediatr Diabetes. 2014;15(Suppl 20):232–44.Google Scholar
  12. 12.
    Winkley K, Landau S, Eisler I, et al. Psychological interventions to improve glycaemic control in patients with type 1 diabetes: systematic review and meta-analysis of randomized controlled trials. BMJ. 2006;333:65–8 (level 1).Google Scholar

19 Diabetes in older adults

  1. 1.
    Ito H. Study to establish a treatment guideline for the elderly patients with diabetes mellitus. In: Research reports of the longevity sciences volume 3. The Ministry of Health and Welfare of Japan. 1996. p. 309–11 (in Japanese, level 3).Google Scholar
  2. 2.
    Kuusisto J, Mykkänen L, Pyörälä K, et al. NIDDM and its metabolic control predict coronary heart disease in elderly subjects. Diabetes 1994;43:960–7 (level 2).Google Scholar
  3. 3.
    Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes-systematic overview of prospective observational studies. Diabetologia. 2005;48:2460–9 (level 2).Google Scholar
  4. 4.
    Whitmer RA, Karter AJ, Yaffe K, et al. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA. 2009;301:1565–72 (level 2).Google Scholar
  5. 5.
    Kalyani RR, Tian J, Xue QL, et al. Hyperglycemia and incidence of frailty and lower extremity mobility limitations in older women. J Am Geriatr Soc. 2012;60:1701–7 (level 2).Google Scholar
  6. 6.
    Volpato S, Leveille SG, Blaum C, et al. Risk factors for falls in older disabled women with diabetes: the women’s health and aging study. J Gerontol A Biol Sci Med Sci. 2005;60:1539–45 (level 2).Google Scholar
  7. 7.
    Johnston SS, Conner C, Aagren M, et al. Association between hypoglycaemic events and fall-related fractures in Medicare-covered patients with type 2 diabetes. Diabetes Obes Metab. 2012;14:634–43 (level 3).Google Scholar
  8. 8.
    Launer LJ, Miller ME, Williamson JD, et al. Effects of intensive glucose lowering on brain structure and function in people with type 2 diabetes (ACCORD MIND): a randomised open-label substudy. Lancet Neurol. 2011;10:969–77 (level 1).Google Scholar
  9. 9.
    Wannamethee SG, Shaper AG, Walker M. Changes in physical activity, mortality, and incidence of coronary heart disease in older men. Lancet. 1998;351:1603–8 (level 2).Google Scholar
  10. 10.
    Vita AJ, Terry RB, Hubert HB, et al. Aging, health risks, and cumulative disability. N Eng J Med 1998;338:1035–41 (level 2).Google Scholar
  11. 11.
    Japanese Geriatrics Society. Methodology for evaluation of cognitive function and diagnosis of dementia—a useful tool for geriatric care (in Japanese). http://www.jpn-geriat-soc.or.jp/tool/index.html.
  12. 12.
    Methodology for evaluation of ADL. Methodology for evaluation of cognitive function and diagnosis of dementia—a useful tool for geriatric care (in Japanese). http://www.jpn-geriat-soc.or.jp/tool/index.html.

20 Acute metabolic complications of diabetes, sick days, and infectious diseases

  1. 1.
    Nyenwe EA, Kitabchi AE: Evidence-based management of hyperglycemic emergencies in diabetes mellitus. Diabetes Res Clin Pract. 2011;94:340–51.Google Scholar
  2. 2.
    Kitabchi AE, Umpierrez GE, Miles JM, et al. Hyperglycemic crises in adult patients with diabetes. Diabetes Care. 2009;32:1335–43.Google Scholar
  3. 3.
    Wolfsdorf J, Glaser N, Sperling MA. Diabetic ketoacidosis in infants, children, and adolescents. Diabetes Care. 2006;29:1150–9.Google Scholar
  4. 4.
    Jeffrey A, Kraut MD, Nicolaos E, et al. Lactic acidosis. N Engl J Med. 2014;371:2309–19.Google Scholar
  5. 5.
    Eppenga WL, Lalmohamed A, Geerts AF, et al. Risk of lactic acidosis or elevated lactate concentrations in metformin users with renal impairment: a population-based cohort study. Diabetes Care. 2014;37:2218–24 (level 2).Google Scholar
  6. 6.
    Silvio E, Inzucchi MD, Kasia J, et al. Metformin in patient with type 2 diabetes and kidney disease. JAMA. 2014;312:2668–75.Google Scholar
  7. 7.
    American Diabetes Association. Standards of medical care in diabetes—2016. Diabetes Care. 2016;39:S6–104.Google Scholar
  8. 8. .
    Seaquist ER, Anderson J, Childs B, et al. American Diabetes Association: Endocrine Society: hypoglycemia and diabetes: a report of a workgroup of the American Diabetes Association and the Endocrine Society. J Clin Endocrinol Metab. 2013;98:1845–59.Google Scholar
  9. 9.
    Nirmal J, Gregory M, Caputo GM, et al. Infections in patients with diabetes mellitus. N Engl J Med. 1999;341:1906–12.Google Scholar
  10. 10.
    NICE-SUGAR Study Investigators, Finfer S, Chittock DR, et al. Intensive versus conventional glucose control in critically ill patients. N Engl J Med. 2009;360:1283–97 (level 1+).Google Scholar
  11. 11.
    The Japanese society of Intensive Care Medicine Sepsis Registry. The Japanese Guidelines for the Management of Sepsis. 2013 (in Japanese).Google Scholar
  12. 12.
    Darren L, Dean TE, Sumit RM, et al. Effectiveness of influenza vaccination in working-age adults with diabetes: a population-based cohort study. Thorax. 2013;68:658–63 (level 2).Google Scholar
  13. 13.
    Moberley SA, Holden J, Tatham DP, et al. Vaccines for preventing pneumococcal infection in adults. Cochrane Database Syst Rev. 2013:CD000422 (level 1).Google Scholar
  14. 14.
    Brink S, Joel D, Laffel L, et al. Sick day management in children and adolescents with diabetes. Pediatr Diabetes. 2014;15:193–202.Google Scholar

21 Prevention of type 2 diabetes

  1. 1.
    Heianza Y, Arase Y, Hsieh SD, et al. Development of a new scoring system for predicting the 5 year incidence of type 2 diabetes in Japan: the Toranomon Hospital Health Management Center Study 6 (TOPICS 6). Diabetologia 2012;55:3213–23 (level 3).Google Scholar
  2. 2.
    Sasai H, Sairenchi T, Irie F, et al. Development of a diabetes risk prediction sheet for specific health guidance. Nippon Koshu Eisei Zasshi. 2008;55:287–94 (in Japanese, level 3).Google Scholar
  3. 3.
    Doi Y, Ninomiya T, Hata J et al. Two risk score models for predicting incident type 2 diabetes in Japan. Diabet Med. 2012;29:107–114 (level 2).Google Scholar
  4. 4.
    Kodama S, Horikawa C, Fujihara K, et al. Comparisons of the strength of associations with future type 2 diabetes risk among anthropometric obesity indicators, including waist-to-height ratio: a meta-analysis. Am J Epidemiol. 2012;176:959–69 (level 2).Google Scholar
  5. 5.
    Kodama S, Horikawa C, Yoshizawa S, et al. Body weight change and type 2 diabetes. Epidemiology. 2013;24:778–9 (level 2).Google Scholar
  6. 6.
    Kodama S, Horikawa C, Fujihara K, et al. Quantitative relationship between body weight gain in adulthood and incident type 2 diabetes: a meta-analysis. Obes Rev. 2014;15:202–14 (level 2).Google Scholar
  7. 7.
    . Harder T, Rodekamp E, Schellong K, et al. Birth weight and subsequent risk of type 2 diabetes: a metaanalysis. Am J Epidemiol. 2007;165:849–57 (level 2).Google Scholar
  8. 8.
    Whincup PH, Kaye SJ, Owen CG, et al. Birth weight and risk of type 2 diabetes: a systematic review. JAMA. 2008;300:2886–97 (level 2).Google Scholar
  9. 9.
    Sato KK, Hayashi T, Kambe H, et al. Walking to work is an independent predictor of incidence of type 2 diabetes in Japanese men: the Kansai Healthcare Study. Diabetes Care. 2007;30:2296–8 (level 2).Google Scholar
  10. 10.
    Jeon CY, Lokken RP, Hu FB, et al. Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care. 2007;30:744–52 (level 2).Google Scholar
  11. 11.
    Grontved A, Pan A, Mekary RA, et al. Muscle-strengthening and conditioning activities and risk of type 2 diabetes: a prospective study in two cohorts of US women. PLoS Med. 2014;11:e1001587 (level 2).Google Scholar
  12. 12.
    Grontved A, Rimm EB, Willett WC, et al. A prospective study of weight training and risk of type 2 diabetes mellitus in men. Arch Intern Med. 2012;172:1306–12 (level 2).Google Scholar
  13. 13.
    Kosaka K, Noda M, Kuzuya T. Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res Clin Pract. 2005;67:152–62 (level 1).Google Scholar
  14. 14.
    Sakane N, Sato J, Tsushita K, et al. Prevention of type 2 diabetes in a primary healthcare setting: three year results of lifestyle intervention in Japanese subjects with impaired glucose tolerance. BMC Public Health. 2011;11:40 (level 1).Google Scholar
  15. 15.
    Saito T, Watanabe M, Nishida J, et al. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: a randomized controlled trial. Arch Intern Med. 2011;171:1352–60 (level 1).Google Scholar
  16. 16.
    Schulze MB, Schulz M, Heidemann C, et al. Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Arch Intern Med. 2007;167:956–65 (level 2).Google Scholar
  17. 17.
    Yao B, Fang H, Xu W, et al. Dietary fiber intake and risk of type 2 diabetes: a dose-response analysis of prospective studies. Eur J Epidemiol. 2014;29:79–88 (level 2).Google Scholar
  18. 18.
    Koppes LL, Dekker JM, Hendriks HF, et al. Moderate alcohol consumption lowers the risk of type 2 diabetes: a meta-analysis of prospective observational studies. Diabetes Care. 2005;28:719–25 (level 2).Google Scholar
  19. 19.
    Baliunas DO, Taylor BJ, Irving H, et al. Alcohol as a risk factor for type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2009;32:2123–32 (level 2).Google Scholar
  20. 20.
    Waki K, Noda M, Sasaki S, et al. Alcohol consumption and other risk factors for self-reported diabetes among middle-aged Japanese: a population-based prospective study in the JPHC study cohort I. Diabet Med. 2005;22:323–31 (level 2).Google Scholar
  21. 21.
    Seike N, Noda M, Kadowaki T. Alcohol consumption and risk of type 2 diabetes mellitus in Japanese: a systematic review. Asia Pac J Clin Nutr. 2008;17:545–51.Google Scholar
  22. 22.
    Ministry of Health, Labor and Welfare. Alcohol. Available from: http://www1.mhlw.go.jp/topics/kenko21_11/b5.html#A51. (in Japanese).
  23. 23.
    Malik VS, Popkin BM, Bray GA, et al. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: a meta-analysis. Diabetes Care. 2010;33:2477–83 (level 2).Google Scholar
  24. 24.
    Greenwood DC, Threapleton DE, Evans CE, et al. Association between sugar-sweetened and artificially sweetened soft drinks and type 2 diabetes: systematic review and dose-response meta-analysis of prospective studies. 2014;Br J Nutr. 112:725–34 (level 2).Google Scholar
  25. 25.
    Kato M, Noda M, Inoue M, et al. Psychological factors, coffee and risk of diabetes mellitus among middle-aged Japanese: a population-based prospective study in the JPHC study cohort. Endocr J. 2009;56:459–68 (level 2).Google Scholar
  26. 26.
    Willi C, Bodenmann P, Ghali WA, et al. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2007;298:2654–64 (level 2).Google Scholar
  27. 27.
    Yeh HC, Duncan BB, Schmidt MI, et al. Smoking, smoking cessation, and risk for type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2010;152:10–17 (level 2).Google Scholar
  28. 28.
    Oba S, Noda M, Waki K, et al. Smoking cessation increases short-term risk of type 2 diabetes irrespective of weight gain: the Japan Public Health Center-based prospective study. PLoS One. 2012;7:e17061 (level 2).Google Scholar
  29. 29.
    Mezuk B, Eaton WW, Albrecht S, et al. Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care. 2008;31 2383–90 (level 2).Google Scholar
  30. 30.
    Knol MJ, Twisk JW, Beekman AT, et al. Depression as a risk factor for the onset of type 2 diabetes mellitus. A meta-analysis. Diabetologia. 2006;49:837–45 (level 2).Google Scholar
  31. 31.
    Cappuccio FP, D’Elia L, Strazzullo P, et al. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care. 2010;33:414–20 (level 2).Google Scholar
  32. 32.
    Gan Y, Yang C, Tong X, et al. Shift work and diabetes mellitus: a meta-analysis of observational studies. Occup Environ Med. 2015;72:72–8 (level 2).Google Scholar
  33. 33.
    Knowler WC, Fowler SE, Hamman RF, et al. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374:1677–86 (level 1).Google Scholar
  34. 34.
    Lindstrom J, Peltonen M, Eriksson JG, et al. Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia. 2013;56:284–93 (level 1).Google Scholar
  35. 35.
    Li G, Zhang P, Wang J et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol. 2014;2:474–80 (level 1).Google Scholar
  36. 36.
    Knowler WC, Barrett-Connor E, Fowler SE, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403 (level 1).Google Scholar
  37. 37.
    Chiasson JL, Josse RG, Gomis R, et al. Acarbose for prevention of type 2 diabetes mellitus: the STOPNIDDM randomised trial. Lancet. 2002;359:2072–7 (level 1).Google Scholar
  38. 38.
    Padwal R, Majumdar SR, Johnson JA, et al. A systematic review of drug therapy to delay or prevent type 2 diabetes. Diabetes Care. 2005;28:736–44 (level 2).Google Scholar
  39. 39.
    DeFronzo RA, Tripathy D, Schwenke DC, et al. Pioglitazone for diabetes prevention in impaired glucose tolerance. N Engl J Med. 2011;364:1104–15 (level 1).Google Scholar
  40. 40.
    Kawamori R, Tajima N, Iwamoto Y, et al. Voglibose for prevention of type 2 diabetes mellitus: a randomised, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet. 2009;373:1607–14 (level 1).Google Scholar

Appendix

  1. 1.
    Bonovas S, Filioussi K, Tsantes A. Diabetes mellitus and risk of prostate cancer: a meta-analysis. Diabetologia. 2004;47:1071–1078.Google Scholar
  2. 2.
    Friberg E, Orsini N, Mantzoros CS et al. Diabetes mellitus and risk of endometrial cancer: a meta-analysis. Diabetologia. 2007;50:1365–1374.Google Scholar
  3. 3.
    Huxley R, Ansary-Moghaddam A, de Gonzalez AB et al. Type-II diabetes and pancreatic cancer: a meta-analysis of 36 studies. Br J Cancer. 2005;92:2076–2083.Google Scholar
  4. 4.
    Kasper JS, Giovannucci E. A meta-analysis of diabetes mellitus and the risk of prostate cancer. Cancer Epidemiol Biomarkers Prev. 2006;15:2056–2062.Google Scholar
  5. 5.
    Larsson SC, Orsini N, Wolk A. Diabetes mellitus and risk of colorectal cancer: a meta-analysis. J Natl Cancer Inst. 2005;97:1679–1687.Google Scholar
  6. 6.
    Larsson SC, Orsini N, Brismar K et al. Diabetes mellitus and risk of bladder cancer: a meta-analysis. Diabetologia. 2006;49:2819–2823.Google Scholar
  7. 7.
    Larsson SC, Mantzoros CS, Wolk A. Diabetes mellitus and risk of breast cancer: a meta-analysis. Int J Cancer. 2007;121:856–862.Google Scholar
  8. 8.
    Noto H, Osame K, Sasazuki T, Noda M. Substantially increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis of epidemiologic evidence in Japan. J Diabetes Complications. 2010;24:345–353.Google Scholar
  9. 9.
    Noto H, Tsujimoto T, Sasazuki T et al. Significantly increased risk of cancer in patients with diabetes mellitus: a systematic review and meta-analysis. Endocr Pract. 2011;17:616–628.Google Scholar
  10. 10.
    Kasuga M, Ueki K, Tajima N et al. Report of the JDS/JCA Joint Committee on Diabetes and Cancer. Diabetol Int 2013; 2:81–96.Google Scholar
  11. 11.
    Sasazuki S, Charvat H, Hara A et al. Diabetes mellitus and cancer risk: pooled analysis of eight cohort studies in Japan. Cancer Sci. 2013;104:1499–1507.Google Scholar
  12. 12.
    Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ. 2009;180:32–39.Google Scholar
  13. 13.
    Ad hoc committee for Japanese 2015 guidelines for prevention and treatment of osteoporosis, Chairman Hajime Orim. Japanese 2015 guidelines for prevention and treatment of osteoporosis. Life Science Publishing Co., Ltd.; 2015. (in Japanese)Google Scholar
  14. 14.
    FDA Drug Safety Communication: FDA revises label of diabetes drug canagliflozin (Invokana, Invokamet) to include updates on bone fracture risk and new information on decreased bone mineral density. http://www.fda.gov/Drugs/DrugSafety/ucm461449.htm/. Accessed 28 Feb 2018.
  15. 15.
    Keegan TH, Schwartz AV, Bauer DC et al. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care. 2004;27:1547–1553.Google Scholar
  16. 16.
    Kenmochi T, Asano T, Saigo K et al. The first case of simultaneous pancreas-kidney transplant from living donor in our country. Japanese J. of Transplant. 2005;40:466–472. (in Japanese)Google Scholar
  17. 17.
    Fukao K, Otsuka M, Iwasaki H et al. A case of simultaneous whole pancreas and kidney allotransplantation. Japanese J. of Transplant. 1986;21:331–340. (in Japanese)Google Scholar
  18. 18.
    Saito T, Gotoh M, Satomi S et al. Islet transplantation using donors after cardiac death: report of the Japan Islet Transplantation Registry. Transplantation. 2010;90:740–747.Google Scholar
  19. 19.
    The Japanese Pancreas and Islet Transplantation Association. Islet transplantation in Japan―Report from Japanese Islet Transplantation Registry―. Japanese J. of Transplant. 2014;49:292–297. (in Japanese).Google Scholar

Copyright information

© The Japan Diabetes Society 2018

Authors and Affiliations

  • Masakazu Haneda
    • 1
  • Mitsuhiko Noda
    • 2
  • Hideki Origasa
    • 3
  • Hiroshi Noto
    • 4
  • Daisuke Yabe
    • 5
  • Yukihiro Fujita
    • 1
  • Atsushi Goto
    • 6
  • Tatsuya Kondo
    • 7
  • Eiichi Araki
    • 7
  1. 1.Asahikawa Medical UniversityAsahikawaJapan
  2. 2.Saitama Medical UniversitySaitamaJapan
  3. 3.University of ToyamaToyamaJapan
  4. 4.St Luke’s International HospitalTokyoJapan
  5. 5.Department of Diabetes, Endocrinology and NutritionKyoto University Graduate School of MedicineKyotoJapan
  6. 6.Center for Public Health Sciences, National Cancer CenterTokyoJapan
  7. 7.Department of Metabolic MedicineKumamoto UniversityKumamotoJapan

Personalised recommendations