Advertisement

Diabetology International

, Volume 6, Issue 3, pp 151–187 | Cite as

Evidence-based practice guideline for the treatment for diabetes in Japan 2013

  • Naoko TajimaEmail author
  • Mitsuhiko Noda
  • Hideki Origasa
  • Hiroshi Noto
  • Daisuke Yabe
  • Yukihiro Fujita
  • Atsushi Goto
  • Kei Fujimoto
  • Masaya Sakamoto
  • Masakazu Haneda
Guideline

Preface

To promote evidence-based diabetes treatment, the Japan Diabetes Society (JDS) published, in February 2002, our first “Evidence-based Practice Guide for the Treatment of Diabetes in Japan” (J Japan Diab. Soc. 45, Supple 1, 2002). Since then, revised editions have been released every 3 years. Evidence-based medicine is a practice of medicine that attempts to integrate individual physician’s clinical expertise and the best external research evidence, and apply them to solve individual patient’s problems. The physician’s clinical expertise decides whether or not the information obtained from the literature can be applied directly to the individual patient. (Sackett, D.L. et al., BMJ 312: 71, 1996).

Based on this policy, this guideline is formulated with several aims: to gather evidence on diabetes treatment both in Japan and overseas, describe it in forms that are easy to understand and use, subject it to evaluation by diabetes specialists, and offer recommendations for diagnosis...

Keywords

Diabetes EBM Guideline Diagnosis Treatment 

Notes

Conflict of interest

Naoko Tajima has received speaker honoraria from pharmaceutical companies Takeda Pharmaceutical Co., Ltd., and Nippon Boehringer Ingelheim Co., Ltd., Daisuke Yabe has received grants of clinical research from pharmaceutical companies Nippon Boehringer Ingelheim Co., Ltd., and Eli Lilly and Company, Yukihiro Fujita has received travel expenses from pharmaceutical companies Novo Nordisk Pharma Ltd., Takeda Pharmaceutical Co., Ltd., and Sanofi K.K., Masakazu Haneda has received speaker honoraria from pharmaceutical companies Nippon Boehringer Ingelheim Co., Ltd., Mitsubishi Tanabe Pharma Corporation, Novo Nordisk Pharma Ltd., Daiichi-Sankyo Co., Ltd., Taisho Pharmaceutical Co., Ltd., Sanofi K.K., Merck Sharp & Dohme, Astellas Pharma Inc., Kyowa Hakko Kirin Co., Ltd., Kowa Pharmaceutical Co., Ltd., Takeda Pharmaceutical Co., Ltd., and Novartis Pharma K.K., scholarship grants from Astellas Pharma Inc., Daiichi-Sankyo Co., Ltd., Mitsubishi Tanabe Pharma Corporation, Takeda Pharmaceutical Co., Ltd., Novo Nordisk Pharma Ltd., Merck Sharp & Dohme, Nippon Boehringer Ingelheim Co., Ltd., and Eli Lilly and Company, Mitsuhiko Noda, Hideki Origasa, Hiroshi Noto, Atsushi Goto, Kei Fujimoto, Masaya Sakamoto have no conflict of interest.

Human rights statement and Informed consent

This article does not contain any studies with human or animal subjects performed by the any of the authors.

References

Methods for developing the ‘‘Diabetes Guideline 2013’’

  1. 1.
    International Diabetes Federation Clinical Guideline Task Force: Global Guideline for Type 2 Diabetes. Brussels: International Diabetes Federation. 2005. Google Scholar
  2. 2.
    National Collaborating Centre for Chronic Conditions: Type 2 Diabetes. National Clinical Guideline for Management in Primary and Secondary Care (Update). London: Royal College of Physicians of London. 2008.Google Scholar
  3. 3.
    Clinical and Scientific Section of the Canadian Diabetes Association: Canadian Diabetes Association 2008 Clinical Practice Guidelines for the Prevention and Management of Diabetes in Canada. Can J Diabetes 2008;32 (Suppl 1): S1–201.Google Scholar
  4. 4.
    American Diabetes Association: ADA Clinical Practice Recommendations 2012. Diabetes Care. 2012;35 (Suppl 1): S1–110.Google Scholar
  5. 1.
    Guideline for the diagnosis of diabetes mellitusGoogle Scholar
  6. 1.
    Seino Y, Nanjo K, Tajima N, et al. Report of the Committee on the Classification and Diagnostic Criteria of Diabetes Mellitus. The Committee of the Japan Diabetes Society on the diagnostic criteria of diabetes mellitus. Diabetol Int 2010;1:2–20.Google Scholar
  7. 2.
    Kosaka K, Kuzuya T, Yoshinaga H, et al. A prospective study of health check examinees for the development of non-insulin-dependent diabetes mellitus: relationship of the incidence of diabetes with the initial insulinogenic index and degree of obesity. Diabet Med 1996;13:S120–126 (level 2).Google Scholar
  8. 2.
    Goals and strategies for diabetes managementGoogle Scholar
  9. 1.
    Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000;321:405–12.Google Scholar
  10. 2.
    Tominaga M, Eguchi H, Manaka H, et al. Impaired glucose tolerance is a risk factor for cardiovascular disease, but not impaired fasting glucose: the Funagata Diabetes Study. Diabetes Care 1999;22:920–24.Google Scholar
  11. 3.
    Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103–17.Google Scholar
  12. 4.
    Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach: position statement of the American Diabetes Association (ADA) and the European Association for Study of Diabetes (EASD). Diabetes Care 2012;35:1364–79.Google Scholar
  13. 5.
    Gerstein HC, Miller ME, Byington RP, et al. (Action to Control Cardiovascular Risk in Diabetes Study Group). Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545–59.Google Scholar
  14. 6.
    Patel A, MacMahon S, Chalmers J, et al. (ADVANCE Collaborative Group). Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560–72.Google Scholar
  15. 3.
    Diet therapyGoogle Scholar
  16. 1.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. UK Prospective Diabetes Study 7. Response of fasting plasma glucose to diet therapy in newly presenting type II diabetic patients. Metabolism 1990;39:905–12 (level 3).Google Scholar
  17. 2.
    Wing RR, Blair EH, Bononi P, et al. Caloric restriction per se is a significant factor in improvements in glycemic control and insulin sensitivity during weight loss in obese NIDDM patients. Diabetes Care 1994;17:30–36 (level 1).Google Scholar
  18. 3.
    Kulkarni K, Castle G, Gregory R, et al. Nutrition Practice Guidelines for Type 1 Diabetes Mellitus positively affect dietitian practices and patient outcomes. The Diabetes Care and Education Dietetic Practice Group. J Am Diet Assoc 1998;98:62–70/quiz 72–74 (level 3).Google Scholar
  19. 4.
    Anderson JW, Randles KM, Kendall CW, et al. Carbohydrate and fiber recommendations for individuals with diabetes: a quantitative assessment and meta-analysis of the evidence. J Am Coll Nutr 2004;23:5–17 (level 1).Google Scholar
  20. 5.
    Fung TT, van Dam RM, Hankinson SE et al.: Low-carbohydrate diet and all-cause and cause specific mortality: two cohort studies. Ann Intern Med 2010;153: 289–98 (level 2).Google Scholar
  21. 6.
    Garg A. High-monounsaturated-fat diets for patients with diabetes mellitus: a meta-analysis. Am J Clin Nutr 1998;67(Suppl):577S-582S (level 1).Google Scholar
  22. 7.
    Friedberg CE, Janssen MJ, Heine RJ, et al. Fish oil and glycemic control in diabetes: a meta-analysis. Diabetes Care 1998;21:494–500 (level 1).Google Scholar
  23. 8.
    Chandalia M, Garg A, Lutjohann D et al.: Beneficial effects of higher dietary fiber intake in patients with type 2 diabetes mellitus. N Engl J Med 2000;342:1392–1398 (level 1).Google Scholar
  24. 9.
    Imai S, Matsuda M, Hasegawa G, et al. A simple meal plan of “eating vegetables before carbohydrates” was more effective for achieving glycemic control than an exchange-based meal plan in Japanese patients with type 2 diabetes. Asia Pac J Clin Nutr 2011;20:161–8 (level 3).Google Scholar
  25. 4.
    Exercise therapyGoogle Scholar
  26. 1.
    Boule NG, Kenny GP, Haddad E, et al. Meta-analysis of the effect of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia 2003;46:1071–81 (level 1).Google Scholar
  27. 2.
    Loimaala A, Huikuri HV, Kööbi T, et al. Exercise training improves baroreflex sensitivity in type 2 diabetes. Diabetes 2003;52:1837–42 (level 1).Google Scholar
  28. 3.
    Umpierre D, Ribeiro PA, Kramer CK, et al. Physical activity advice only or structured exercise training and association with HbA1c levels in type 2 diabetes: a systematic review and meta-analysis. JAMA 2011;305:1790–99 (level 1).Google Scholar
  29. 4.
    Boule NG, Haddad E, Kenny GP, et al. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus: a meta-analysis of controlled clinical trials. JAMA 2001;286:1218–27 (level 1).Google Scholar
  30. 5.
    Balducci S, Zanuso S, Nicolucci A, et al. Effect of an intensive exercise intervention strategy on modifiable cardiovascular risk factors in subjects with type 2 diabetes mellitus: a randomized controlled trial, the Italian Diabetes and Exercise Study (IDES). Arch Intern Med 2010;170:1794–03 (level 1).Google Scholar
  31. 6.
    Dunstan DW, Daly RM, Owen N, et al. High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care 2002;25:1729–36 (level 1).Google Scholar
  32. 7.
    Castaneda C, Layne JE, Munoz-Orians L, et al. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care 2002;25:2335–41 (level 1).Google Scholar
  33. 8.
    Kelley GA, Kelley KS. Effects of aerobic exercise on lipids and lipoproteins in adults with type 2 diabetes: a meta-analysis of randomized-controlled trials. Public Health 2007;121:643–55 (level 1).Google Scholar
  34. 9.
    Ishii T, Yamanaka T, Sato T, et al. Resistance training improves insulin sensitivity in NIDDM subjects without altering maximal oxygen uptake. Diabetes Care 1998;21:1353–55 (level 3).Google Scholar
  35. 10.
    Yamanouchi K, Shinozaki T, Chikada K, et al. Daily waling combined with diet therapy is a useful means for obese NIDDM patients not only to reduce body weight but also to improve insulin sensitivity. Diabetes Care 1995;18:775–778 (level 3).Google Scholar
  36. 11.
    Cuff DJ, Meneilly GS, Martin A, et al. Effective exercise modality to reduce insulin resistance in women with type 2 diabetes. Diabetes Care 2003;26:2977–82 (level 1).Google Scholar
  37. 12.
    Yokoyama H, Emoto M, Araki T, et al. Effect of aerobic exercise on plasma adiponectin levels and insulin resistance in type 2 diabetes. Diabetes Care 2004;27:1756–58 (level 3).Google Scholar
  38. 13.
    Snowling NJ, Hopkins WG. Effects of different modes of exercise training on glucose control and risk factors for complications in type 2 diabetic patients: a meta-analysis. Diabetes Care 2006;29:2518–27 (level 3).Google Scholar
  39. 14.
    Church TS, Blair SN, Cocreham S, et al. Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA 2010;304:2253–62 (level 1).Google Scholar
  40. 15.
    Laaksonen DE, Atalay M, Niskanen LK, et al. Aerobic exercise and the lipid profile in type 1 diabetic men: a randomized controlled trial. Med Sci Sports Exerc 2000;32:1541–48 (level 1).Google Scholar
  41. 5.
    Treatment with glucose-lowering agents (excluding insulin)Google Scholar
  42. 1.
    United Kingdom Prospective Diabetes Study (UKPDS) Group 13. Relative efficacy of randomly allocated diet, sulphonylurea, insulin, or metformin in patients with newly diagnosed non-insulin-dependent diabetes followed for 3 years. BMJ 1995;310:83–88 (level 1).Google Scholar
  43. 2.
    Stratton IM, Adler AI, Neil HA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000;321:405–12 (level 2).Google Scholar
  44. 3.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–53 (level 1+).Google Scholar
  45. 4.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854–65 (level 1+).Google Scholar
  46. 5.
    Selvin E, Bolen S, Yeh HC, et al. Cardiovascular outcomes in trials of oral diabetes medications: a systematic review. Arch Intern Med 2008;168:20270–80 (level 1+).Google Scholar
  47. 6.
    Monami M, Luzzi C, Lamanna C, et al. Three-year mortality in diabetic patients treated with different combinations of insulin secretagogues and metformin. Diabetes Metab Res Rev 2006;22:477–82 (level 2).Google Scholar
  48. 7.
    Holman RR, Cull CA, Turner RC. A randomized double-blind trial of acarbose in type 2 diabetes shows improved glycemic control over 3 years. (UKPDS 44). Diabetes Care 1999;22:960–64 (level 1+).Google Scholar
  49. 8.
    Rosenstock J, Brown A, Fischer J, et al. Efficacy and safety of acarbose in metformin-treated patients with type 2 diabetes. Diabetes Care 1998;21:2050–55 (level 1).Google Scholar
  50. 6.
    Insulin therapyGoogle Scholar
  51. 1.
    The Diabetes Control and Complications Trial (DCCT) Research Group. Early worsening of diabetic retinopathy in the Diabetes Control and Complications Trial. Arch Ophthalmol 1998;116:874–86 (level 1+).Google Scholar
  52. 2.
    United Kingdom Prospective Diabetes Study (UKPDS) Group: United Kingdom Prospective Diabetes Study 24: a 6-year, randomized, controlled trial comparing sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy. Ann Intern Med 1998;128:165–75 (level 1).Google Scholar
  53. 3.
    The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–86 (level 1+).Google Scholar
  54. 4.
    The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT). Diabetologia 1998;41:416–23 (level 1+).Google Scholar
  55. 5.
    Lawson ML, Gerstein HC, Tsui E, et al. Effect of intensive therapy on early macrovascular disease in young individuals with type 1 diabetes: a systematic review and meta-analysis. Diabetes Care 1999;22(Suppl 2):B35–39 (level 1+).Google Scholar
  56. 6.
    Nathan DM, Cleary PA, Backlund JY, et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. N Engl J Med 2005;353:2643–53. (level 1+).Google Scholar
  57. 7.
    Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103–17 (level 1).Google Scholar
  58. 8.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–53 (level 1+).Google Scholar
  59. 9.
    Holman RR, Thorne KI, Farmer AJ, et al. Addition of biphasic, prandial, or basal insulin to oral therapy in type 2 diabetes. N Engl J Med 2007;357:1716–30 (level 1).Google Scholar
  60. 10.
    Liebl A, Prager R, Binz K, et al. Comparison of insulin analogue regimens in people with type 2 diabetes mellitus in the PREFER Study: a randomized controlled trial. Diabetes Obes Metab 2009;11:45–52 (level 2).Google Scholar
  61. 11.
    Feinglos MN, Thacker CR, Lobaugh B, et al. Combination insulin and sulfonylurea therapy in insulin-requiring type 2 diabetes mellitus. Diabetes Res Clin Pract 1998;39:193–9 (level 1).Google Scholar
  62. 12.
    Wright A, Burden AC, Paisey RB, et al. Sulfonylurea inadequacy: efficacy of addition of insulin over 6 years in patients with type 2 diabetes in the U. K. Prospective Diabetes Study (UKPDS 57). Diabetes Care 2002;25:330–6 (level 1).Google Scholar
  63. 13.
    Avilés-Santa L, Sinding J, Raskin P. Effects of metformin in patients with poorly controlled, insulin-treated type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 1999;131:182–8 (level 1).Google Scholar
  64. 14.
    Juntti-Berggren L, Pigon J, Hellström P, et al. Influence of acarbose on post-prandial insulin requirements in patients with type 1 diabetes. Diabetes Nutr Metab 2000;13:7–12 (level 2).Google Scholar
  65. 15.
    Han Y, Kato S, Nemoto M, et al. Usefulness of combination therapy with mixed insulin (50R) and an α-glucosidase inhibitor in type 2 diabetes. J Jpn Diabetes Soc 2004;47:137–40 (in Japanese) (level 1).Google Scholar
  66. 16.
    Bhat R, Bhansali A, Bhadada S, et al. Effect of pioglitazone therapy in lean type 1 diabetes mellitus. Diabetes Res Clin Pract 2007;78:349–54 (level 1).Google Scholar
  67. 17.
    Raskin P, Rendell M, Riddle MC, et al. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care 2001;24:1226–32 (level 1).Google Scholar
  68. 18.
    Vilsbǿll T, Rosenstock J, Yki-Järvinen H, et al. Efficacy and safety of sitagliptin when added to insulin therapy in patients with type 2 diabetes. Diabetes Obes Metab 2010;12:167–7 (level 1).Google Scholar
  69. 7.
    Treatment of diabetic retinopathyGoogle Scholar
  70. 1.
    Klein R, Klein BE, Moss SE, et al. The Wisconsin Epidemiologic Study of Diabetic Retinopathy: IX. Four-year incidence and progression of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol 1989;107:237–43 (level 2).Google Scholar
  71. 2.
    Klein R, Klein BE, Moss SE, et al. The Wisconsin Epidemiologic Study of Diabetic Nephropathy: X. Four-year incidence and progression of diabetic retinopathy when age at diagnosis is 30 years or more. Arch Ophthalmol 1989;107:237–43 (level 2).Google Scholar
  72. 3.
    Chew EY. A simplified diabetic retinopathy scale. Ophthalmology 2003;110:1675–76.Google Scholar
  73. 4.
    The Diabetes Control and Complications Trial (DCCT) Research Group. Early worsening of diabetic retinopathy in the Diabetes Control and Complications Trial. Arch Ophthalmol 1998;116:874–86 (level 1+).Google Scholar
  74. 5.
    Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103–17 (level 1).Google Scholar
  75. 6.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–53 (level 1+).Google Scholar
  76. 7.
    Matthews DR, Stratton IM, Aldington SJ, et al. Risks of progression of retinopathy and vision loss related to tight blood pressure control in type 2 diabetes mellitus: UKPDS 69. Arch Ophthalmol 2004;122:1631–40 (level 1+).Google Scholar
  77. 8.
    Fong DS, Ferris FL 3rd, Davis MD, et al. Causes of severe vision loss in the Early Treatment Diabetic Retinopathy Study: ETDRS report no. 24. Early Treatment Diabetic Retinopathy Study Research Group. Am J Ophthalmol 1999;127:137–41 (level 1+).Google Scholar
  78. 9.
    The Diabetic Retinopathy Vitrectomy Study Research Group. Early vitrectomy for severe proliferative diabetic retinopathy in eyes with useful vision: results of randomized trial—Diabetic Retinopathy Vitrectomy Study Report 3. Ophthalmology 1988;95:1307–20 (level 1).Google Scholar
  79. 10.
    Diabetic Retinopathy Clinical Research Network. A randomized trial comparing intravitreal triamcinolone acetonide and focal/grid photocoagulation for diabetic macular edema. Ophthalmology 2008;115:1447–49 (level 1).Google Scholar
  80. 11.
    Early Treatment Diabetic Retinopathy Study Research Group. Photocoagulation for diabetic macular edema: Early Treatment Diabetic Retinopathy Study report number 1. Arch Ophthalmol 1985;103:1796–06 (level 1+).Google Scholar
  81. 8.
    Treatment of diabetic nephropathyGoogle Scholar
  82. 1.
    The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–86 (level 1+).Google Scholar
  83. 2.
    Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103–17 (level 1).Google Scholar
  84. 3.
    Ismail-Beigi F, Craven T, Banerji MA, et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: an analysis of the ACCORD randomized trial. Lancet 2010;376:419–30 (level 1+).Google Scholar
  85. 4.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998;317:703–13 (level 1+).Google Scholar
  86. 5.
    Shiba T, Inoue M, Tada H, et al. Delapril versus manidipine in hypertensive therapy to halt the type-2-diabetes-melltus-associated nephropathy. Diabetes Res Clin Pract 2000;47:97–104 (level 1).Google Scholar
  87. 6.
    Lewis EJ, Hunsicker LG, Bain RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy: the Collaborative Study Group. N Engl J Med 1993;329:1456–62 (level 1+).Google Scholar
  88. 7.
    Haneda M, Kikkawa R, Sakai H, et al. Antiproteinuric effect of candesartan cilexetil in Japanese subjects with type 2 diabetes and nephropathy. Diabetes Res Clin Pract 2004;66:87–95 (level 1).Google Scholar
  89. 8.
    Haller H, Ito S, Izzo JL, Jr, et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med 2011;364:907–17 (level 1+).Google Scholar
  90. 9.
    Crepaldi G, Carta Q, Deferrari G, et al. Effects of lisinopril and nifedipine on the progression to overt albuminuria in IDDM patients with incipient nephropathy and normal blood pressure: The Italian Microalbuminuria Study Group in IDDM. Diabetes Care 1988;21:104–10 (level 1).Google Scholar
  91. 10.
    Katayama S, Kikkawa R, Isogai S, et al. Effect of captopril or imidapril on the progression of diabetic nephropathy in Japanese with type 1 diabetes mellitus: a randomized controlled study (JAPAN-IDDM). Diabetes Res Clin Pract 2002;55:113–21 (level 1).Google Scholar
  92. 11.
    Makino H, Haneda M, Babazono T, et al. Prevention of transition from incipient to overt nephropathy with telmisartan in patients with type 2 diabetes. Diabetes Care 2007;30:1577–78 (level 1). Google Scholar
  93. 12.
    Sano T, Hotta N, Kawamura T, et al. Effects of long-term enalapril treatment on persistent microalbuminuria in normotensive type 2 diabetic patients: results of a 4-year, prospective, randomized study. Diabet Med 1996;13:120–24 (level 1).Google Scholar
  94. 13.
    Nielsen FS, Rossing P, Gall MA, et al. Long-term effect of lisinopril and atenolol on kidney function in hypertensive NIDDM subjects with diabetic nephropathy. Diabetes 1997;46:1182–88 (level 1).Google Scholar
  95. 14.
    Zeller K, Whittaker E, Sullivan L, et al. Effect of restricting dietary protein on the progression of renal failure in patients with insulin-dependent diabetes mellitus. N Engl J Med 1991;324:78–84 (level 1).Google Scholar
  96. 15.
    Yokoyama H, Tomonaga O, Hirayama M, et al. Predictors of the progression of diabetic nephropathy and the beneficial effect of antigotensin-converting enzyme inhibitors in NIDDM patients. Diabetologia 1997;40:405–11 (level 2).Google Scholar
  97. 16.
    de Zeeuw D, Remuzzi G, Parving HH, et al. Proteinuria, a target for renoprotection in patients with type 2 diabetic nephropathy: lessons from RENAAL. Kidney Int 2004;65:2309–20 (level 2).Google Scholar
  98. 9.
    Treatment of diabetic neuropathyGoogle Scholar
  99. 1.
    Tesfaye S, Chaturvedi N, Eaton SE, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med 2005;352:341–50 (level 2).Google Scholar
  100. 2.
    Forrest KY, Maser RE, Pambianco G, et al. Hypertension as a risk factor for diabetic neuropathy: a prospective study. Diabetes 1997;46:665–70 (level 2).Google Scholar
  101. 3.
    Adler AI, Boyko EJ, Ahroni JH, et al. Risk factors for diabetic peripheral sensory neuropathy: results of the Seattle Prospective Diabetic Food Study. Diabetes Care 1997;20:1162–67 (level 2).Google Scholar
  102. 4.
    Partanen J, Niskanen L, Lehtinen J, et al. Natural history of peripheral neuropathy in patients with non-insulin-dependent diabetes mellitus. N Engl J Med 1995;333:89–94 (level 2).Google Scholar
  103. 5.
    The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993;329:977–86 (level 1+).Google Scholar
  104. 6.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–53 (level 1+).Google Scholar
  105. 7.
    Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103–117 (level 1).Google Scholar
  106. 8.
    Max MB, Lynch SA, Muir J, et al. Effects of desipramine, amitriptyline, and fluoxetine on pain in diabetic neuropathy. N Engl J Med 1992;326:1250–56 (level 1).Google Scholar
  107. 9.
    Freeman R, Durso-Decruz E, Emir B. Efficacy, safety, and tolerability of pregabalin treatment for painful diabetic peripheral neuropathy: findings from seven randomized, controlled trials across a range of doses. Diabetes Care 2008;31:1448–54 (level 1).Google Scholar
  108. 10.
    Yasuda H, Hotta N, Nakao K, et al. Superiority of duloxetine to placebo in improving diabetic neuropathic pain: results of a randomized controlled trial in Japan. J Diabetes Invest 2011;2:132–139 (level 1).Google Scholar
  109. 10.
    Diabetic footGoogle Scholar
  110. 1.
    Armstrong DG, Lvery LA. Negative pressure wound therapy after partial diabetic foot amputation: a multicentre, randomized controlled trial. Lancet 2005;366:1704–10 (level 1).Google Scholar
  111. 2.
    Singh N, Armstrong DG, Lipsky BA. Preventing foot ulcers in patients with diabetes. JAMA 2005;293:217–28 (level 2).Google Scholar
  112. 11.
    Diabetes and periodontitisGoogle Scholar
  113. 1.
    Nishimura F, Kono T, Fujimoto C, et al. Negative effects of chronic inflammatory periodontal disease on diabetes mellitus. J Int Acad Periodontol 2000;2:49–55 (level 3). Google Scholar
  114. 2.
    Collin HL, Uusitupa M, Miskanen L, et al. Periodontal findings in elderly patients with non-insulin dependent diabetes mellitus. J Periodontol 1998;69:962–66 (level 2).Google Scholar
  115. 3.
    TakahashiK, Nishimura F, Kurihara M, et al. Subgingival microflora and antibody resposes against periodontal bacteria of young Japanese patients with type 1 diabetes mellitus. J Int Acad Periodontol 2001;3:104–11 (level 3).Google Scholar
  116. 4.
    Soskolne WA, Klinger A. The relationship between periodontal disease and diabetes: an overview. Ann Peirodontol 2001;6:91–9 (level 3).Google Scholar
  117. 5.
    Demmer RT, Jacobs DR, Jr., Desvarieux M. Peiodontal disease and incident type 2 diabetes: results from the First National Health and Nutrition Examination Survey and its epidemiologic follow-up study. Diabetes Care 200;31:1373–79 (level 3).Google Scholar
  118. 6.
    Saito T, Shimazaki Y, Kiyohara Y, et al. The severity of periodontal disease is associated with the development of glucose intolerance in non-diabetics: the Hisayama study. J Dent Res 2004;3:445–90 (level 3).Google Scholar
  119. 7.
    Katagiri S, Nitta H, Nagasawa T, et al. Multi-center intervention study on glycohemoglobin (HbA1c) and serum, high-sensitivity CRP (hs-CRP) after local anti-infectious periodontal treatment in type 2 diabetic patients with periodontal disease. Diabetes Res Clin Pract 2009;3:330–15 (level 1).Google Scholar
  120. 8.
    Janket SJ, Wightman A, Baird AE, et al. Does periodontal treatment improve glycemic control in diabetic patients? A meta-analysis of intervention studies. J Dent Res 2005;4:1154–59 (level 1).Google Scholar
  121. 9.
    Teeuw WJ, Gerdes VE, Loos BG. Effect of periodontal treatment on glycemic control of diabetic patients: a systematic review and meta-analysis. Diabetes Care 2010;33:4227 (level 3).Google Scholar
  122. 12.
    Diabetic macroangiopathyGoogle Scholar
  123. 1.
    Gaede P, Vedel P, Larsen N, et al. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003;348:383–93 (level 1). Google Scholar
  124. 2.
    Griffin SJ, Borch-Johnsen K, Davies MJ et al. Effect of early intensive multifactorial therapy on 5-year cardiovascular outcomes in individuals with type 2 diabetes detected by screening(ADDITION-Europe):a cluster-randomised trial. Lancet 2011;378:156–67 (level 1+).Google Scholar
  125. 3.
    Iso H, Imano H, Kitamura A, et al. Type 2 diabetes and risk of non-embolic ischaemic stroke in Japanese men and women. Diabetologia 2004;47:2137–44 (level 2). Google Scholar
  126. 4.
    Kimura K, Minematsu K, Kazui S, et al. Mortality and cause of death after hospital discharge in 10,981 patients with ischemic stroke and transient ischemic attack. Cerebrovasc Dis 2005;19:171–78 (level 2).Google Scholar
  127. 5.
    Newman AB, Siscovick DS, Manolio TA, et al. Ankle-arm index as a marker of atherosclerosis in the Cardiovascular Health Study. Caridovascular Heart Study (CHS) Collaborative Research Group. Circulation 1993;88:837–45 (level 3).Google Scholar
  128. 6.
    Sone H, Tanaka S, Tanaka S, et al. Serum level of triglycerides is a potent risk factor comparable to LDL cholesterol for coronary heart disease in Japanese patients with type 2 diabetes: subanaysis of the Japan Diabetes Complications Study (JDCS). J Clin Endocrinol Metab 2011;96:3448–56 (level 2). Google Scholar
  129. 7.
    Yokoyama H, Matsushima M, Kawai K, et al. Low incidence of cardiovascular events in Japanese patients with type 2 diabetes in primary care settings: a prospective study (JDDM20). Diabetes Med 2011;28:1221–28 (level 2).Google Scholar
  130. 8.
    Iso H, Date C, Yamamoto A, et al. Smoking cessation and mortality from cardiovascular disease among Japanese men and women: the JACC Study. Am J Epidemiol 2005;161:170–79 (level 2). Google Scholar
  131. 9.
    Okada S, Hiuge A, Makino H, et al. Effect of exercise intervention on endothelial function and incidence of cardiovascular disease in patients with type 2 diabetes. J Atheroscler Thromb 2010;17:828–33 (level 1).Google Scholar
  132. 10.
    Ray KK, Seshasai SR, Wijesuriya S, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 2009;373:1765–72 (level 1+).Google Scholar
  133. 11.
    United Kingdom Prospective Diabetes Study (UKPDS) Group: Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998;352:854–65 (level 1+).Google Scholar
  134. 12.
    Roussel R, Travert F, Pasquet B, et al. Metformin use and mortality among patients with diabetes and atherothrombosis. Arch Intern Med 2010;170:1892–99 (level 2).Google Scholar
  135. 13.
    United Kingdom Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998;317:703–13 (level 1+).Google Scholar
  136. 14.
    Turnbull F, Neal B, Algert C, et al. Effects of different blood pressure-lowering regimens on major cardiovascular events in individuals with and without diabetes mellitus: results of prospectively designed overviews of randomized trials. Arch Intern Med 2005;165:1410–19 (level 1). Google Scholar
  137. 15.
    Kearney PM, Blackwell L, Collins R, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomized trials of statins: a meta-analysis. Lancet 2008;371:117–25 (level 1).Google Scholar
  138. 16.
    Gerstein HC, Miller ME, Byington RP, et al. (Action to Control Cardiovascular Risk in Diabetes Study Group). Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:2545–59 (level 1+).Google Scholar
  139. 17.
    Bonds DE, Miller ME, Bergental RM, et al. The association between symptomatic, severe hypoglycemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ 2010;340:b4909 (level 2).Google Scholar
  140. 18.
    Redon J, Mancia G, Sleight P, et al. Safety and efficacy of low blood pressures among patients with diabetes: subgroup analyses from the ONTARGET (ONgoing Telmisartan Alone and in combination with Ramipril Global Endpoint Trial). J Am Coll Cardiol 2012;59:74–83 (level 2).Google Scholar
  141. 19.
    Antithrombotic Trialists’ Collaboration. Collaborative meta-analysis of randomized trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. BMJ 2002;324:71–86 (level 1). Google Scholar
  142. 20.
    Yasue H, Ogawa H, Tanaka H, et al. Effects of aspirin and trapidil on cardiovascular events after acute myocardial infarction. Japanese Antiplatelets Myocardial Infarction Study (JAMIS) Investigators. Am J Cardiol 1999;83:1308–13 (level 1). Google Scholar
  143. 13.
    Diabetes complicated by obesityGoogle Scholar
  144. 1.
    Yoshiike N, Nishi N, Matsushima S, et al. Relationship between the severity of obesity based on body mass index and the risk factors for diabetes, hypertension, and hyperglycemia: a multicenter epidemiological study. Obes Res 2000;6:4–17 (in Japanese) (level 3). Google Scholar
  145. 2.
    Yki-Järvinen H, Ryysy L, Kauppila M, et al. Effect of obesity on the response to insulin therapy in non-insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 1997;82:4037–43 (level 1).Google Scholar
  146. 3.
    United Kingdom Prospective Diabetes Study (UKPDS) Group. United Kingdom Prospective Diabetes Study 4: a 6-year, randomized, controlled trial comparing sulfonylurea, insulin, and metformin therapy in patients with newly diagnosed type 2 diabetes that could not be controlled with diet therapy. Ann Intern Med 1998;128:165–75 (level 1+).Google Scholar
  147. 14.
    Hypertension associated with diabetesGoogle Scholar
  148. 1.
    Gaede P, Lund-Andersen H, Parving HH, et al. Effect of a multifactorial intervention on mortality in type 2 diabetes. N Eng J Med 2008;358:580–91 (level 1). Google Scholar
  149. 2.
    Holman RR, Paul SK, Bethel MA, et al. Long-term follow-up after tight control of blood pressure in type 2 diabetes. N Engl J Med 2008;359:1565–76 (level 2). Google Scholar
  150. 3.
    Hansson L, Zanchetti A, Carruthers SG, et al. Effects of intensive blood-pressure lowering and low-dose aspirin in patients with hypertension: principal results of the Hypertension Optimal Treatment (HOT) randomized trial. HOT Study Group. Lancet 1998;351:1755–62 (level 1+). Google Scholar
  151. 4.
    Cushman WC, Evans GW, Byington RP, et al. Effects of intensive blood-pressure control in type 2 diabetes mellitus. N Engl J Med 2010;362:1575–85 (level 1+). Google Scholar
  152. 5.
    Bangalore S, Kumar S, Lobach I, et al. Blood pressure targets in subjects with type 2 diabetes mellitus/impaired fasting glucose: observations from traditional and bayesina random effects meta-analysis of randomized trials. Circulation 2011;123:2799–810 (level 1+).Google Scholar
  153. 6.
    Heart Outcomes Prevention Evaluation Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus: results of the HOPE study and MICRO-HOPE substudy. Lancet 2000;355:253–59 (level 1+).Google Scholar
  154. 7.
    Haller H, Ito S, Izzo JL, Jr., et al. Olmesartan for the delay or prevention of microalbuminuria in type 2 diabetes. N Engl J Med 2011;364:907–17 (level 1+). Google Scholar
  155. 8.
    Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med 2008;358:1547-59 (level 1+). Google Scholar
  156. 9.
    Katayama S, Kikkawa R, Isogai S, et al. Effect of captopril or imidapril on the progression of diabetic nephropathy in Japanese with type 1 diabetes mellitus: a randomized controlled study (JAPAN-IDDM). Diabetes Res Clin Pract 2002;55:113–21 (level 1). Google Scholar
  157. 10.
    Ogihara T, Nakao K, Fukui T, et al. Effects of candesartan compared with amlodipine in hypertensive patients with high cardiovascular risk: candesartan antihypertensive survival evaluation in Japan trial. Hypertension 2008;51:393–98 (level 1+).Google Scholar
  158. 11.
    Katayama S, Kawamori R, Iwamoto Y, et al. In half of hypertensive diabetics, co-administration of a calcium channel blocker and an angiotensin-converting enzyme inhibitor achieved a target blood pressure of <130/80 mmHg: the azelnipidine and temocapril in hypertensive patients with type 2 diabetes (ATTEST) study. Hypertens Res 2008;31:1499–08 (level 1). Google Scholar
  159. 12.
    Jamerson K, Weber MA, Bakris GL, et al. Benazeprial plus amlodipine or hydrochlorothiazide for hypertension in high-risk patients. N Enl J Med 2008;359:2417–28 (level 1+). Google Scholar
  160. 13.
    Tuomilehto J, Rastenyte D, Birkenhäger WH, et al. Effects of calcium-channel blockade in older patients with diabetes and systolic hypertension: Systolic Hypertension in Europe Trial Investigators. N Engl J Med 1999;340:677–84 (level 1). Google Scholar
  161. 15.
    Dyslipidemia associated with diabetesGoogle Scholar
  162. 1.
    Collins R, Armitage J, Parish S, et al. (Heart Protection Study Collaborative Group). MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomized placebo-controlled trial. Lancet 2003;361:2005–16 (level 1+).Google Scholar
  163. 2.
    Sone H, Katagiri A, Ishibashi S, et al. Effects of lifestyle modifications on patients with type 2 diabetes: the Japan Diabetes Complications Study (JDCS) study design, baseline analysis and 3 year-interim report. Horm Metab Res 2002;34:509–15 (level 2).Google Scholar
  164. 3.
    Sone H, Ito H, Ohashi Y, et al. Obesity and type 2 diabetes in Japanese patients. Lancet 2003;361:85 (level 2).Google Scholar
  165. 4.
    Kearney PM, Blackwell L, Collins R, et al. Efficacy of cholesterol-lowering therapy in 18,686 people with diabetes in 14 randomized trials of statins: a meta-analysis. Lancet 2008;371:117–25 (level 1+).Google Scholar
  166. 5.
    Japan Atherosclerosis Society(JAS) Guidelines for Prevention of Atherosclerotic Cardiovascular Diseases 2012 (in Japanese). Google Scholar
  167. 6.
    Tajima N, Kurata H, Nakaya N, et al. Pravastatin reduces the risk for cardiovascular disease in Japanese hypercholesterolemic patients with impaired fasting glucose or diabetes: diabetes subanalysis of the Management of Elevated Cholesterol in the Primary Prevention Group of Adult Japanese (MEGA) Study. Atherosclerosis 2008;199:455–62 (level 2). Google Scholar
  168. 7.
    Keech A, Simes RJ, Barter P, et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9785 people with type 2 diabetes mellitus (the FIELD study): randomized controlled trial. Lancet 2005;366:1849–61 (level 1+). Google Scholar
  169. 8.
    Yokoyama M, Origasa H, Matsuzaki M, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomized open-label, blinded endpoint analysis. Lancet 2007;369;1090–98 (level 1+).Google Scholar
  170. 16.
    Impaired glucose metabolism in pregnant womenGoogle Scholar
  171. 1.
    Hanson U, Persson B, Thunell S. Relationship between haemoglobin A1C in early type 1 (insulin-dependent) diabetic pregnancy and the occurrence of spontaneous abortion an fetal malformation in Sweden. Diabetologia 1990;33:100–04 (level 3).Google Scholar
  172. 2.
    Ray JG, O’Brien TE, Chan WS. Preconception care and the risk of congenital anomalies in the offspring of women with diabetes mellitus: a meta-analysis. QJM 2001;94:435–44 (level 1+).Google Scholar
  173. 3.
    Gordon M, Landon MB, Samuels P, et al. Perinatal outcome and long-term follow-up associated with modern management of diabetic nephropathy. Obstet Gynecol 1996;87:401–09 (level 2).Google Scholar
  174. 4.
    Klein BE, Moss SE, Klein R. Effect of pregnancy on progression of diabetic retinopathy. Diabetes Care 1990;13:34–40 (level 2). Google Scholar
  175. 5.
    Chew EY, Mills JL, Metzer BE, et al. Metabolic control and progression of retinopathy: the Diabetes in Early Pregnancy Study. National Institute of Child Health and Human Development Diabetes in Early Pregnancy Study. Diabetes Care 1995;18:631–37 (level 3).Google Scholar
  176. 6.
    Ekbom P, Damm P, Feldt-Rasmussen B, et al. Pregnancy outcome in type 1 diabetic women with microalbuminuria. Diabetes Care 2001;24:1739–44 (level 2).Google Scholar
  177. 7.
    Purdy LP, Hantsch CE, Molitch ME, et al. Effect of pregnancy on renal function in patients with moderate-to-severe diabetic renal insufficiency. Diabetes Care 1996;19:1067–74 (level 3).Google Scholar
  178. 8.
    Griffin ME, Coffey M, Johnson H, et al. Universal vs. risk factor-based screening for gestational diabetes mellitus: detection rates, gestation at diagnosis and outcome. Diabet Med 2000;17:26–32 (level 1).Google Scholar
  179. 9.
    de Veciana M, Major CA, Morgan MA, et al. Postprandial versus preprandial blood glucose monitoring in women with gestational diabetes mellitus requiring insulin therapy. N Engl J Med 1995;333:1237–41 (level 2).Google Scholar
  180. 10.
    Landon MB, Spong CY, Thom E, et al. A multicenter, randomized trial of treatment for mild gestational diabetes. N Engl J Med 2009;361:1339–48 (level 1). Google Scholar
  181. 11.
    Hellmuth E, Damm P, Molsted-Pedersen L. Oral hypoglycemic agents in 118 diabetic pregnancies. Diabet Med 2000;17:507–11 (level 2). Google Scholar
  182. 12.
    Mukhopadhyay A, Farrell T, Fraser RB, et al. Continuous subcutaneous insulin infusion vs intensive conventional insulin therapy in pregnant diabetic women: a systematic review and metaanalysis of randomized, controlled trials. Am J Obstet Gynecol 2007;197:447–56 (level 2).Google Scholar
  183. 13.
    Mathiesen ER, Kinsley B, Amiel SA, et al. Maternal glycemic control and hypoglycemia in type 1 diabetic pregnancy: a randomized tiral of insulin aspart versus human insulin in 322 pregnant women. Diabetes Care 2007;30:771–6 (level 2). Google Scholar
  184. 14.
    Mathiesen ER, Hod M, Ivanisevic M, et al. (Detemir in Pregnancy Study Group). Maternal efficacy and safety outcomes in a randomized, controlled trial comparing insulin detemir with NPH insulin in 310 pregnant women with type 1 diabetes. Diabetes Care 2012;35:2012–17 (level 1+).Google Scholar
  185. 15.
    Bellamy L, Casas JP, Hingorani AD, et al. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet 2009;373:1773–79 (level 1+). Google Scholar
  186. 17.
    Pediatric/adolescent diabetesGoogle Scholar
  187. 1.
    White NH, Cleary PA, Dahms W, et al. (Diabetes Control and Complications Trial [DCCT]/Epidemiology of Diabetes Interventions and Complications [EDIC] Research Group). Beneficial effects of intensive therapy of diabetes during adolescence: outcomes after the conclusion of the Diabetes Control and Complications Trial (DCCT). J Pediatr 2001;139:804–12 (level 2).Google Scholar
  188. 2.
    Minami M, Otani T, Yokoyama H, et al. Changes over time in insulin dose and development/growth status in insulin-dependent diabetic patients more than 25 years after disease onset at less than 8 years old. Diabetes 1993;36:455–60 (in Japanese) (level 2). Google Scholar
  189. 3.
    Hershey T, Perantie DC, Warren SL, et al. Frequency and timing of severe hypoglycemia affects spatial memory in children with type 1 diabetes. Diabetes Care 2005;28:2372–77 (level 3). Google Scholar
  190. 4.
    Musen G, Jacobson AM, Ryan CM, et al. Impact of diabetes and its treatment on cognitive function among adolescents who participated in the Diabetes Control and Complications Trial. Diabetes Care 2008;31:1933–38 (level 2).Google Scholar
  191. 5.
    Yokoyama H, Okudaira M, Otani T, et al. Existence of early-onset NIDDM Japanese demonstrating severe diabetic complications. Diabetes Care 1997;20:844–47 (level 2).Google Scholar
  192. 18.
    Diabetes (and bone metabolism) in the elderlyGoogle Scholar
  193. 1.
    Harris MI, Flegal KM, Cowie CC, et al. Prevalence of diabetes, impaired fasting glucose, and impaired glucose tolerance in U. S. adults: the Third National Health and Nutrition Examination Survey, 1988–1994. Diabetes Care 1998;21:518–24 (level 4). Google Scholar
  194. 2.
    Araki A, Ito H, Hattori A, et al. Risk factors for development of retinopathy in elderly Japanese patients with diabetes mellitus. Diabetes Care 1993;16:1184–86 (level 3).Google Scholar
  195. 3.
    Bethel MA, Sloan FA, Belsky D, et al. Longitudinal incidence and prevalence of adverse outcomes of diabetes mellitus in elderly patients. Arch Intern Med 2007;167:921–27 (level 2).Google Scholar
  196. 4.
    Cukierman T, Gerstein HC, Williamson JD. Cognitive decline and dementia in diabetes—systematic overview of prospective observational studies. Diabetologia 2005;48:2460–69 (level 2).Google Scholar
  197. 5.
    Bruce DG, Casey G, David WA, et al. Vascular depression in older people with diabetes. Diabetologia 2006;49:2828–36 (level 4).Google Scholar
  198. 6.
    Gregg EW, Mangione CM, Cauley JA, et al. Diabetes and incidence of functional disability in older women. Diabetes Care 2002;25:61–67 (level 2).Google Scholar
  199. 7.
    Janghorbani M, Van Dam RM, Willett WC, et al. Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 2007;166:495–05 (level 2).Google Scholar
  200. 8.
    Wahl PW, Savage PJ, Psaty BM, et al. Diabetes in older adults: comparison of 1997 American Diabetes Association classification of diabetes mellitus with 1985 WHO classification. Lancet 1998;352:1012–15 (level 4).Google Scholar
  201. 9.
    Miller CK, Edwards L, Kissling G, et al. Nutrition education improves metabolic outcomes among older adults with diabetes mellitus: results from a randomized controlled trial. Prev Med 2002;34:252–9 (level 1).Google Scholar
  202. 10.
    Wannamethee SG, Shaper AG, Walker M. Changes in physical activity, mortality, and incidence of coronary heart disease in older men. Lancet 1998;351:1603–08 (level 2).Google Scholar
  203. 11.
    Ellekjaer H, Holmen J, Ellekjaer E, et al. Physical activity and stroke mortality in women: 10-year follow-up of the Nord-Trondelag health survey, 1984–1986. Stroke 2000;31:14–18 (level 2).Google Scholar
  204. 12.
    Braun AK Kubiak T, Kuntsche J, et al. SGS: a structured treatment and teaching programme for older patients with diabetes mellitus—a prospective randomized controlled multi-centre trial. Age Ageing 2009;38:390–6 (level 1).Google Scholar
  205. 13.
    Johnson PS, Lebovitz HE, Coniff RF, et al. Advantages of alpha-glucosidase inhibition as monotherapy in elderly type 2 diabetic patients. J Clin Endocrinol Metab 1998;83:1515–22 (level 1).Google Scholar
  206. 14.
    Gregorio F, Ambrosi F, Manfrini S, et al. Poorly controlled elderly type 2 diabetic patients: the effects of increasing sulphonylurea dosages or adding metformin. Diabet Med 1999;16:1016–24 (level 1).Google Scholar
  207. 15.
    Seltzer HS. Drug-induced hypoglycemia: a review of 1418 cases. Endocrinol Metab Clin North Am 1989;18:163–83 (level 4).Google Scholar
  208. 16.
    Lee SJ, Boscardin WJ, Stijacic Cenzer I, et al. The risks and benefits of implementing glycemic control guidelines in frail older adults with diabetes mellitus. J Am Geriatr Soc 2011;59:666–72 (level 2).Google Scholar
  209. 17.
    Whitmer RA, Karter Aj, Yaffe K, et al. Hypoglycemic episodes and risk of dementia in older patients with type 2 diabetes mellitus. JAMA 2009;301:1565–72 (level 2).Google Scholar
  210. 18.
    Calabrese AT, Coley KC, DaPos SV, et al. Evaluation of prescribing practices: risk of lactic acidosis with metformin therapy. Arch Intern Med 2002;162:434–37 (level 4).Google Scholar
  211. 19.
    Huang ES, Liu JY, Moffet HH, et al. Glycemic control, complications, and death in older diabetic patients: the diabetes and aging society. Diabetes Care 2011;34:1329–36 (level 3).Google Scholar
  212. 20.
    Sosa M, Saavedra P, Jodar E, et al. Bone mineral density and risk of fractures in aging, obese post-menopausal women with type 2 diabetes: the GUIMO Study. Aging Clin Exp Res 2009;21:27–32 (level 2).Google Scholar
  213. 21.
    Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. CMAJ 2009;180:32–39 (level 2).Google Scholar
  214. 22.
    Keegan TH, Schwartz AV, Bauer DC, et al. Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care 2004;27:1547–53 (level 1).Google Scholar
  215. 19.
    Acute metabolic complications of diabetesGoogle Scholar
  216. 1.
    Kitabchi AE, Umpierrez GE, Miles JM, et al. Hyperglycemic crises in adults patients with diabetes. Diabetes Care 2009;32:1335–43.Google Scholar
  217. 2.
    Gamba G, Oseguera J, Castrejon M, et al. Bicarbonate therapy in severe diabetic ketoacidosis: a double blind, randomized, placebo controlled trial. Rev Invest Clin 1991;43:234–38 (level 1).Google Scholar
  218. 3.
    Seidowsky A, Nseir S, Houdret N et al.: Metformin-associated lactic acidosis: a prognostic and therapeutic study. Crit Care Med 2009;37: 2191–96 (level 4).Google Scholar
  219. 4.
    Rosenstock J, Dailey G, Massi-Benedetti M, et al. Reduced hypoglycemia risk with insulin glargine: a meta-analysis comparing insulin glargine with human NPH insulin in type 2 diabetes. Diabetes Care 2005;28:950–55 (level 1).Google Scholar
  220. 5.
    Hemmingsen B, Lund SS, Gluud C, et al. Intensive glycaemic control for patients with type 2 diabetes: systematic review with meta-analysis and trial sequential analysis of randomized clinical trials. BMJ 2011;343:d6898 (level 1+).Google Scholar
  221. 20.
    Diabetes, infectious diseases and sick daysGoogle Scholar
  222. 1.
    Hotta N, Nakamura J, Iwamoto Y, et al. Cause of death in Japanese diabetics based on the results of a survey of 18,385 diabetics during 1991–2000. Report of Committee on Cause of Death in Diabetes Mellitus. J Jpn Diab Soc 2007;50:47–61 (in Japanese) (level 4).Google Scholar
  223. 21.
    Diabetes and pancreas/islet transplantationGoogle Scholar
  224. 1.
    Gruessner AC. 2011 update on pancreas transplantation: comprehensive trend analysis of 25,000 cased followed up over the course of 24 years at the International Pancreas Transplant Registry (IPTR). Rev Diabet Stud 2011;8:6–16 (level 3).Google Scholar
  225. 2.
    Ito T, Ishibashi M, Japan Pancreas/Islet Transplantation Study Group Pancreatic Transplantation Division. Report of the Japanese Pancreas Transplant Registry (2011). Transplantation 2011;46:546–51 (in Japanese) (level 3).Google Scholar
  226. 3.
    Weiss AS, Smits G, Wiseman AC. Twelve-month pancreas graft function significantly influences surveil following simultaneous pancreas-kidney transplantation. Clin J Am Soc Nephrol 2009;4:988–95 (level 3).Google Scholar
  227. 4.
    Browne S, Gill J, Dong J, et al. The impact of pancreas transplantation on kidney allograft survival. Am J Transplant 2011;11:1951–58 (level 3).Google Scholar
  228. 5.
    Sureshkumar KK, Patel BM, Markatos A, et al. Quality of life after organ transplantation in type 1 diabetics with end-stage renal disease. Clin Transplant 2006;20:19–25 (level 2).Google Scholar
  229. 6.
    Biesenbach G, Konigsrainer A, Gross C, et al. Progression of macrovascular diseases is reduced in type 1 diabetic patients after more than 5 years successful combined pancreas-kidney transplantation in comparison to kidney transplantation alone. Transpl Int 2005;18:1054–60 (level 2).Google Scholar
  230. 7.
    Ryan EA, Paty BW, Senior PA, et al. Five-year follow-up after clinical islet transplantation. Diabetes 2005;54:2060–69 (level 2).Google Scholar
  231. 8.
    Fiorina P, Shapiro AM, Ricordi C, et al. The clinical impact of islet transplantation. Am J Transplant 2008;8:1990–97 (level 3).Google Scholar
  232. 9.
    Dong M, Parsaik AK, Erwin PJ, et al. Systematic review and meta-analysis: islet autotransplantation after pancreatectomy for minimizing diabetes. Clin Endocrinol 2011;75:771–9 (level 4).Google Scholar
  233. 22.
    Education for diabetes self-managementGoogle Scholar
  234. 1.
    The Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes. N Engl J Med 1993;329:977–86 (level 1+).Google Scholar
  235. 2.
    Knowler WC, Barrett-Connor E, Fowler SE, et al. (Diabetes Prevention Program Research Group). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393–02 (level 1+).Google Scholar
  236. 3.
    Minet L, Moller S, Vach W, et al. Mediating the effect of self-care management intervention in type 2 diabetes: a meta-analysis of 47 randomized controlled trials. Patient Educ Couns 2010;80:29–41 (level 1).Google Scholar
  237. 4.
    Shojania KG, Ranji SR, McDonald KM, et al. Effects of quality improvement strategies for type 2 diabetes on glycemic control: a meta-regression analysis. JAMA 2006;296:427–40 (level 2).Google Scholar
  238. 5.
    Tshiananga JK, Kocher S, Weber C, et al. The effect of nurse-led diabetes self-management education on glycosylated hemoglobin and cardiovascular risk factors: a meta-analysis. Diabetes Educ 2012;38:108–23 (level 1).Google Scholar
  239. 6.
    Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin-dependent diabetes mellitus: a randomized prospective 6-year study. Diabetes Res Clin Pract 1995;28:103–17 (level 1) and (level 2).Google Scholar
  240. 7.
    de Veciana M, Major CA, Morgan MA, et al. Postprandial versus preprandial blood glucose monitoring in women with gestational diabetes mellitus requiring insulin therapy. N Engl J Med 1995;333:1237–41 (level 1).Google Scholar
  241. 8.
    Schachinger H, Hegar K, Hermanns N, et al. Randomized controlled clinical trial of Blood Glucose Awareness Training (BGAT III) in Switzerland and Germany. J Behav Med 2005;28:587–94 (level 1).Google Scholar
  242. 9.
    Malanda UL, Welschen LM, Riphagen II, et al. Self-monitoring of blood glucose in patients with type 2 diabetes mellitus who are not using insulin. Cochrane Database Syst Rev 2012;1:CD005060. (level 1).Google Scholar
  243. 10.
    Rachmani R, Levi Z, Slavachevski I, et al. Teaching patients to monitor their risk factors retards the progression of vascular complications in high-risk patients with type 2 diabetes mellitus—a randomized prospective study. Diabet Med 2002;19:385–92 (level 1).Google Scholar
  244. 11.
    Ismail K, Winkley K, RAbe-Hesketh S. Systematic review and meta-analysis of randomized controlled trials of psychological interventions to improve glycaemic control in patients with type 2 diabetes. Lancet 2004;363:1589–97 (level 1).Google Scholar
  245. 12.
    Winkley K, Ismail K, Landau S, et al. Psychological interventions to improve glycaemic control in patients with type 1 diabetes: systematic review and meta-analysis of randomized controlled trials. BMJ 2006;333:65 (level 1).Google Scholar
  246. 13.
    Phillips LS, Ziemer DC, Doyle JP, et al. An endocrinologist-supported intervention aimed at providers improves diabetes management in a primary care site: improving primary care of African Americans with diabetes (IPCAAD) 7. Diabetes Care 2005;28:2352–60 (level 1+).Google Scholar
  247. 23.
    Prevention of type 2 diabetesGoogle Scholar
  248. 1.
    American Diabetes Association: Standards of medical care in diabetes—2010. Diabetes Care 2010;33(Suppl 1):S11–61.Google Scholar
  249. 2.
    Heianza Y, Hara S, Arase Y, et al. HbA1c 5.7–6.4 % and impaired fasting glucose for diagnosis of prediabetes and risk of progression to diabetes in Japan (TOPICS 3): a longitudinal cohort study. Lancet 2011;378:147–55 (level 2).Google Scholar
  250. 3.
    de Munter JS, Hu FB, Spiegelman D, et al. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med 2007;4:e261 (level 2).Google Scholar
  251. 4.
    Dong JY, Zhang L, Zhang YH, et al. Dietary glycaemic index and glycaemic load in relation to the risk of type 2 diabetes: a meta-analysis of prospective cohort studies. Br J Nutr 2011;106:1649–54 (level 2). Google Scholar
  252. 5.
    Carter P, Gray LJ, Troughton J, et al. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ 2010;341:c4229 (level 2).Google Scholar
  253. 6.
    Nanri A, Mizoue T, Noda M, et al. Fish intake and type 2 diabetes in Japanese men and women: the Japan Public Health Center-based Prospective Study. Am J Clin Nutr 2011;94:884–91 (level 2).Google Scholar
  254. 7.
    Kosaka K, Noda M, Kuzuya T. Prevention of type 2 diabetes by lifestyle intervention: a Japanese trial in IGT males. Diabetes Res Clin Pract 2005;67:152–62 (level 1).Google Scholar
  255. 8.
    Saito T, Watanabe M, Nishida J, et al. Lifestyle modification and prevention of type 2 diabetes in overweight Japanese with impaired fasting glucose levels: a randomized controlled trial. Arch Intern Med 2011;171:1352–60 (level 1).Google Scholar
  256. 9.
    Jeon CY, Lokken RP, Hu FB, et al. Physical activity of moderate intensity and risk of type 2 diabetes: a systematic review. Diabetes Care 2007;30:744–52 (level 2).Google Scholar
  257. 10.
    Willi C, Bodenmann P, Ghali WA, et al. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 2007;298:2654–64 (level 2).Google Scholar
  258. 11.
    Koppes LL, Dekker JM, Hendriks HF, et al. Moderate alcohol consumption lowers the risk of type 2 diabetes: a meta-analysis of prospective observational studies. Diabetes Care 2005;28:719–25 (level 2).Google Scholar
  259. 12.
    Waki K, Noda M, Sasaki S, et al. Alcohol consumption and other risk factors for self-reported diabetes among middle-aged Japanese: a population-based prospective study in the JPHC study cohort I. Diabet Med 2005;22:323–31 (level 2).Google Scholar
  260. 13.
    Kato M, Noda M, Inoue M, et al. Psychological factors, coffee and risk of diabetes mellitus among middle-aged Japanese: a population-based prospective study in the JPHS study cohort. Endocr J 2009;56:459–68 (level 2).Google Scholar
  261. 14.
    Cappuccio FP, D’Elia L, Strazzullo P, et al. Quantity and quality of sleep and incidence of type 2 diabetes: a systematic review and meta-analysis. Diabetes Care 2010;33:414–20 (level 2).Google Scholar
  262. 15.
    Mezuk B, Eaton WW, Albrecht S, et al. Depression and type 2 diabetes over the lifespan: a meta-analysis. Diabetes Care 2008;31:2383–90 (level 2).Google Scholar
  263. 16.
    Knowler WC, Barrett-Connor E, Fowler SE, et al. (Diabetes Prevention Program Research Group). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med 2002;346:393–03 (level 1+).Google Scholar
  264. 17.
    Gillies CL, Abrams KR, Lambert PC, et al. Pharmacological and lifestyle interventions to prevent or delay type 2 diabetes in people with impaired glucose tolerance: systematic review and meta-analysis. BMJ 2007;334:299 (level 1).Google Scholar
  265. 18.
    Kawamori R, Tajima Iwamoto Y, et al. Voglibose for prevention of type 2 diabetes mellitus: a randomized, double-blind trial in Japanese individuals with impaired glucose tolerance. Lancet 2009;373:1607–14 (level 1+).Google Scholar
  266. 19.
    Chiasson JL, Josse RG, Gomis R. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomized trial. Lancet 2002;359:2072–77 (level 1+).Google Scholar
  267. 24.
    Metabolic syndromeGoogle Scholar
  268. 1.
    Committee on Diagnostic Criteria for Metabolic Syndrome. Metabolic Syndrome: Its Definition and Diagnostic Criteria. J Jpn Soc Intern 2005;94:794–09 (in Japanese).Google Scholar
  269. 2.
    Doi Y, Ninomiya T, Hara J, et al. Proposed criteria for metabolic syndrome in Japanese based on prospective evidence: the Hisayama study. Stroke 2009;40:1187–94 (level 2).Google Scholar
  270. 3.
    Irie F, Iso H, Noda H, et al. Associations between metabolic syndrome and mortality from cardiovascular disease in Japanese general population, findings on overweight and non-overweight individuals: Ibaraki Prefectural Health Study. Cir J 2009;73:1635–42 (in Japanese) (level 2).Google Scholar
  271. 4.
    Hiuge-Shimizu A, Kishida K, Funahashi T, et al. Absolute value of visceral fat area measured on computed tomography scans and obesity-related cardiovascular risk factors in large-scale Japanese general population (the VACAION-J-study). Ann Med 2012;44:82–92 (level 4).Google Scholar
  272. 5.
    Sone H, Tanaka S, Iimuro S, et al. Components of metabolic syndrome and their combinations as predictors of cardiovascular disease in Japanese patients with type 2 diabetes. Implications for improved definition. Analysis from Japan Diabetes Complications Study (JDCS). J Atheroscler Thromb 2009;16:380–87 (level 4).Google Scholar
  273. 6.
    Ilanne-Parikka P, Eriksson JG, Lindstrom J, et al. Effect of lifestyle intervention on the occurrence of metabolic syndrome and its components in the Finnish Diabetes Prevention Study. Diabetes Care 2008;31:805–07 (level 2).Google Scholar

Copyright information

© The Japan Diabetes Society 2015

Authors and Affiliations

  • Naoko Tajima
    • 1
    Email author
  • Mitsuhiko Noda
    • 2
  • Hideki Origasa
    • 3
  • Hiroshi Noto
    • 2
  • Daisuke Yabe
    • 4
  • Yukihiro Fujita
    • 5
  • Atsushi Goto
    • 2
  • Kei Fujimoto
    • 1
  • Masaya Sakamoto
    • 1
  • Masakazu Haneda
    • 5
  1. 1.Jikei University School of MedicineTokyoJapan
  2. 2.National Center for Global Health and MedicineTokyoJapan
  3. 3.University of Toyama School of MedicineToyomaJapan
  4. 4.Kansai Electric Power HospitalOsakaJapan
  5. 5.Asahikawa Medical UniversityAsahikawaJapan

Personalised recommendations